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1. Introduction

It is known that information recording on lattice struc-

tures of magnetic nanoparticles (NPs) is based on changing

of the equilibrium configuration of magnetic moments of

individual NPs due to impact of a pulse of the local

magnetic field. Thereat, information can be read by

exciting the formed configuration by a weak radio pulse

at the frequency of ferromagnetic resonance (FMR) [1–5].
In connection therewith, significant interest is paid to under-

standing of the fundamental behavior of a spin subsystem

in an external static and high-frequency magnetic field

in NPs with a complex configuration of internal fields,

including exchange, dipole-dipole and magnetostatic fields,

a crystalline anisotropy field. Thereat, many FMR features

are defined by geometric factors — size of nanoelements,

shape and ratio of their sides, spatial arrangement in the

structure [6–9]. Therefore, many studies in this field

are focused on studies of FMR in thin-film elliptical and

rectangular microstrips of a nanometer thickness, which

are regarded as one of the main geometric elements for

information recording and processing. In the experiment

we have observed, along with the main
”
homogeneous“

FMR mode, a thickness-dependent resonance peak, related

to heterogeneity of the internal field and, respectively,

magnetization distribution on the corners and edges of the

microstrips [10,11].

In order to interpret the obtained results, it is also

necessary to take into account that the position of the

FMR line and its shape substantially depend not only on

configuration of the lattice structure, but also on size and

symmetry, magnetization equilibrium state, type and value

of magnetic anisotropy of individual NPs. Heterogeneity

of the internal magnetostatic field near the microstrip

boundaries leads to the formation of localized edge modes

in the resonance spectrum [12–17].

Special properties of 3D single-domain NPs affecting their

dynamic characteristics can also include bistability due to

equilibrium orientation states with unequal projections of

the magnetic moment, between which controllable transi-

tions with different precession modes during magnetization

reversal are possible [18–25]. In order to understand the

impact of bistability on FMR, nature of magnetization

reversal and dynamics of the magnetic moment in the lattice

structure composed of NPs, it is necessary to take into ac-

count the above-mentioned factors in a mathematical model

describing the high-frequency dynamics in an individual NP.

Equilibrium orientation of magnetization in relation to

an external static field can be collinear and noncollinear

for a single-domain magnetic uniaxial NP in the shape

of an ellipsoid of revolution, when the
”
easy“ axis and

magnetic bias field are oriented along the symmetry axis

depending on values of system parameters, in particular,

on shape parameter n (deviation from spherical shape).

Paper [25] studied the peculiarities of resonance dynamics

upon activation of a weak transverse high-frequency field

for the collinear case. It was shown that dynamic bistability

is implemented for the already slightly oblate NP and the

FMR deviates from the linear one. In the present paper,

a numerical solution of the Landau−Lifshitz−Helmholtz

equation (LLH) is used to study the peculiarities of

resonance dynamics in the case of noncollinear orientation

of magnetization and a static field with a weak transverse

high-frequency field. The parameter regions are revealed,

which correspond to bistability of precession modes and

implementation both of the regular precession modes and

high-amplitude chaotic vibrations.
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2. Basic relations

Let us consider a sample shaped as an ellipsoid of

revolution. We assume that, along with shape anisotropy,

the sample has uniaxial anisotropy the easy axis of which

coincides with the sample symmetry axis. In this case

the free-energy density contains Zeeman energy, anisotropy

energy and energy of scattering fields [26,27]:

F = −M(H + h) − Ku

M2
(Mn)2

1

2
MN̂M. (1)

Here M is NP magnetization, H and h are static and

high-frequency fields, Ku is the uniaxial anisotropy con-

stant, n is the unit vector of the anisotropy axis, N̂ is

the diagonal tensor of demagnetization coefficients whose

components correlate as Nx + Ny + Nz = 4π and depend

on the shape parameter — the ratio of the longitudinal

and transverse ellipsoid semi-axes n = lp/l⊥. The parame-

ters N⊥ = Nx = Ny , Np = Nz and 1N = N⊥ − Np can be

conveniently introduced for an ellipsoid of revolution. For

oblong and oblate ellipsoids

1N
2π

= 1− 3

n2 − 1

×
[

n√
n2 − 1

ln
(

n +
√

n2 − 1
)

− 1

]

> 0, n > 1,

1N
2π

= 1− 3

n2 − 1

×
[

n√
n2 − 1

arcsin
√

n2 − 1− 1

]

< 0, n < 1. (2)

Taking into account the orientation of the
”
easy“ axis of

magnetic anisotropy along the sample symmetry axis, the

effective anisotropy field HKN = 2Ku/M0 + M01N, which

determines its resonance behavior (here M0 is the satu-

ration magnetization), can be conveniently introduced in

the consideration. An analysis shows that the effective

anisotropy field has regions of both negative and positive

values (depending on n). For the used material parameters

of the nanoparticle M0 = 800Gs and Ku = 105 erg/cm3

(close to the parameters of 80Ni20Fe permalloy), the field

is HKN ≈ 0 at n = 0.94, the sign of field HKN changes when

n changes near this value.

Time dependence of orientation of the vector of M and,

consequently, the precession dynamics of NP magnetization

for different cases of magnetic biasing and high-frequency

pumping is determined on the basis of a numerical solution

of the LLH equation [26,27]:

∂M

∂t
= −γM×Heff +

α

M
M× ∂M

∂M
, (3)

where γ = 1.76 · 107 (Oe · s)1− is the magnetomechanic

ratio, α is the dimensionless attenuation constant, the

effective magnetic field is

Heff = − ∂F
∂M

= H + h +
2K
M0

n + N̂M. (4)

n

0 0.5 1.0

π/2

π/4

0

θ
0

1

2

Figure 1. Dependences of the equilibrium polar angle of

NP magnetization on shape parameter n at H = 50, 150Oe

(curves 1, 2).

The equilibrium values of the polar θ0 and azimuthal ϕ0

angles, which determine the direction of the vector of M in

relation to the ellipsoid symmetry axis (the OZ axis) and the

perpendicular axis (for example, OX), are found from the

condition ∂F/∂ϕ = ∂F/∂θ = 0. There is no dependence on

the azimuthal angle during magnetic biasing of an ellipsoidal

NP along the symmetry axis (H ‖ n ‖ OZ) in the basal

plane, and equilibrium angle ϕ0 can be taken equal to zero.

For an oblong and spherical NP (at n ≥ 1), the equilibrium

polar angle is θ0 = 0 at any value of field H . This value of

angle θ0 also remains for an oblate NP (n < 1) up to the

value 1N = −(H + Hu)/M0. With further decrease in n,
the angle θ0 changes in accordance with the expression

cos θ0 = −H(H + 1NM0)
−1. (5)

Fig. 1 shows the dependence of equilibrium polar an-

gle θ0 = arccos(Mz /M0) for NP magnetization on shape

parameter n, obtained for the two external field values of

H = 50, 150Oe. It can be seen that the vector of M in

the equilibrium state at the given values of the magnetic

bias field remains parallel to the external field and the

NP symmetry axis only at n > (0.928, 0.906) (curves 1, 2

respectively). At smaller values of the shape parameter

the angle starts abruptly increasing and reaches a value

close to π/2. The frequency of resonance precession of

magnetization in general is determined by expression

ωr =
γ

M0 sin θ0

[

(

∂2F
∂ϕ2

)

0

(

∂2F
∂θ2

)

0

−
(

∂2F
∂ϕ∂θ

)2

0

]1/2

,

(6)
where the second derivatives of the free energy are

calculated for the equilibrium values of angles ϕ0 and θ0.
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During NP magnetic biasing along the easy axis and the

symmetry axis (H ‖ n) in the region of values of n where the

equilibrium angle θ0 is zero, the dependence of resonance

frequency on external field is determined by the following

expression, taking into account (1) and (6)

ωr = γ

(

H +
2Ku

M0

+ M01N

)

. (7)

It should be noted that even rather a small deviation of

the NP shape from the spherical shape considerably affects

the value of 1N, which changes the position of the typical

values of frequency ωr(0) and resonance dependences on

the whole. It will be shown below that the shape parameter

n also affects the precession dynamics of magnetization of

an ellipsoidal NP.

3. Peculiarities of precession dynamics

Let us consider the dynamics of NP magnetization under

an alternating magnetic field h(t) = h0 sinωt at h0 ≪ H and

orientation h0 ⊥ H ‖ OZ. Then it will be assumed that

field h(t) is polarized along the OY axis. A numerical

solution of equations (3) was done by the Runge−Kutta

method. Let us consider two cases — collinearity and non-

collinearity of the vectors of M0 and H.

Resonance dynamics of magnetization with a colinear

orientation of the vectors of M0 and H was considered

in [25]; it was shown that high angles of resonant precession

are implemented in case of transverse pumping by a

weak alternating field (the amplitude at these angles is

0.5M0); moreover, there are elliptical perturbations of the
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Figure 2. Projection of NP magnetization to XY plane with

n = 0.9, 0.89, 0.88, 0.87, 0.85 (curves 1−5) and ω = 1 · 108 s−1

(curves 1−3, 5), ω = 1.05 · 108 s
−1

(curve 4), H = 150Oe,

h0 = 0.1Oe.
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Figure 3. Time dependence of component My at

H = 150Oe, h = 0.1Oe, n = 0.9, 0.89, 0.88, 0.87, (curves 1−5),
ω = 1 · 108 s−1 (curves 1−3, 5), ω = 1.05 · 108 s−1 (curve 4).

precession trajectory and regions with dynamic bistability

are frequently observed.

Let us now consider the magnetization dynamics of a

NP where the equilibrium orientation of the vector of M

does not coincide with the OZ symmetry axis, while the

equilibrium polar angle is θ0 6= 0. This region in Fig. 1

corresponds to a non-linear dependence of angle θ0(n).

Fig. 2 shows the projects (onto the XY plane) of NP

magnetization at H = 150Oe and values of shape parameter

n = 0.9, 0.89, 0.88, 0.87, 0.85 (curves 1−5) during

precessional motion under the action of an alternating

field, linearly polarized along the Y axis, with h0 = 0.1Oe

and ω = 1 · 108 s−1 (curves 1−3, 5), ω = 1.05 · 108 s−1

(curve 4). It can be seen that an increase of NP oblateness

(i.e. decrease of n) results in an increase of the arc,

covered by precession dynamics, which becomes a circle

at n = 0.85. Thereat, precession amplitude considerably

depends on alternating field parameters. It should be noted

that, along with the given modes,
”
symmetrical“ modes,

where the y -component of precessional magnetization is

located chiefly in the negative half-plane, are implemented at

the same parameters. It indicates the presence of dynamic

bistability in precession modes of NP magnetization.

Fig. 3 shows the time dependence of the y -component

of magnetization for the cases which satisfy Fig. 2. It is
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Figure 4. The extreme component Mxm vs. parameter n
at ω = 1 · 108 s−1 (a) and vs. frequency at n = 0.87 (b),
h0 = 0.1Oe, H=100Oe.

seen that vibrations with a small precession arc are close

to harmonic ones. Irregularity of vibrations increases with

a decrease of n and an increase of the precession arc; this

irregularity at first affects their amplitude only, but then also

the time repeatability of the precession mode. Thereat, the

said irregularity becomes most pronounced for the circular

projection of the trajectory.

For a more complete analysis of the influence of

NP oblateness on magnetization dynamics, we will plot

bifurcation diagrams, i.e. dependences of the extreme

value of a component of magnetization M (here the

x -component (Mxm ≡ Mx max, Mx min) on shape parameter

n at ω = 1 · 108 s−1 (a) and on alternating field frequency at

n = 0.87 (b) with the values h0 = 0.01Oe and H = 100Oe

(Fig. 4). In the absence of magnetization precession, the

variable value (n or ω) in the diagram corresponds to

one point only; in case of regular vibrations — two or a

denumerable number of points; if the parameter value in

the diagram corresponds to a non-denumerable number of

points (which merge into dark regions with an increase

of numerical modeling time), a chaotic dynamic mode

arises. Diagram (a) shows that precession is almost absent

in case of sufficiently small oblateness (0.92 < n < 1),
since the effective magnetic field which holds magnetization

near the equilibrium position is still large. Low-amplitude

vibrations (|Mxm| ≈ 10G) arise when 0.897 < n < 0.92.

Further decrease of n results in a fast rise of the amplitude

of the regular precession dynamics of magnetization to

|Mxm| ≈ 650G. Then the vibration trajectory becomes

complicated, and at n < 0.882 the dynamics enters the

region of chaotic vibrations where there are narrow regions

of regular precession with complex trajectories and a

period which is divisible by the alternating field period.

Diagram (b) is identical: precession is almost absent at the

alternating field frequency ω ≥ 1.25 · 108 s−1 (i.e. the said
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Figure 5. Time dependence of the component Mx under

NP magnetization reversal due to the action of alternating field

hy (t) at frequencies ω = (1.24, 1.25) · 108 s−1 (a — curves 1, 2)
and ω = (1.3, 2, 2.5, 3) · 108 s−1 (b — curves 1−4), n = 0.87,

h0 = 0.1Oe, H = 100Oe.
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Figure 6. Projections of trajectories of the vector of M in case of regular dynamics at ω = (1.2, 1.12) · 108 s−1 (a — curves 1, 2) and

ω = (1.07, 0.98) · 108 (b, c); in case of a weak chaotic nature at ω = 0.977 · 108 s−1 (d); h0 = 0.1Oe, H = 100Oe, n = 0.87.

parameters are rather far from the resonance values), the
amplitude of regular vibrations increases to |Mxm| ≈ 750G

with a frequency decrease, the dynamics of magnetization

at ω ≤ 1.07 · 108 s−1 is in the chaos region which includes

narrow regions of the regular precession. The structure of

the given diagrams also shows that the attractors of chaotic

modes will change with a change of the given parameters.

To support the aforesaid, Fig. 5, a, b shows the time

dependence of component Mx for a NP with shape

parameter n = 0.87 in static field H = 100Oe upon ac-

tivation of alternating field hy(t), the amplitude of which

is h0 = 0.1Oe, and frequency is ω = (1.24, 1.25) · 108 s−1

(a — curves 1, 2) and ω = (1.3, 2, 2.5, 3) · 108 s−1 (b —

curves 1−4). In the initial state, My (0) = 0, and the polar

angle corresponds to the equilibrium value for the given n
and H . It can be seen that all frequencies in the case (b)
are in the region which corresponds to the absence of a

stationary vibration mode (see the bifurcation diagram).
Therefore, upon activation of a high-frequency field, the

NP magnetic moment in the mode of quickly decaying

vibrations passes into the rest state within a relatively short

time interval (τ < 1µs). In the case (a), the frequency

for curve 1 is in the region of high-amplitude vibrations,

that’s why magnetization goes from the initial state under

the action of an alternating field to a steady-state vibration

mode with an amplitude considerably different from zero.
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Figure 7. Projections of trajectories of the vector of M in case of chaotic dynamics at ω = (1.06, 1.05, 1.4, 1) · 108 s−1 (a−d);
h0 = 0.1Oe, H = 100Oe, n = 0.87.

Stationary precession is already absent for curve 2, while

the frequency is near the boundary which separates the

region of stationary vibrations and the region without

self-sustaining precession modes. Therefore, vibrations

generated by the alternating field are transient dynamic

states with a long decay time (τ ≫ 1µs).

As mentioned above, precession modes with arc-shaped

projections of trajectories onto the XY plane (see Fig. 2)
are related to precession dynamic bistability. To clearly

demonstrate the said bistability, let us consider the main

regular and chaotic precession modes for a NP with

parameter n = 0.87, which establish in case of h0 = 0.1Oe

and H = 100Oe at different frequencies. Fig. 6 shows

the projections of the trajectories of the vector of M

onto the XZ plane in case of regular dynamics at

frequencies ω = (1.2, 1.12) · 108 s−1 (a — curves 1, 2),
ω = (1.07, 0.98) · 108 s−1 (b, c) and in case of a mode with

a weak chaotic nature at frequency ω = 0.977 · 108 s−1 (d).
It should be noted that an attractor (d) arises due to

chaotization and expansion of the attractor of the regular

mode (c). This mode is located in a narrow region of

regular dynamics inside the chaos region (see the bifurcation
diagram), and chaotic nature of vibrations increases abruptly

with a further frequency decrease, and a stochastic mode

Physics of the Solid State, 2022, Vol. 64, No. 12
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with a symmetrical attractor (as distinct from case (d))
arises. The modes (a) have the simplest attractors and

establish at relatively high frequencies, up to frequencies

at which precession stops. Regular precession (b) has a

divisible period in relation to the alternating field period

T = 8π/ω. The projections of the attractors onto the XZ is

a circle in cases (c, d) and an arc in cases (a, b).

Fig. 7 shows the projections of NP magnetization trajecto-

ries onto the XZ plane for the above-mentioned parameters

of the field and NP oblateness and frequency ω = (1.06,
1.5, 1.04, 1) · 108 s−1 (a−d); these projections show the

development of chaotic nature of dynamics at a slight

decrease of alternating field frequency. The maximum

chaotic nature arises when the projection of the attractors

onto the XY plane becomes a circle (d), these projections

are arcs in cases (a-C).

4. Conclusion

The performed analysis shows that FMR of a single-

domain NP in the shape of an oblate ellipsoid of revolution

and an
”
easy“ axis, coinciding with the symmetry axis, un-

der magnetic biasing along this axis and transverse pumping

with a weak alternating field (h0 ≪ H) considerably differs

in the case of noncollinear orientation of magnetization and

static field. The precession modes in case of the previously

studied collinear initial orientation are mostly close to a

linear magnetic resonance, except the implementation (with

weak alternating fields) of high precession angles and

nutation motion of magnetization. A noncollinear case

occurs in case of a negative difference of the magnetic

bias field and the effective anisotropy field. Thereat, the

initial orientation of magnetization does not coincide with

the anisotropy axis and the magnetic bias field; the direction

cone, which is determined by the equilibrium polar angle

only, becomes easy. In this case we have bistability of

precession modes and, depending on frequency, a weak

alternating field excites both regular precession modes,

including precession with an amplitude close to M0, and

various high-amplitude chaotic vibrations.

It should be noted that, with the amplitude and frequency

of the pumping field used herein, the homogeneous mode

is largely removed in terms of frequency from the spin-

wave mode, that’s why there is no energy transfer from

the homogeneous precession to the spin waves and no

development of spin-wave instabilities [28].
In conclusion, we also state the limitations imposed

on the NP size, which are related to the requirement

of magnetization homogeneity [29]: in the presence of

a high-frequency field the maximum NP size d must

be much smaller than the skin-layer depth δ . For a

permalloy NP the condition d ≪ δ ≈ 10−4 cm must be met;

thermal fluctuations may considerably affect the precession

dynamics of NP magnetization. Their influence is described

by multiplier (−1U/kBT ) [3], where 1U is the potential

barrier separating the
”
easy“ and

”
hard“ directions. Thermal

excitation does not disturb the precession dynamics if the

NP size is d > dmin ≈ 10 nm; the requirement for a single-

domain NP, according to which its radius must be less

than Rcr ≈ σs/M2
0, where surface energy of the domain

boundary (for permalloy, σs ≈ 1 erg/cm2). Therefore, the

requirement for the NP under study is d < 2Rcr ≈ 30 nm.

Thus, the most optimal NP size for FMR observation

is d ∈ (10÷ 30) nm. It should be noted that, according

to [30], metal particles with d ≈ 40÷ 50 nm should be

considered single-domain.
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