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Construction of an approximate solution for a dilute magnet based

on the solution for a pure magnet on the same lattice
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The paper proposes a method for approximate calculation of the magnetization of a dilute Ising magnet on

a certain lattice, based on the use of an exact or approximate solution for a pure Ising magnet on the same

lattice. Using the proposed method, it is possible to calculate the dependence of magnetization on temperature and

concentration of non-magnetic impurities and the Curie temperature as a function of concentration for a diluted

magnet. The proposed method is applied in the work to the solution in the mean field approximation, to the

solution in the beta approximation, and to the exact solution on a square lattice.
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1. Introduction

Properties of dilute and unordered magnets differ from

properties of pure magnets [1–5]. However, accurate

solutions for models of dilute magnetic systems can be

obtained only in rare cases [6]. That’s why it makes sense to

construct approximate solutions for dilute magnets. Some

of these solutions can be constructed by way of averaging

over interaction fields.

In our paper [7] we developed a common approach

based on averaging over interaction fields as applied to spin

clusters on a magnetic lattice. In the present paper, also

on the basis of the method of averaging over interaction

fields, we introduce a
”
function of relation of effective

exchange interaction fields“. This function is defined as

a relation of values of exchange interaction fields at which

the cluster average value of spin is equal to the ensemble

average value. Thereat, we limit ourselves to clusters of

one and two magnetic atoms only. A relationship between

the relation function and spontaneous magnetization as a

temperature function is established in the paper. The

relationship makes it possible to calculate the relation

function if an approximate or accurate solution for the

Ising model is available. In this paper we assume that

the relation function as a function of spontaneous magne-

tization in case of non-magnetic dilution is approximately

the same as for a pure magnet. This conjecture is

based on the fact that, as demonstrated in [6,8,9], a

similar assumption for a Bethe lattice provides reasonable

results. Therefore, the goal of the present paper is to

study the outcome of the assumption of relation function’s

independence from non-magnetic dilution in a more general

case.

2. Averaging over interaction fields,
relation function for a pure
and dilute magnet

Let us consider an Ising model on a certain lattice. Let

each lattice site contain an Ising
”
spin“, which takes on

values +1 and −1, and let only the spins, located at adjacent

sites, interact. Then the Ising model Hamiltonian can be

written down as follows [10]:

H = −J
∑

(i, j)

σiσ j − Hex

∑

i

σi , (1)

where J is the exchange interaction energy, Hex is the

external field; summation in the first sum is performed for

all pairs of adjacent spins, in the second one — for all sites.

Let us now select a certain spin σ0 on the lattice. Let h be

the sum of values of spins which directly interact with σ0
(spins of the first coordination sphere). This sum will be

called the
”
interaction field“. Then, as shown in [7], the

thermodynamic average 〈σ0〉 is obtained by averaging of

th (Kh) over the distribution function W (h):

〈σ0〉 =
∑

h

W (h) th (Kh), (2)

where K = J
kT , k is the Boltzmann constant, T is tem-

perature. In the general case, 〈σ0〉 and W (h) depend on

the site where spin σ0 is located. If an Ising model is

assigned on a simple lattice with coordination number q,
then all 〈σ0〉 = M, where M is the average magnetization

per site, while function W (h) does not depend on site

number. In this case, since magnetization M takes on values

from 0 to 1, for any distribution function W (h) there is a

1919



1920 S.V. Semkin, V.P. Smagin

value of h = χ1 for which

M = th (Kχ1). (3)

This value of χ1 will be called the
”
effective field“.

Let us now take a cluster of two neighboring spins σ1
and σ2 (dimer). It was shown in [7] that the thermodynamic

average 〈σ1+σ2
2

〉 is equal to
〈

σ1 + σ2

2

〉

=
∑

h1,h2

W (h1, h2)

× sh
(

K(h1 + h2)
)

ch
(

K(h1 + h2)
)

+ ch
(

K(h1 − h2)
)

exp(−2K)
, (4)

where h1 and h2 are interaction fields related to σ1 and σ2,

W (h1, h2) is their joint distribution function. Similarly to a

one-atom cluster, it follows from the normalization condition

for W (h1, h2) that there is such a value of h1 = h2 = χ2
at which

M =
sh(2Kχ2)

ch(2Kχ2) + x
, (5)

where x = exp(−2K), and χ2 is the effective field of the

dimer.

Many approximate methods in the theory of magnetism

can be treated as the introduction of additional correlations

between effective fields χ1, χ2 and magnetization M . For

instance, by assuming χ1 = qM, we obtain a known mean

field approximation [11], while correlation χ2 = (q−1)M
leads to a generalization of mean field approximation

discussed in [8]. By complementing equalities (3) and (5)

with correlation χ2 =
(q−1)

q χ1, we obtain a Bethe approx-

imation [10,11]. Let us consider in more detail a com-

mon correlation that can be represented as χ2 = y(M)χ1.
Function y(M) will be called the relation function. If

an accurate or approximate value of spontaneous mag-

netization as temperature function M = M(x) is known,

then (3) and (5) can be used to find χ1, χ2 and relation

function y(M). Conversely, if function y(M) is known

from some considerations, then (3) and (5) can be used

to find dependence M = M(x) which corresponds to this

function. A low-temperature decomposition of the statistical

sum [10] can be used to show that for simple lattices with

coordination number q χ1 → q and χ2 → q−1 at x → 0,

i.e. y(M) tends to
q−1

q within the low temperatures.

Let us now consider an Ising model with non-magnetic

dilution. The most interesting [4] case is the so-called

”
frozen-in“ dilution: when some of sites randomly and

without correlation are filled with nonmagnetic impurities,

so that any lattice site can contain a magnetic atom

with probability b or an impurity with probability 1−b.
(Similarly, dilution for bonds can be considered: a bond

between neighboring spins exists with probability b or is

broken with probability 1−b [12].) The main difference of

systems with frozen-in impurities from pure magnets is in

the disruption of the lattice translation symmetry — the

thermodynamic average values, for instance, 〈σ0〉 in the

general case are not equal for different system spins. Here

we can opt for averaging over different configurations of

impurities, or, according to the self-averaging idea [4] —
over different spins in one and the same configuration.

Then,
”
self-averaged“ magnetization of a magnetic atom for

dilution both for sites and bonds is represented as [7]:

M = th (Kχ̃1). (6)

Here χ̃1 is the effective exchange field dependent on b.
Similarly, for a dimer

M = (1− b)th (Kχ̃2) + b
sh(2Kχ̃2)

ch(2Kχ̃2) + x
. (7)

Finding of the accurate form of function χ̃1(x , b) (or
χ̃2(x , b)) for dilution for sites or for bonds is equivalent

to an accurate solution of the problem of magnetization of

a dilute Ising magnet. Let us consider this method of an

approximate solution of this problem. We will assume that

the relation of effective exchange fields χ̃2/χ̃1, expressed as a

function of M, does not depend on b. That is, it is assumed

that χ̃2 = y(M)χ̃1, where y(M) is the relation function

determined above for a pure magnet. As demonstrated

below, this conjecture for a Bethe lattice is equivalent to

consideration of impurities on this lattice in a pseudo-chaotic

approximation [8,9].

That is, the proposed approximation to analysis of a dilute

magnet consists in the following. Let there be an accurate

or approximate value of magnetization of a pure magnet as

a temperature function M = µ(x) (or an inverse function

x = ν(M)). This can be, for instance, a solution in a mean

field approximation [10] or in a Bethe approximation [11]
(which can be interpreted as an accurate solution on a Bethe

lattice [10]) or an accurate Onsager solution on a square

lattice [10]. Using this solution, we obtain an expression for

relation function y(M) from correlations (3) and (5):

y(M) =
ln

(

νM +
√

(νM)2 + (1− M2)
)

− ln(1− M)

ln(1 + M) − ln(1− M)
.

(8)

Using this expression, we obtain the following from (6)
and (7):

x(M, b) =
ν(M) − γF1(M)

1− γF2(M)
, (9)

where γ = 1−b
1+b — measure of the

”
dilution“ magnet,

F1(M) = 2
R − ν

R + 1

(

νM
1− M

+
1

R + νM

)

+ ν,

F2(M) =
1− R + 2ν

R + 1
, (10)

here R =
√

(νM)2 + (1− M2). For this, in order to find

a concentration dependence of Curie temperature Tc(b)
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or Kc(b) = J/kTc(b) we will go to limit M → 0 in (9)
and (10). Let us denote x c(b) = exp

(

−2Kc(b)
)

, we obtain

x c(b) =
x c(1) − γ

1− γx c(1)
or thKc(b) =

1

b
thKc(1). (11)

It follows from formula (11) that Curie temperature

becomes zero at b = thKc(1). It means that quantity

bc = thKc(1) can be considered an estimate of the per-

colation threshold value in the given approximation [12].
For an Ising model with dilution, the value of spontaneous

magnetization M0(b) at T = 0 is the probability that a given

magnetic atom pertains to an infinite cluster [12]. This value
can be obtained from (9)−(10) in the limit T → 0. M0(b)
satisfies the equation

ν(M0) = γF1(M0). (12)

It should be noted that the above-mentioned method

can be used not only for one- and two-atom clusters, but

also for two clusters of a random size. Having determined

the corresponding relation function for a pure magnet and

assuming its independence from b, we obtain a more

common form of the approximation given in the present

paper. In such a common form there will be a difference

in dilution for sites and for bonds, but in this paper we will

consider only the simplest method implementation where

this difference is absent.

3. Mean field theory,
Bethe approximation
and Onsager solution

Let us now apply the above-mentioned method to an

Ising model on a square lattice. Selection of this lattice

is due to the fact that an accurate Onsager solution exists

for this lattice [10], in addition to approximate solutions.

Let us first consider the approximate solutions. In a mean

field approximation [11], spontaneous magnetization for this

lattice is determined by expression M = th (4KM), from

where

ν(M) =

(

1− M
1 + M

)
1
4M

. (13)

By substituting this function into (8), we obtain a relation

function ya(M) in the mean field approximation. The

plot of this function is shown in Fig. 1 (curve 1). It is

easy to show that M → 1 ya(M) → 3/4, while ν(M) → 0.

Kc in the mean field approximation is equal to 1/4, then

x c(1) = exp(−1/2) ≈ 0.607.

Let us now apply this solution to the analysis of a dilute

magnet in compliance with the above-mentioned approach.

From (11) bc = th (1/4) ≈ 0.245. This value does not agree

well with the accurate values of percolation thresholds for

sites and for bonds either for a square or for a tetrahedral

lattice [12]. However, a percolation transition and a

percolation threshold are completely absent for a dilute
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Figure 1. Effective field relation functions in different approxima-

tions depending on spontaneous magnetization for a square lattice.

Curve 1 shows a mean field approximation, curve 2 shows a Bethe

approximation and curve 3 shows an accurate solution.

magnet in the conventional mean field approximation [12].
Using (13) and (12), let us now plot the function M0(b) —
it is shown in Fig. 2 (curve 1).

Spontaneous magnetization on a lattice with coordination

number q in a Bethe approximation [10] is equal to

M = (1−pq)/(1 + pq), where p is the root of equation

p = (x + pq−1)/(1 + x pq−1). It can be easily shown that

at q = 4

ν(M) =
4
√
1− M2

√
1 + M +

√
1− M

. (14)

Substituting this expression into (8), we will obtain a

relation function in this approximation yb(M) = 3/4, that is,

it does not depend on M . As already mentioned, the

assertion that the relation function of the effective fields

included in (3) and (5) is equal to (q − 1)/q can be

considered a definition of Bethe approximation [8,9]. It

can be seen from (14) that spontaneous magnetization

in a Bethe approximation disappears at x c(1) = 1/2 or

Kc = (1/2) ln 2. Let us now use a Bethe approximation

in expressions (9)−(12). We obtain thKc(b) = 1/(3b)
or bc = 1/3. The plot of function M0(b) in a Bethe

approximation is shown in Fig. 2, curve 2.

The authors of [8] considered a Bethe approximation

for a dilute magnet in a
”
pseudo-chaotic“ approximation.

The essence of this approximation is that mobile impurities

are considered instead of frozen-in impurities on a Bethe

lattice, with an additional condition of a zero correlation

in the location of impurities in neighboring sites. It turns

out that all the results obtained from (9)−(12) when using

a Bethe approximation match those obtained in a pseudo-

chaotic approximation for a Bethe lattice [8,9]. This makes

it possible to assume that the suggested approach to analysis

of a dilute magnet, based on the assumption that the relation

function does not depend on b, can be in the general case
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Figure 2. Spontaneous magnetization M0(b) as a function of

magnetic atom concentration b on a square lattice. The plots were

constructed based on a mean field approximation (curve 1), based
on a Bethe approximation (curve 2) and based on an accurate

solution (curve 3).

physically interpreted as a certain variant of a pseudo-chaotic

approximation.

It is to be recalled that the suggested approach to analysis

of a dilute magnet is based on the use of an approximate or

accurate solution for a pure magnet on the corresponding

lattice. As is well-known [10], an accurate expression for

spontaneous magnetization as a function of temperature can

be found for an Ising model on a square lattice

M8 = 1− 1

sh4(2K)
. (15)

Hence

ν(M) =
4
√

1− M2
4
√

(1 + M2)(1 + M4)

1 +
√

1 +
√
1− M8

. (16)

It follows from these expressions that spontaneous

magnetization disappears at x c(1) =
√
2− 1 or

Kc = (1/2) ln(
√
2 + 1). The relation function y e(M),

which corresponds to solution (16) is shown in Fig. 1,

curve 3. It can be shown that y e(M) → 3/4 at M → 1.

Let us now use an accurate solution (16) as the basis

for analysis of a dilute magnet. From (9)−(12) we obtain

bc =
√
2−1 ≈ 0.414. Fig. 2 (curve 3) shows the plot of

function M0(b) calculated as per (12) for solution (16).

4. Conclusion

In the present paper we have constructed a universal

relation function for an Ising model without non-magnetic

dilution y(M, x), which relates the effective fields of single-

atom and two-atom clusters. This function depends on

spontaneous magnetization M and temperature parameter

x = exp(−2K). It means that the relation between M and x ,

obtained from an accurate or an approximate solution,

determines the relation function y(M) or y(x).
Assuming that function y(M) for a magnet with non-

magnetic dilution has the same form as for a pure one, we

have obtained the following main results.

1. The adopted conjecture results in a form of a concen-

tration dependence of the critical temperature parameter

Kc(b) = J/kTc(b), where Tc(b) is the Curie tempera-

ture. This form is expressed by a simple correlation

b thKc(b) = thKc(1).
2. Based on any solution for a pure Ising magnet,

we obtain the existence of a percolation transition at

concentration bc = thKc(1). In particular, based on a mean

field approximation, we obtain bc = th (1/q) for a lattice

with coordination number q.
3. The concentration dependence of spontaneous mag-

netization at zero temperature (which for an Ising model

can be understood as a probability of appurtenance of a

given magnetic atom to an infinite cluster) is determined by

expression (12).
4. Universality of the relation function for pure and

dilute Ising magnets on a Bethe lattice is equivalent to

the consideration of nonmagnetic impurities in a pseudo-

chaotic approximation [8,9]. We made an assumption

that such universality in the general case is equivalent to

certain additional conditions for correlation in the location

of impurities in a model with mobile impurities.
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