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Modeling of fracture and acoustic emission in polycrystalline solids
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The discrete element method (DEM) is used to reveal the main features of the fracture in materials with different
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1. Introduction

There is still a priority task for fracture of construction,

building and natural materials due to man-made and natural

catastrophes taking place. At the same time, it is important

to understand that the fracture is not a critical event, which

can be avoided by using strength margin materials or geo-

metric sizes, which are admittedly capable of withstanding

specified mechanical loads. On the contrary, fracture is

a process developing in space and time [1], in which

material parameters such as elastic moduli, local mechanical

stresses and deformations, structural rearrangements and

discontinuities can be substantially changed. This process

can be accompanied by various kinds of radiation (acoustic
and electron emission, mechanic luminescence), whose

parameters may indicate or precurse various kinds of events

in the fracture process.

By a definition, traditional continuum methods of cal-

culation of the strength characteristics (for example, the

finite element method) do not allow explicitly taking into

account material fracture (discontinuity). Instead of it, one

considers a certain effective medium, in which the fracture

is modelled by a specified phenomenological equation of

state (usually, a nonlinear one), including a material fracture

criterion. In contrast to these methods, the discrete element

method (DEM) used in this study allows explicitly taking

into account local discontinuities in the fracture process.

The present study has used a model of spherical particles

(modeling the polycrystalline grains), which are intercon-

nected by bonds (modeling the grain boundaries) in places

of particle contacts. This model (bonded particle model —

BPM) is described in detail in the paper [2], and its

various modifications are widely used to study behavior of

materials in mechanical fracture (for example, [3–8]). The

BPM defines cracking nucleation as bond breaking between

particles and their propagation — as merging of a multitude

of broken bonds [9].

The purpose of the present paper was to study impact

of the heterogeneity degree of the materials on a fracture

nature and acoustic emission accompanying the fracture

process. An elementary act of the acoustic emission was

considered to be breaking of a single bond. The calculations

were carried out in the freely distributable MUSEN software

package [10].

2. Description of the numerical
experiment

Cylindrical samples of the diameter 10 and height 20mm

have been modelled. They were sized to enable comparison

of modeling results with laboratory results, which had been

obtained earlier on the equally-sized samples. The cylinders

were filled with spherical particles of same or different sized

and packed by the MUSEM packing generator until obtain-

ing the porosity 0.35−0.37. At the same time, overlapping

of contacting spheres did not exceed 0.0001mm.

For materials, from which the spherical grains and bonds

therebetween (grain boundaries) are made of, materials with

parameters of Table 1 were used. These parameters were

specified as typical for rocks. It should be noted that
”
mi-

croscopic“ values of parameters for the particles and bonds

differ from real values of the material parameters as a whole.

That is why calibration of the
”
microscopic“ parameters is

required to compare values of the mechanical properties

of the modeling materials with the real ones [2,11]. As

this paper has not tasked to compare numerical values of

the magnitudes for the modeling and real materials (for

example, a strength thereof), such parameter calibration was

not carried out.

664



Modeling of fracture and acoustic emission in polycrystalline solids with the discrete elements method 665

Table 1. Material parameters used in the modeling

� Material ρ, kg/m3 E, GPa ν σn, MPa σt , MPa η, Pa · s

1 Granite 2700 45 0.13 175 175 5E19

2 Quartz 2650 94 0.29 600 600 5E19

3 Orthoclase 2560 62 0.29 420 420 1E19

4 Oligoclase 2560 70 0.29 480 480 1E19

5 Glass 2500 50 0.22 50 50 1E40

6 Quartz-orthoclase bond 2500 5.8 0.2 200 200 5E19

7 Quartz-oligoclase bond 2500 5.8 0.2 300 300 5E19

8 Orthoclase-oligoclase bond 2500 5.8 0.2 100 100 5E19

No t e. Here: ρ — the material density, E — the Young modulus, ν — the Poisson ratio, σn — the material tensile strength, σt — the material shear

strength, η — the dynamic viscosity.

Table 2. Grain diameters (mm) and percentage composition of each of the fractions

Grain diameter of various fractions di , mm Portion of each fraction, %

Quartz 0.36 0.188 0.52 0.28 0.42 0.0595745

Orthoclase 0.27 0.28 0.4 0.36 0.26 0.0702128

Oligoclase 0.16 0.168 0.288 0.24 0.4 0.0702128

Table 3. Grain diameters (mm) and percentage composition of each of the fractions

Grain diameter of various fractions di , mm Portion of each fraction, %

Quartz 0.09 0.047 0.132 0.079 0.106 0.0595745

Orthoclase 0.068 0.07 0.096 0.91 0.064 0.0702128

Oligoclase 0.041 0.042 0.077 0.063 0.098 0.0702128

Three sample types of the different heterogeneity degree

were used:

1. Homogeneous sample of grains (particles) and bonds

with granite properties (Table 1). The particle size

is 0.4mm, their number — 28125.

2. Grains (particles) with diameters and a percentage

composition as specified in Table 2 (a particle diameter in

millimeters, their number — 48695). The sizes were a set

of values with the mean value of 0.3mm and the standard

deviation of 0.1mm, which was obtained by means of a

random number generator with normal distribution.

3. Grains (particles) with diameters and a percentage

composition as specified in Table 3 (a particle diameter in

millimeters, their number — 33670). The said sizes were a

set of values with the average value of 0.08mm and the

standard deviation of 0.025mm, which was obtained by

means of a random number generator with normal distri-

bution. The fraction diameter 4 for orthoclase is ten times

increased in order to improve the heterogeneity degree.

The bonds were formed in places of particle contacts. The

bond materials was selected from Table 1. The particles

of the same material were connected with a bond of the

same material, while the particles of the different materials

were connected either by low-strength brittle glass bonds 5

(hereinafter — a set of bonds of the type 1), or low-module

bonds 6, 7, 8 [12] (hereinafter — a set of bonds of the

type 2). The bond diameter (d) was selected automatically

by a bond generator to equal to a lesser diameter of a pair of

the connected particles 1 and 2: d = min{d1, d2} [10]. The

maximum bond length (Lmax) was selected to disable one

more particle between the pair of the connected particles.

The minimum length Lmin was usually zero. It should

be noted that this selection of Lmin can have the system

spontaneously blow up, as the above-mentioned particle

overlapping was allowed. If it occurred, the minimum bond

length was accepted to equal to the maximum overlapping

(0.0001mm) with a reverse sign.
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Figure 1. Sample and diagram of the modeling experiment.

Then, the sample was placed in a virtual press, whose

lower plate was fixed, while its upper plate was moving to

the lower one at the speed of V = 0.02m/s until fracture

of the sample (Fig. 1). The fracture process, in equal time

periods — a data saving time interval — recorded a large

set of data of various mechanical parameters of the sample,

which could be used for further analysis.

3. Results and discussion

The Fig. 2 shows the loading diagrams of the samples of

the different heterogeneity and the homogeneous sample.

The deformation was calculated by the formula ε = Vt .
The stresses were calculated based on forces acting on

the loading plates. Since the numerical experiment usually

makes it impossible to sustain an equality of forces acting

on the plates [13], the stress was calculated by the formula

σ = 0.5(Ft + Fb)/S, where the indices t and b signify the
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Figure 2. Diagrams of loading the samples with the different type of bonds (a) and the homogeneous sample (b).

top and the bottom, S — the sample section (the section at

the initial time moment was used).
It is seen that it is typical for more homogeneous samples

(1 and 2 of Fig. 2, a and Fig. 2, b) to exhibit brittle behavior

(linear increase of stress) and sharp drop of stresses after

obtaining its maximum value. It is typical for more

heterogeneous samples (the curves 3−5, Fig. 2, a) to exhibit

a nonlinear (plastic) section on the loading diagram. It is

due to the fact that first weaker bonds are broken, and so

are stronger ones, then.

The model also allows studying the kinetics of bond

breaking in time. The results are shown in the Fig. 3 and

include the number of bonds broken during the data saving

time interval (10−5 s for Fig. 3, a and 10−4 s for Fig. 3, b

and 3, c) — of
”
the acoustical activity“ (AA).

The Fig. 3 clearly shows the difference in the behavior

of
”
the acoustic activity“ for the homogeneous and het-

erogeneous materials. The former ones (Fig. 3, a, b) are

characterized by a very small number of broken bonds

up to the fracture, when there is a maximum value of

the stresses of Fig. 2. There is an AA burst at this

moment. The heterogeneous sample starts to accumulate

bond breaks in the plastic region, when the weakest bonds

start to break. Note that the mechanical properties of the

materials modelled in the present paper are mostly affected

by heterogeneity and mechanical properties of the grain

boundaries (bonds), while the grain (particle) properties

are not essential. It is due to the fact that in accordance

with the model under study the particles themselves do not

collapse.

The analysis of heterogeneity of bond breaking across the

sample bulk is shown in the Fig. 4. The sample was divided

into 10 layers along the height and fracture parameters were

calculated in each layer for each saved moment of time.

The Fig. 4, a shows the time dependence of the number

of unbroken bonds averaged across the layers (N) for the

three samples under study. A spatial heterogeneity measure

was selected to be a variation coefficient of the number of
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Figure 3.
”
Acoustical activity“ — the number of bonds broken per unit time in the homogeneous sample (a); the sample with one bond

type (orthoclase) (b) and the sample with different bonds (of the type 1). Bond diameter d = 0.1mm.
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Figure 4. Time dependence of the number of unbroken bonds averaged across the layers (N) (a) and the variation coefficient (CV):
1 — the homogeneous sample, 2 — the sample with orthoclase bonds, 3 — the sample with bonds of the type 1 from Table 1.

unbroken bonds across the layers (CV). Its time dependence

is shown in the Fig. 4, b.

The samples 1 and 2 have evident brittle fracture: an

insignificant reduction of the number of unbroken bonds

with a low variation coefficient (bulk homogeneity) during

long modeling time and an explosion-like jump of CV

near the sample fracture time (fracture localization and

cracking growth). The heterogeneous sample 3 accumulates

damage within significantly less periods of time. However,

the variation coefficient at this stage is also small, which

confirms that the damage is accumulated more or less

homogeneously across the sample bulk. It confirms

that a model of the two-stage fracture of heterogeneous

materials proposed in the papers [14,15] is true. The

variation coefficient jump is also not very high. It

corresponds to a uniform fracture type in the heterogeneous

samples found earlier in the laboratory experiments [16],
and to a similar result obtained in a cellular automaton

model [17].

Each layer has been calculated for maximum tension

stresses on the bonds σmax. The Fig. 5, a shows the

time dependences of the values 〈σmax〉 averaged across the

layers. Causes of local tension stresses under the action

of an external compression stress are well known (see, for
example, [2]) and are not discussed here. These stresses

are obtained by averaging the maximum stresses across

the layers in each layer at each saved moment of time.

The Fig. 5, b shows the time dependences of the variation

coefficient of the magnitude σmax across the layers.

In order to understand the time behavior of the tension

stresses, it should be kept in mind that a structure of grains

and their boundaries (particles and bonds) created at the

material formation stage is not an equilibrium one and

has significant internal local stresses. The initial stage of

mechanical loading includes relaxation of these stresses. It

is manifested in nonmonotonicity of their time dependence

at this stage (Fig. 5, a) and a significant variation coefficient

in the Fig. 5, b. With relaxation of the stresses, they are
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Figure 5. Maximum tension stresses averaged across the layers (a) and their variation coefficients (b): 1 — the homogeneous sample,

2 — the sample with orthoclase bonds, 3 — the sample with bonds of the type 1 from Table 1.
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Figure 6. Bond breaking kinetics and its variation coefficient for the samples with particle parameters from Table 3. 1 — the homogeneous

sample, 2 — the sample with orthoclase bonds, 3 — the sample with bonds of the type 1 from Table 1.
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Figure 7. Maximum tension stresses and their variation coefficients for the samples with the particle parameters from Table 3. 1 — the

homogeneous sample, 2 — the sample with orthoclase bonds, 3 — the sample with bonds of the type 1 from Table 1.
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levelled across the bulk (Fig. 5, b) and increased (Fig. 5, a)
until setting up conditions for formation of a fracture focus.

When the focus is formed, the local stresses become

substantially heterogeneous across the bulk (Fig. 5, b) again,
wherein a value of this heterogeneity in the heterogeneous

sample is much less than in more homogeneous ones.

Impact of the heterogeneity of the grain size distribution

was revealed by studying the samples, in which the grain

size of one of the orthoclase fractions was increased in

one order (0.91−0.091mm) in comparison with its value,

which had been obtained by means of the random number

generator with normal distribution (Table 3). The other

parameters were the same as for the samples discussed

above. The homogeneous sample in the present and

previous series is the same.

The Fig. 6 shows the bond breaking kinetics and its

variation coefficient as in the Fig. 4, the Fig. 7 — the

maximum stresses and their variation coefficients as in the

Fig. 5.

It is clear that the results for the bond breaking kinetics

in this series (Fig. 6) are similar to those as in the Fig. 4.

The increased heterogeneity of the particle size distribution

led to the significantly reduced variation coefficient for the

sample with orthoclase bonds at the last (focus) fracture

stage. The same happened for the variation coefficient

of local stresses for this sample. Thus, the additionally

increased heterogeneity of the sample led to the increased

homogeneity degree of its fracture nature, i.e. a multi-focus

type.

4. Conclusion

It seems that the discussed model of polycrystalline

materials realistically describes some features of their

fracture when the main processes proceed along the grain

boundaries. These features include a brittle fracture nature

of the homogeneous materials and a nonlinear elasticity

(plasticity) for more heterogeneous materials, which were

revealed by means of the loading diagram sigma−epsilon

(the equation of state) and the time behavior of
”
the

acoustic activity“ — the number of broken bonds per unit

time. For the heterogeneous materials, the model predicts

the two-staged type of their fracture, i.e. the first stage

includes accumulation of flaws homogeneously across the

sample, while the second stage — formation and growth of

the fracture focus.

The calculation of the maximum local stresses showed

that the material homogeneity leads to the higher hetero-

geneity of the local stresses in space and, vice versa, the

heterogeneity contributes to their higher homogeneity. The

same behavior of the local internal stresses, which are

calculated based on the S.N. Zhurkov kinetics concept, was

noted in laboratory experiments in the paper [16].
We assume that further computer experiments and their

analysis will allow comparing the size distribution of defects

evolving in time during fracture and the energy distribution

of the acoustic emission signals. It will allow finding out

what conditions a transition from the Markov process to a

state of the self-organized criticality.
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