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The mechanical properties of materials are highly sensitive to the content of impurities and point defects due to

their interaction with plastic deformation carriers-dislocations. This opens up the possibility to some extent control

the mechanical properties of materials through alloying and creating solid solutions. In a number of crystalline

materials, in addition to the well-known solid-solution strengthening in the region of a low concentration of solution

atoms, the opposite behavior is also observed — an increase of plasticity, or softening. In the present work, the

mechanism of competition of these effects is revealed and it is shown how the boundary of behavior change can be

used to estimate the microscopic parameters of materials. The theory predicts trends in the dependence of plasticity

on the concentration of alloying elements, stress, temperature, strain rate, and a number of material parameters.
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1. Introduction

The effect of solid-solution hardening of crystalline

materials, explained by coupling of plastic deformation

carriers — dislocations — to local distortions of the

crystal lattice by foreign atoms is widely known [1,2].

However, materials with a high potential relief of the

crystal lattice, called the Peierls barriers, also feature the

seemingly paradoxical opposite effect of plasticity increase

upon doping [3] both with interstitial atoms and substitution

atoms. Such materials include metals with a body-centered

crystal (BCC) lattice, some semiconductors, ceramics,

intermetallides and others [1,3–5], plasticity of which was

found to be controlled by dislocations’ overcoming of the

crystal relief. Thereat, foreign atoms do not create additional

obstacles for dislocations, but facilitate their motion. The

most popular explanation of this absence of additivity of

dislocation impediment mechanisms is a local reduction

of the main barriers, generated by the crystal lattice, by

solution atoms [3,5,6]. Crystal relief height in a pure

crystal is characterized by the so-called Peierls stress —
the minimum stress which eliminates barriers for dislocation

displacement between crystal lattice valleys [7]. The

presence of foreign atoms complicates the potential relief of

the crystal lattice. The plasticity increase effect, or softening,

is observed at low concentrations ≤ 1%, and gives place to

hardening in the region of higher concentrations [3,8]. The

softening to hardening transition has not been studied well

enough so far, and the present paper is dedicated to studying

its mechanism.

Dislocations in such materials move by the well-known

way of formation and propagation of kinks, which are

topological solitons [1,4,7,9]. The properties of these pecu-

liar quasi-particles manifest themselves on the macroscopic

scale, in particular, in a strong temperature dependence

of deformation stresses; this is explained by the fact that

kink formation is a thermally-activated process taking place

in a small volume with a linear size of about tens of

lattice constants [1,4]. The competition of softening and

hardening effects can be ascribed to a manifestation (on the

macroscopic scale) of different influence of solution atoms

on different stages, thus promoting the kink formation and

preventing their propagation [8,10–12].

The influence of impurity atoms can be both individual

in highly dilute solid solutions and by way of collective

fluctuations which contain randomly approached groups

of atoms. Concentrated solid solutions are sometimes

described in the approximation of the so-called
”
mean

field“ by way of a homogeneous renormalization of the

Peierls stress. However, when studying a softening to

hardening transition which takes place at low concentrations

of solid solutions equal to about one percent or less, the

solution atoms or their randomly approaching groups form

local perturbations, which are distant from each other,

and the mean field approach is physically not justified.

As is well known for thermally-activated processes in

general, an essential role in the kink formation is played

by local perturbations causing heterogeneous distortions of

the dislocation configurations, which reduce the barrier for

kink pair nucleation. Certain important effects occurring

in concentrated solid solutions, such as interaction of

7∗ 1939



1940 B.V. Petukhov

impurities or the formation of cross-kinks [12–14], will not

be considered.

When impurities in a crystal lattice are chaotically located,

the energetics of such important configurations as ordinary

and paired dislocation kinks has a random distribution.

Thus, a description of the softening to hardening transition

requires a statistical approach. The need for a statistical

approach has been admitted by many authors [12,15].
Thereat, a nontrivial problem of obtaining of

”
statistically

valid“ results for comparison with experiments arises. The

problem is solved relatively simply in case of the so-called

”
self-averaged“ characteristics, for instance, those meeting

the conditions of the central limit theorem in the theory of

probabilities of sums of many random values with an identi-

cal distribution, fluctuations of which are small as compared

to average values [16]. However, in the dislocation dynamics

one also has to deal with the characteristics having other

properties, which will be discussed later. Interpretation of

this type of experimental data depends on the
”
averaging

method“, on which different authors often have different

opinions and obtain different results.

The dislocation dynamics even in simplified models is

characterized by a large number of various parameters:

Peierls stress, intrinsic energies of kinks, potentials of kinks’

interaction with each other and with impurity atoms, applied

force, temperature, impurity concentration and several

others. Presentation of results of modelling of this dynamics

in such a multidimensional space of parameters is usually

selective. That’s why it is important to have an analytical

description of the dynamics, which compactly concentrates

the tendencies of influence of all the essential factors, and

this is the goal of the present paper.

The potential relief for kink motion in crystals with

chaotically distributed impurities or other point defects,

as demonstrated in [10,12], is a random function which

chaotically wanders on the energy scale. A similar

approach was also used in paper [17], where applicability

of this model named the
”
Wiener Process with drift“ was

substantiated by numerical modelling.

The present paper will be dedicated to the study of

a generalized kink mechanism of dislocation motion with

account of heterogeneous influence of randomly fluctuating

fields of solution atom concentration.

2. Formation of kinks on fluctuations
of solid solution concentration

The position of a straight-line dislocation in a crystal

lattice valley at stresses below the Peierls stress is metastably

steady and motion requires a thermal fluctuation which

throws a part of the dislocation over the Peierls barrier.

A thermofluctuation nucleus of dislocation displacement

from one valley of the crystal relief to a neighboring one

in case of stresses much lower than the Peierls stress, which

is studied in the present paper, is a separated kink-antikink

pair. The kink width in this case is much smaller than the

size of the whole pair and the kink with the antikink can be

approximately interpreted as structureless sharp boundaries

of the pair nucleus. The nucleus top is a dislocation segment

located near the minimum of the neighboring valley of the

crystal relief. The energy of a pair of kinks in the impurity-

free material is [7]:

Ek p(l) = 2Ek − Fl − Ei(l). (1)

Here Ek is the energy of one kink or antikink, l is the

distance between pair components, F = σ bh is the driving

force acting on the kinks, which is generated by external

stress σ , b is the value of the dislocation Burgers vector, h
is the distance between crystal relief valleys. Ei(l) is energy
of kink interaction in an approximation of the elasticity

theory, inversely proportional to the distance between kinks

Ei(l) = α/l . Proportionality coefficient α according to [7]
is approximately Gb2h2/8π, where G is the material shear

modulus. Equation (1) has a high degree of universality,

since its functional form and consequences do not depend

on a specific dislocation model, which affects only its

constituent constants Ek and α, parameterization of which

is a separate problem. The minimum energy of activation

of kink pairs in a pure material is given by the minimum

of function Ek p(l) with the optimal pair size l0 =
√
α/F

and is equal to E0(F) = 2Ek−2
√
αF . The frequency of

thermoactivation nucleation of a kink pair on a dislocation

unit length in this case is Ŵ = Ŵ0 exp[−E0(F)/kT ], where T
is temperature, k is the Boltzmann constant, Ŵ0 is the

pre-exponential factor unimportant for further study. In

the absence of significant second-order Peierls relief, kinks

freely propagate from the nucleation place to the sample

surface or till collision with neighboring kinks.

Let us discuss solid solutions and generalize the given

expressions in the case of presence of foreign atoms,

chaotically distributed in a material, which are hereinafter

called solution atoms or impurities for short. It is to be

recalled that a description of the dynamics of dislocations

in pure (perfect) materials did not require control of the

whole population of dislocation atoms separately; collective

kink modes could be used as elementary objects. This was

facilitated by homogeneity of pure materials. A disordered

distribution of impurity atoms disrupts the homogeneity of

materials. Nevertheless, it is also possible to avoid the

need for manipulation of chaotic configurations of impurity

atoms in the totality. This possibility is provided by the

fact that the defining role is played by extremely strong

fluctuations, which are distant and isolated due to this.

This allows for introducing an intermediate description

level and manipulating (as the main characteristics) the

functions of time distributions of the same elementary acts

of overcoming of kink nucleation and migration barriers.

An elementary act of the dislocation dynamics is its

motion to one crystal lattice constant regardless of the

structure of the dislocation core which can span several

lattice constants, be split etc. Without aiming at obtaining a

quantitative description of the process energetics in different
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specific materials, but aiming only at representing the

physics and the typical tendencies of dependences on the

essential parameters, a dislocation can be considered in the

conventionally generalized form as a certain linear object

in an extended periodic potential relief. A frequently used

visual image of such a system is a string on an inclined

wash-board [18].
Let us denote the average linear density of impurities

along the crystal pattern valley as ρ. The first approximation

takes into account only one row of adjoining impurities,

whether they are substitutional impurities at lattice sites or

interstitial impurities in the row of neighboring interstices

which most strongly interact with a dislocation at the given

position. This approximation is based on the fact that

a decrease of interaction energy in a thermally-activated

process even by a relatively small value of the order of

thermal energy kT makes such interaction secondary.

However, the important factor for the thermally-activated

motion of dislocations is not the average density of impu-

rities, but heterogeneities of the impurity-induced potential

relief. Let us consider the influence of a fluctuation cluster

of impurities, which leads to a density of impurities in the

first valley of the pattern which exceeds their density in the

second valley by value ρ(x) = ρ2(x)−ρ1(x). The potential

of a pair of kinks, centered at points x1 and x2, which

generalizes expression (1), is

E(x1, x2) = 2Ek + Ei(1x) − F1x − Nu. (2)

Here 1x = x2−x1, Ei(1x) is the kink and antikink at-

traction energy (for specific calculations in the present

paper we taken the already mentioned kind of interaction

Ei(1x) = −α/1x), which is frequently used in applications,

N =

x2
∫

x1

[

ρ2(x) − ρ1(x)
]

dx

— difference of the amount of impurities at the segment

(x1, x2) in the second and first valleys of the pattern

(ρ2(x), ρ1(x) are the corresponding densities of the amount

of impurities, the difference of which is of purely fluctuation

nature), u is the dislocation and impurity center interaction

energy. Mesoscopic phenomenological models were initially

developed based on the elasticity theory to describe the

interaction of an impurity with a dislocation in terms

of a difference of atomic radii or elastic moduli of the

impurity and matrix. However, the experimental results for

BCC-metals show that these factors cannot be considered

as the main ones, accountable for the observed behavior

(see, for instance, [19]). This is not surprising, since

the strongest interaction occurs when an impurity atom is

inside a dislocation core, where the elasticity theory is not

applicable and short-range chemical forces are significant.

Moreover, the impurity and dislocation interaction is not

represented by continual functions, and in the present paper,

like in [10,12], it will be more simply characterized by the

single parameter u which is of microscopic nature. The sign

of u does not matter, because it can be changed by changing

the notation of numbers of crystal relif valleys.

The chaotic nature of distribution of solution atoms

leads to the formation and motion of kinks in a randomly

fluctuating potential relief. Accordingly, height of the kink

nucleation barrier is a random value which depends on loca-

tion. That’s why the activation energy and nucleation time

of a pair of kinks should be characterized by distribution

functions determined by the statistics of implementation of

a particular impurity configuration.

Assuming the impurity distribution to be completely

chaotic, the probability of implementation of any impurity

fluctuation ρ(x) will be described as

P{ρ(x)} = exp
[

1S{ρ(x)}
]

,

where

1S{ρ1(x), ρ2(x)} = −
∫

[

ρ1(x) ln
ρ1(x)

eρ
+ ρ1

+ ρ2(x) ln
ρ2(x)

eρ
+ ρ2

]

dx (3)

is a change of entropy of a perfect solid solution due to the

formation of the given fluctuation (see, for instance, [20],
in (3) and then entropy is determined, according to [20], as
a dimensionless quantity — a logarithm of statistical weight

of state).
The probability of formation of a pair of kinks with any

activation energy Ea is determined by statistical weight of

impurity configurations which lead to the corresponding

modification of the kink nucleation barrier. This probability

sharply decreases with a decrease of activation energy Ea as

compared to E0(F), since stronger and stronger fluctuations

of the impurity distribution are required. Thereat, the

determining contribution is made by a certain optimal

fluctuation which is the most frequent one of all fluctuations

which lead to the desired barrier height. The problem of

finding the optimal shape of impurity fluctuation, i.e. the

one leading to the maximum entropy change at the required

activation energy Ea was solved in [21,22], and the obtained

results will be used here.

The optimal configuration of impurity density has a

symmetrical form, the right part of which is shown in Fig. 1.

Up to the point of the maximum potential of a pair of kinks,

impurity density ρ0 is homogeneous, which renormalizes

the driving force to the value of F + ρ0u. The maximum

potential at this value of the effective driving force is

achieved in x1 = 1
2

√

α/(F + ρ0u) and has the value of

Ea = 2Ek−2
√

α(F + ρ0u). If the cluster ended in x1,

then the potential would be 2Ek−uρ0x1−F2x−α/2x with a

excluded addition to the driving force. That is, it would

grow up to point x0 = 1
2

√
α/F and its potential there

would be equal to 2Ek−2
√
αF−uρ0x1, which exceeds the

suggested one. To avoid this contradiction, the impurity

cluster should be continued by a smoothly decreasing

impurity density ρ(x) = [α/(2x2)−2F ]/u, which leads to a
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Figure 1. a) Example of the shape of an optimal cluster of impurities, leading to a modification of the barrier for formation of a pair of

kinks shown in Figure b). Parameters 1E/u = 2; Fα/u2 = 1, lengths are measured in units of x0 , impurity density in units of u/2α.

potential plateau (2). The cluster stops at ρ(x) = 0 in point

x2 = x0 = 1
2

√
α/F . A decrease of the activation energy is

1E = 2Ek − 2
√
αF − Ea = 2

[
√

α(F + ρ0u) − 2
√
αF

]

.

Fig. 1 shows a decrease of the barrier for nucleation of

a pair of kinks to the given value of Ea by a fluctuation of

impurities which has the highest implementation probability.

With the described cluster shape, the change of entropy (3),
which determines this probability, is equal to

1Sopt = −(r0ru)
1/2

×
{

(1 + z )1/2 ln
(

√

r20 + 1 + r0
)

+

1
∫

0

√
x + z dx√
x2 + w

}

.

(4)

Hereinafter dimensionless parameters are used for conve-

nience

r0 = ρ0/2ρ = (Fa/ru)
[

(2Eku − Eu)
2/4Fa − 1

]

,

ru = 2αρ/u, Fa = αF/u2, Eku = Ek/u, Eu = Ea/u,

z = 1/[(2Eku − Eu)
2/4Fa − 1], w = 1/r20. Tu = kT/u.

The calculated entropy determines distribution function

Pa ≈ exp[1Sopt] of the value of activation energy for the for-

mation of kink pairs Ea depending on various parameters, as

illustrated in Fig. 2. Since the activation energy determines

the barrier overcoming time ta ∝ 1/Ŵ = 1/Ŵ0 exp(Ea/kT ),
the obtained expression also yields a distribution of kink

pair formation times. A contribution by other, non-optimal

fluctuations may change the pre-exponential factors in the

calculated distribution function, but this minor circumstance

will be neglected in the first approximation.

It is well known that, though the frequency of

kink pair nucleation on a dislocation unit length

Ŵ=Ŵ0 exp[−E0(F)/kT ] in a pure material is determined

by pair energy E0(F), the dislocation motion speed

contains an activation energy equal to half this value

Vd = Vd0 exp[−E0(F)/2kT ]. The reason for this can be

easily understood from simple scale considerations. The

number of kink pairs nucleating on a dislocation unit

length Nk p increases proportionally to time t as Nk p ≈ Ŵt,
so that the average distance between them is approximately

equal to Lk p ≈ 1/Ŵt . The path length of a kink having

velocity v within time t is Lk = vt . The kink lifetime,

determined by collisions and annihilation with kinks from

neighboring pairs, is found from the condition of equality of

path length Lk and distance between the kinks nucleated by

the given time Lk p, from which it follows that ta = 1/
√
vŴ

and Vd = a/ta = (a
√
vŴ0) exp[−E0(F)/2kT ].

The scaling relation must be modified if there are impurity

clusters which reduce the kink nucleation barrier and

decelerate the kink propagation. The correlations given

below are simplified without specification of different pre-

exponential factors.

The number of kink pairs which freely nucleated by

time t on length L should include the pairs which formed

on impurity clusters (L/l1a)Pa(t), where l1a is the scale

multiplier of the order of the critical pair size, time t
is related to the activation energy by Arrhenius relation

t ∼ (1/Ŵ0) exp(Ea/kT ). Though such clusters are rare,

their contribution can be comparable and even prevailing

due to an increased kink generation velocity. Expression

Pa(t) = exp(1Sopt) with the above-mentioned 1Sopt (4) will

be used for Pa(t).
The second stage of the process of dislocation’s crossing

of a barrier is the propagation of kinks from the nucleation

place, which is also affected by impurities. The time of kink

travel to distance L includes the free motion time L/v and

the total time of delays on impurity barriers. Probability

Ps (t) of meeting an impurity cluster with overcoming

time t or longer was calculated in [10,23] and is equal

to Ps (t) = (t0/t)δ , where t0 is a characteristic time of an
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Figure 2. The logarithm of distribution function 1Sopt = lnPa(Eu) vs. activation energy Eu of the formation of a pair of kinks on

a fluctuation cluster of impurities at Ek = 3u, a) dimensionless concentration of impurities 2ρα/u = 0.001 and different values of
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values of dimensionless concentration of impurities: 2ρα/u = 1 — curve 1, 0.1 — curve 2, 0.01 — curve 3, 0.001 — curve 4.

elementary act, δ = (kT/u)ϕ, and ϕ is found from the

relation

[

exp(ϕ) + exp(−ϕ) − 2
]

/ϕ = F/ρu = 2Fa/ru. (5)

However, until the average delay time 〈τs 〉 =
∞
∫

0

Ps(t)dt is

finite, which occurs at δ > 1, the influence of impurity

clusters on kink scattering is not significant. A contrary

situation will be considered in the next section.

By equating the average distance between the nucleated

kink pairs to the average path length, we obtain a modified

equation for the time of dislocation’s passing across the

Peierls barrier ta

1/[Ŵt + Pa(t)/l1a ] ≈ vt. (6)

The solution of this equation is illustrated in Fig. 3, a

by descending lines. It can be seen how the presence

of impurities reduces the energy of kink pair formation

in this parameter region as compared to an impurity-free

material. The sharp decrease of the barrier overcoming

energy is due to the prevalence of kink nucleation on

impurity clusters which facilitate the transition.

3. Deceleration of kink scattering
by fluctuation cluster of impurities

Hardening of materials is traditionally attributed to the

hooking of dislocations to local perturbations of the crystal

lattice, induced by impurity atoms or their clusters [24,25].
The Peierls barrier is ignored in this case. However, the kink

mechanism in materials with a high crystal relief with not

too high impurity concentrations retains, although modified,

and a different mechanism of dislocation deceleration is

implemented; it is related to the influence of impurities on

kink propagation from their nucleation place.

It was shown in [10,23] that the influence of impurities

on the dynamics of dislocation kinks can lead to a kinetic

phase transition with a change of the motion pattern and

a transition to nonlinear drift or, otherwise, to the so-called

anomalous kinetics. Such a transition was associated with an

increased role of extremely strong fluctuations of a chaotic

impurity relief due to the formation of slowly decreasing

asymptotics of times of kink delays on them with an

increase of the impurity atom concentration. This prediction

was experimentally confirmed in [26]. A survey of the nu-

merous papers on anomalous kinetics in different systems is

given in [27,28]. In this case the kink path length x depends

on time nonlinearly as x ≈ x0(t/t0)δ , where δ < 1. If the

value of ϕ determined from equation (6) is less than u/kT,
that is, δ < 1, the probability of long delay times decreases

so slowly that the average delay time 〈τs 〉 =
∞
∫

0

Ps(t)dt

diverges and kink motion has an anomalously slow nature

called quasilocalization. With δ becoming 1, the motion law

changes to standard linear drift. Thus, the condition δ = 1

determines the boundary of a drastic change of motion

modes of kinks and the whole dislocation. Quasilocalization

of kinks with an increase of impurity concentration causes

a slower motion of dislocations and, on the macroscopic

scale, a transition to material hardening.

Substituting the free path length of the kink in equa-

tion (6) by the length of shift at nonlinear drift, we obtain

a modified equation for the transition time

1/
[

Ŵt + Pa(t)/l1a

]

≈ x0(t/t0)
δ . (7)

The solution of equation (6) is shown in Fig. 3, a by curves,

which descend with an increase of the average impurity

concentration in the material, for different temperature
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values. The solution of equation (7) is shown by ascending

lines. This solution in the right Fig. 3, b is shown as a

function of reciprocal temperature. The energy of kink

pair formation found from equations (6) and (7) has an

effective nature, because the optimal impurity clusters,

which determine it, depend on various parameters in

a complicated way. In particular, it can be seen that

the energy of kink pair formation is not dependent on

temperature anymore when temperature decreases. This

is explained by the fact that kinks nucleated freely in the

wide parameter region considerably less frequently than on

impurity clusters. In this case, equation (7) reduces to the

following one without temperature

S + ϕEu = 0. (8)

Equation (6) corresponds to a situation when the in-

fluence of impurities facilitates the kink nucleation, thus

accelerating the motion of dislocations. On the con-

trary, equation (7) or (8) corresponds to a situation

when the influence of impurities particularly affects the

deceleration of kinks, thus slowing down the motion

of dislocations. After finding Eu from these equations,

it is easy to estimate the time of dislocation displace-

ment to the neighboring valley of the crystal relief

ta = 1/(l1aŴ0) exp(Ea/kT ) and to calculate the average dis-

location motion speed Va = h/ta = h(l1aŴ0) exp(−Ea/kT ).
Fig. 3, a clearly demonstrates the transition from the in-

fluence of impurities (at their relatively low concentration),
which accelerates the dislocation motion, to the decelerating

influence at their higher concentration due to the activation

of the quasilocalization mechanism of kink deceleration.

The condition of matching of the scales of nucle-

ation La and propagation Lv of kinks La ≈ Lv deter-

mines the typical time of dislocation passing across the

Peierls barrier from the whole spectrum of kink pair

formation times. It is remarkable that when the calcu-

lated value of Ea does not depend on temperature, the

Va = h/ta = (h/ta0) exp(−Ea/kT ) relation corresponds to

the Arrhenius law, fulfillment of which was difficult to

foresee in advance within the framework of the calculated

mechanism.

4. Determination of energy
of interaction between an impurity
atom and a dislocation as
per experimental data

The main microscopic parameter in the theory is the

energy of interaction between an impurity atom and a

dislocation u. The theory formulae allow for estimating its

value as per the experimental data. According to the given

considerations, the boundary of transition from softening to

hardening corresponds to a change of the kink motion mode

from linear to non-linear drift, in which the condition δ = 1

is met. Substituting the corresponding value of ϕ = u/kT
into relation (5), we find u as

u = kT ln (F/ρkT + 2)/2 + [(F/ρkT + 2)2/4− 1]1/2.
(9)

Let us give as an example the determination of the energy

of interaction between an impurity atom and a dislocation

as per the experimental data [29] for a solid solution of Ru

atoms in NiAl. This material pertains to intermetallides

where the crystal relief is high and kinks are relatively

abrupt, which satisfies the applicability conditions for the

outlined theory. The transition boundary corresponds to

stress σ = 3.98 · 108 Pa, Ru atom concentration in per-

cent ρ = 6.89 · 10−3, experiment temperature T = 293K.

Substituting these values into formula (10), we obtain
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the interaction energy u ≈ 0.17 eV, which, considering the

above-mentioned reservations with regard to quantitative

estimations of the theory, gives rather a reasonable order

of magnitude.

5. Conclusion

The paper gives a theoretical description of the influence

of chaotically distributed impurity atoms on the dynamics

of dislocations in crystalline materials within the frame-

work of a modified kink mechanism. The influence of

impurities on both essential stages of dislocation motion:

thermofluctuation formation of kinks and their propagation

along the dislocation length is considered. This influence is

differently directed and leads to competition of the effects

of dislocation motion acceleration and deceleration. At

the macroscopic level this corresponds to competition of

crystal softening and hardening, as observed in many mate-

rials having a high crystal pattern: in semiconductors and

ceramics, metals with the BCC-structure, intermetallides

and others where the kink mechanism of dislocation motion

is implemented [3]. The theory is analytical, which allows

for sufficiently clear tracing of tendencies of influence of the

numerous material parameters. A comparison of the theory

with the experimental data allows for estimating the order

of magnitude of the microscopic parameter of interaction

between impurity atoms and dislocations, as illustrated by

the data of [29] for a solid solution of Ru in NiAl.
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