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1. Introduction

It is well known that with significant deviations from

equilibrium, metastable phases may appear, often with

properties qualitatively different from those of known sub-

stances in equilibrium states. Purposeful creation of certain

metastable states makes it possible to significantly expand

the set of available useful properties of materials without

resorting to changing their chemical composition. The latter

circumstance is very significant, because in the presence of

chemical reactions in many cases (and with the participation

of gases — always) it is necessary to create special original

techniques to ensure relaxation of large mechanical stresses

(see, for example, [1,2]).
In addition to durability, the standard technological

requirements for new metastable materials are a sufficient

degree of their uniformity, as well as a sufficiently high rate

of formation of metastable phases. At the same time, the

specified shape and size of the initial product-output product

are realized by choosing the geometry and configuration of

the installation.

A very common technological technique that allows

achieving the necessary uniformity of materials obtained

from melts and solutions is the method of directional

crystallization. In this case, a temperature gradient is

created, and the isotherm corresponding to the phase

transformation (PT) temperature moves at a given speed.

With a correctly chosen gradient sign and its sufficiently

large value, nucleation in the volume of the material is

suppressed, so that the morphology of the PT is as simple as

possible, and the calculation of its kinetics is reduced to the

calculation of the dynamics of an isolated phase front. In

turn, the most frequently used in practice is the steady-state

growth mode, in which it is sufficient to calculate the value

of the constant velocity of the front under experimentally

specified conditions.

However, this mode, as well as the generally accepted

desire to obtain homogeneous materials-products, does not

fully use the possibilities of creating metastable materials
with the widest possible controlled set of properties. The
latter, as is known, can critically depend on the structures
created in the material, the scales of which can vary from
macroscopic to nano.
Therefore, the strategy of manufacturing homogeneous

products is not always the optimal choice. In many cases,
the requirement of uniformity of the state of the material
is dictated simply by the lack of a reliable technological
technique for creating reproducible heterogeneous stable
structures, as well as the lack of development of a theory
that is convenient enough for practical calculations.
At the same time, experimental observations indicate that

there are mechanisms in nature that lead to the appearance
of such structures. In particular, numerous examples of
such structures are known in mineralogy (see, for example,
reviews of [3,4]). In minerals, the presence of structures
often manifests itself in the form of multi-colored patterns
having both complex and simple regular compositions.
As an illustration, we present a photo of a mineral malachite
sample, on the polished section of which the regular
structure of rings colored with different intensities is visible,
see Fig. 1. Although there is no detailed description of
the hydrothermal processes responsible for the emergence
of such a structure, its simplicity and unchanging nature,
observed on a variety of samples from different deposits,
suggest that the mechanism of their formation should be
universal. Therefore, it can be hoped that to describe it, it
is sufficient to use a simple model of the diffusion transport
of impurities, the local change in the concentration of which
provides a different intensity of coloring of the mineral.
The formation of structures with regular concentration or-

dering is also encountered in some metallurgical processes.
Among them, processes with the formation of eutectic
structures are especially important, since alloys possessing
them have a number of useful properties [5]. As in the case
of multicolored minerals, the mechanism of the appearance
of regular eutectic grains is also based on the transport of
impurity atoms [6].
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Figure 1. Photo of a round layered structure of malachite.

In a series of our previous works, we proposed using

stationary modes of fast directed crystallization [7–14] to

create regular metastable composites. We have shown

that under certain conditions, quite easily implemented

in practice, the velocity of the melt (or solution) boun-

dary — the crystal experiences self-oscillations around

an experimentally set constant value of the velocity of

the isotherm PT. It is important that it was possible to

simplify the calculation of the dynamics of the interface with

good accuracy to the solution of an ordinary differential

equation for a nonlinear oscillator with negative friction.

The parameters of the stable limit cycle of this equation

determine not only the dynamics of the boundary, but

also the oscillations of the impurity concentration on it.

Since the diffusion coefficient of the impurity in the solid-

phase material-product is small, the metastable periodic

impurity profile arising in it is completely determined by

these oscillations. Their characteristics can be purposefully

controlled by changing the value of a given constant velocity

of the isotherm Viso and/or the magnitude of the external

temperature gradient ∇T .

In this article, we will extend the methodology for

creating flat periodic concentration structures in a situation

where it is required to obtain simple regular, but not

periodic, two-dimensional metastable concentration struc-

tures. It will be shown that for large radii of curvature,

the calculation of aperiodic impurity profiles of materials-

products can be simplified to solving the equation for a

nonlinear oscillator with negative friction, which is under the

action of an external force variable in time. Our numerical

calculations have shown that it is easy to control the degree

of aperiodicity of the emerging concentration structure,

since the transition times from one quasi-periodic regime

to another correspond to a small number of oscillation

periods.

2. Description of the process
and its physical model

Let us briefly recall the essence of the principle of

directional crystallization, which underlies its several techno-

logical implementations, such as the methods of Bridgman,

Chokhralsky, zone melting, fast directional crystallization,

etc. The key point is the advance through the sample at

a given speed of the isotherm corresponding to the tempe-

rature of the equilibrium PT of the melt−crystal. Behind

this isotherm, its movement is tracked by a nonequilibrium

interphase boundary, which tends to retain (less often —
push out) impurities in the melt in front of it. Usually,

a constant wiring speed Viso is used to obtain a uniform

distribution of impurities in the product material.

However, in a certain range of velocities Viso and

temperature gradients ∇T , the boundary retains the flat

morphology of the isotherm surface, but its velocity V (t)
experiences periodic oscillations around a given constant

velocity Viso [7]. At minimum values of V (t) the impurity

concentration at the boundary approaches the equilibrium

one, at maximum — it deviates noticeably from it. Thus,

a long-lived metastable periodic profile of excess impurity

concentration inherited from the melt is created in a cooled

solid product, where the impurity diffusion is very slow.

For the first time, the theoretical possibility of the appear-

ance of such periodic profiles was discovered in the works

of Conti, who carried out numerical calculations within the

framework of the phase field model for dilute alloys [15,16].
He noted that his numerical results differ markedly from

the results of Kurtz and co-authors obtained within the

framework of a purely phenomenological approach [17,18].
In the study [19], it was mathematically strictly shown how

the phase field model used by Conti can be significantly

simplified. The capillary-wave model derived in [19] was

then used in [20–23] to perform an analytical calculation of

the self-oscillatory dynamics of a plane interphase boundary

during rapid directional crystallization of dilute alloys, as

well as those formed in the solid phase at constant velocities

Viso of periodic impurity profiles.

In this paper, we use a generalization of the capillary-

wave model to calculate the parameters of aperiodic impu-

rity profiles arising in the mode of unsteady fast directional

crystallization. For certainty, we will consider an experi-

mental situation when a circular spot on the alloy surface is

first melted by a laser beam, and then the irradiation power

decreases, resulting in reverse recrystallization of the melt.

It should be noted that in recent years there has been a

significant increase in experimental capabilities for detailed

observation of such processes in situ, with spatial and

temporal nanorecision of the emerging metastable structures

(see review [24]).

The equations of motion of the coordinate R(t) of the

melt−crystal boundary together with the diffusion equation

for the local concentration C(r, t) of the impurity entrained
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by the moving boundary take the form in this case

1

p
∂R
∂t

= −
1

R
+ Fs − g(R − Riso(t))

− γ

+∞
∫

0

dr
dCeq(r − R)

dr

(

C(r, t) −Ceq(r − R(t))
)

, (1)

∂C(r, t)
∂t

= 1r
[

C(r, t) −Ceq(r − R(t))
]

, (2)

where operator 1r = 1
r

∂
∂r

(

r ∂
∂r

)

, the initial position of the

boundary is R(t = 0) = R0 ≫ 1, a given time-dependent

isotherm velocity Ṙiso(t) = Viso(t), Ceq is the impurity profile

corresponding to the equilibrium position of the boundary.

In (1), (2) a transition was made from the dimensional

values of the problem, such as a given temperature gradient

∇T , a given rate of advance of isotherms Viso(t), a given

impurity concentration of the source material C0, the

profile of the equilibrium impurity concentration across the

interface Ceq(r − R), the jump in impurity concentration at

PT — 1Ceq, latent heat of PT — L, temperature of PT —
T0, border width — δ, slope of the PT line on the phase

diagram —
∂T0
∂C , the maximum velocity of the interphase

boundary of pure matter — Vc , the rate of jump of an

impurity atom into an adjacent cell — Vd ≈ D/δ, and D —
coefficient diffusion to dimensionless variables

r
δ
→ r,

Dt
δ2

→ t,
2(C −C0)

1Ceq

→ C, (3)

and independent dimensionless parameters

γ =

(

1Ceq

2

)2
ρδ3

kBT0

, ρ(T ) = −

(

∂T0

∂C

)

L
T0

1

1C(T )
,

p =
Vc

Vd
, Fs(R) =

δ3L
kBT0

[

T (R) − T0

T0

]

,

g =

(

δ3L
kBT0

) (

δ∇T
T0

)

, (4)

where kB is the Boltzmann constant. To find solu-

tions to the equations (1), (2), it is necessary to spe-

cify a specific type of functions Ceq(r − R) and Viso(t).
To simplify calculations, we will always choose the

equilibrium impurity profile in the form of a smooth

step: Ceq(x) = H(x) exp(−x) + H(−x)[2− exp(x)], where

H(x) is the Heaviside function. System solutions (1), (2)
for different modes of motion, the isotherms Viso(t) will be

obtained in the next section.

3. Dynamics of the melt−crystal
interface and solid-phase impurity
profiles at stationary and
non-stationary isotherm velocities

For large radii of the melt spot R(t), one can neglect

can neglect the member
1
r

∂
∂r ≪

∂2

∂r2 in (2); therefore,

assuming the implementation of the relaxation mode of self-

oscillations of the velocity of the interphase boundary, an

approximate solution of the diffusion equation (2) can be

obtained in exactly the same way as it was done in [8] for a
flat boundary. Therefore, without repeating the derivation,

we will only give the result for the value of the impurity

concentration at the boundary

C(r = R, t) = C(1)(R, t) + C(2)(R, t), (5)

C(1)(r = R, t) =

R
∫

−∞

dr ′e−(R−r ′)C′
eq(r

′), (6)

C(2)(r = R, t) =
1

2
v̇

(

∂2

∂v2

) (

C(1)(R, v) + C(1)(R, 0)
v

)

.

(7)

After substituting the solution (5−7) into the equa-

tion (1) it turns into an equation for an oscillator having

a non-linearly velocity-dependent friction force G(v) and a

mass M(v):

M(Ṙ)R̈ + G(Ṙ) + g(R − Riso(t)) − Fs +
1

R
= 0, (8)

where

G(v) :=
v

p
− f (v) + f (0), (9)

M(v) := −
1

2

∂2

∂v2

[

f (v) − f (0)

v

]

, (10)

f (v) := −γ

+∞
∫

−∞

drC′
eq(r)C(1)(r, v). (11)

Obviously, in the simplest case Viso(t) = Vs = const the

equation (8) is a generalized Rayleigh equation, which, in

the presence of a falling branch G′(v) < 0 of the friction

force, has a stable limit cycle with a period Ts. Accordingly,

for large melt spot sizes R(t) ≫ VsTs := d a ring-shaped

impurity profile with a spatial period of d will arise.

If the deviations of the isotherm velocity from its average

value Vs are small, Viso(t) = Vs + εV (t), ε ≪ 1 (this assump-

tion guarantees that repeated melting of the crystallized

areas of the material is impossible), then equation (8) can

be rewritten as

M(Ṙ)R̈ + G(Ṙ) + g(R −Vst) − Fs +
1

R
= g

(

Riso(t) −Vst
)

,

(12)

i.e. it takes the form of a generalized Rayleigh equation

containing a time-dependent external force.

Equation (12) is useful in two ways. Firstly, the nature

of its possible solutions has been studied mathematically

well enough and their classification [25,26] has been

constructed. Secondly, for specific experimental cases, it

can be solved numerically much easier and faster than

an integro-differential system of equations (1), (2). It is

advisable to use both of these factors for a preliminary
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a b

Figure 2. Impurity concentration distribution obtained by numerical solution of the system (1), (2): a) at a constant wiring speed

Viso(t) = 0.4; b) at speed Viso(t) = V0 + kt · [H(t) − H(t − 1t)] for parameter values V0 = 0.4, 1t = 2 · 104, k = 10−5.
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Figure 3. Impurity concentration distribution obtained by

numerical solution of the system (1), (2) with
”
switching“ the

speed Viso(t) according to (13), with parameter values V1 = 0.5,

V2 = 0.2, 1t = 1.25 · 104, τ = 50.

search for the optimal choice of values of control parameters:

functions Viso(t) and values ∇T .
The most interesting issue for applications is the pos-

sibility of creating and effectively managing a variety of

profiles of impurity structures that occur in a solidified

material. In particular, it is important how compactly the

areas of rings of different radii can be arranged when

”
switching“ isotherm velocity from one value to another

(see, for example, [27]). To find out, we performed a series

of numerical calculations of the system of equations (1), (2)
for different modes Viso(t). Some of the results obtained are

shown in Figures 2 and 3.

The law of switching Viso(t) from V1 to V2 was chosen by

us in Fig. 3 in the form

Viso(t) = V1 +
V2 −V1

2

(

th

(

t − 1t
τ

)

+ 1

)

, (13)

where τ — is the characteristic switching time.

From these figures we see that: a) it is not difficult to

choose the mode Viso(t), which provides almost any given

impurity profile in a solid material-product, and b) kthe

transition areas from one characteristic profile shape to

another are quite short and correspond, as a rule, to just

a few concentration oscillations.

4. Conclusion

The article discusses the possibilities of using the

method of fast unsteady directional crystallization to create

metastable microstructures with a given radial profile of

impurity concentration. It is shown that for the practical

determination of the time dependence of the velocity of the

isotherm of the phase transformation of the melt−crystal,

which ensures the occurrence of such profiles, including

aperiodic, with good accuracy, it is sufficient to obtain a

solution of an ordinary nonlinear differential equation of the

type of the generalized Rayleigh equation containing the

contribution of a variable external force.
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