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Operator form of the generalized optical theorem for wave problems
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Introduction

The optical theorem (OT), one of the basic ones in

scattering theory, relates extinction cross-section of a plane

wave incident on a scatterer σext with the scattering ampli-

tude in the
”
forward“ direction A(0) by the known relation

σext = (4π/k0)ImA(0), where k0 is the wavenumber [1].
Also the generalized optical theorem (GOT), is known,

which is an integral relation expressing the imaginary part

of the scattering amplitude at different angles [2]. When the

directions of incidence and scattering coincide, the GOT

passes into the usual OT. Both OT and GOT follow directly

from the law of conservation of energy. They are used in

a wide range of wave scattering problems regardless of the

nature of wave processes (the history of the problem is

given in paper [3]). A general description of GOT for the

case of acoustic, electromagnetic, quantum-mechanical and

elastic waves was given in paper [4].

Both forms of the optical theorem refer to the description

of the field in the far wave zone, where the field is

approximately represented as a superposition of plane

traveling waves. In the author’s papers [5,6], using the scalar

wave equation as an example, an operator form of GOT

was proposed, suitable for arbitrary radiation sources. This

form makes it possible, in particular, to consider the case of

point sources, as well as the field in the near zone, including

excitation of the scatterer by radiation beams and evanescent

waves. In this case, in [5] the case of a lossless scatterer

is considered, and in [6] of the scatterer with absorption.

In this paper the results [5,6] are extended to the case

of scattering of electromagnetic radiation, as well as other

wave equations that satisfy certain conditions formulated

below. The main one is the possibility of separating the

dissipative part describing absorption in the scatterer in the

original differential (or in other words, local) formulation of

the problem. It turns out that such separation can also

be preserved when passing from the original differential

equation to an integral one, in which additional conditions

are taken into account that ensure the uniqueness of the

problem solution. In the most general formulation the

generalized optical theorem makes it possible to estimate

the changes introduced by the used scatterer into the results

of the original problem which does not contain this scatterer.

The traditional approach to obtaining the optical theorem

is based on the expression of the balance of energy fluxes

flowing through selected closed surfaces. In the case of

plane waves a sphere of infinitely large radius is usually

taken as such surface. This approach is described in

most details in the papers [7,8], where the general case

of radiation sources localized at an arbitrary distance from

the scatterer is considered for the electrodynamic problem.

This allowed the authors [7,8] to obtain some new results

by describing in details the energy balance conditions for

flows through surfaces enclosing the scatterer, sources, and

the scatterer together with sources. By contrast with such

”
energy“ approach, the operator method used below is

simple and allows one to obtain not only the usual OT

associated with energy flows and corresponding to the

diagonal elements of the corresponding operators, but also

the GOT that connects their off-diagonal elements.

In this case, the approach considered below is not

uniquely tied to the electrodynamic case. The specific

statement of the problem is chosen only as an illustration

of the general approach, so that no detailed description

of the electrodynamic consequences is included in the

purpose of this paper. Due to the rejection of rigorous

mathematical definitions and the use of operators at the

”
physical“ level of rigor, it is possible to obtain a generalized

OT in the form (11) (see below), suitable for a wide class

of wave problems. Previously, the universality of GOT was

illustrated in the cited paper [4], but using a more complex

approach for a specific (albeit quite general) model of the
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original differential equation, and only for the case of plane

waves (far field).
The following Sections present the main results for the

forms of the operator optical theorem. Simple, but some-

what cumbersome calculations are given in the Appendix.

1. Maxwell’s equations and the integral
formulation of scattering problem

Let us consider a three-dimensional stationary problem of

the scattering of monochromatic electromagnetic radiation

by a scatterer located in a lossless medium. The electric

field vector E is determined by the equation following from

the system of Maxwell’s equations (we omit the multiplier

e−iωt everywhere) [9]:

[∇×∇×−k2
0ε(r)]E(r) = iωµ0 j(r). (1)

Here, k0 = 2π/λ is wavenumber, λ is wavelength, ε(r)
and j(r) describe, respectively, the distribution of the

permittivity of the medium and currents, and µ0 is the

magnetic permeability of the vacuum. The permittivity

ε(r) in (1) is represented as the sum ε(r) = ε0(r) + χe(r),
function χe = χe(r) is non-zero only inside the scatterer, and

in the general case can be a tensor value that takes into

account the anisotropic characteristics of the scatterer. In

this case, ε(r) will also be tensor.

It is assumed that ε0(r) has a form that admits a complete

solution, i.e. finding the Green’s operator in the absence of

the scatterer. This condition significantly limits the class

of admissible problems. Two examples of this kind will

be considered below. This is the case of a homogeneous

lossless medium, ε0(r) = ε0 = const, and also the case of

scatterer near a homogeneous lossless half-space.

The homogeneous equation (1) corresponding to the

absence of sources j = 0 has non-zero solutions. There-

fore, to make the solutions unique (1) is supplemented

with known radiation conditions, and in the presence

of discontinuous changes in ε(r) also with continuity

conditions for the tangential components of the electric E

and magnetic H fields. From a mathematical point of view,

these conditions limit the class of functions admissible for

consideration, thereby highlighting the domain of definition

of the operators considered below. A detailed description

of these conditions can be found in the textbooks of

electrodynamics. Bearing in mind that these conditions

are satisfied, we can pass from the differential equation (1)
written symbolically in the form (see, for example, [10])

(L0 −V )u = q, (2)

to the integral form of the equation for the field u:

u = G0q + G0Vu ≡ Gq. (3)

Here we use abbreviated notation for the field u = E(r)
and the sources q = iωµ0j(r), L0 = ∇×∇×−k2

0ε0(r).
In this case, u and q are considered as functions of

the argument x = (i, r), which contains a discrete tensor

index i and a spatial argument r, and integration over x is

always understood as integration over r, supplemented by

summation over the corresponding tensor index i , which is

not written explicitly.

The Green’s operator with tensor kernel G(r, r0) included
in (3) acts according to the rule

Gq =

∫

G(r, r0)q(r0)dr0,

and G0 =
(

∇×∇×−k2
0ε0(r)

)−1
is matrix operator of

”
free propagation“, describes the problem in the absence

of scatterer and is considered to be set. The pertur-

bation operator V in the case under consideration is

reduced to multiplication by ν(r) = k2
0χe(r) and has kernel

V (r, r0) = ν(r)δ(r− r0) (symbols of unit operators and

matrices are omitted everywhere).
In the general case, G0 does not necessarily refer to the

case of free propagation. It is assumed that G0 describes

some original
”
unperturbed“ problem whose solution is

actually completely known. As such problem in addition

to the simplest case of free space, for example, the case

of waves near a half-space (see below) can be used, or

more complex problems associated with resonators and

waveguides, which are not considered in this paper. In

this case, the use of the optical theorem makes it possible,

in particular, to simplify some estimates of the changes

introduced by the scatterer into the propagation of energy

fluxes.

2. Operator form of the scattering
problem

The transition from the Helmholtz vector equation (1)
with additional conditions to the integral formulation of the

problem (2) is sophisticated in the general case, since the

Green operator kernel contains a strong singularity requiring

the use of the concept of excluded volume [11,12]. It turns
out that the very form of the integral equation (3) implicitly

contains a lot of physics, making it possible to distinguish

the dissipative terms in (3), to which inevitable radiation

losses are also added.

Substituting u = Gq into (3) gives the relation

Gq = G0q + G0V Gq,

wherefrom, after reducing by q the operator equation for G
follows

G = G0 + G0V G. (4)

We define the operator T by the usual relation [10]:

V G = T G0, (5)

so

G = G0 + G0T G0. (6)
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Thus, the complete solution of the scattering problem, i.e.

the calculation of G is reduced to finding the T -operator,
since the free propagation operator G0 is assumed to be

known.

Multiplying both parts (6) in the left side by V and

taking into account (5), after simple reductions we obtain

the equation for T - operator

T = V + V G0T. (7)

According to (3):

u = u0 + usc,

where u0 and usc represent the incident and scattered waves,

respectively:

u0 = G0q, usc = Gscq, (8)

and the scattering operator Gsc is expressed as

Gsc = G0V G = G0T G0.

We will consider the introduced linear operators as

infinite-dimensional matrices acting in the unitary space of

functions u = u(x) with scalar product of the form

u†u ≡

∫

u∗(x)u(x)dx ,

where the symbol † means the Hermitian conjugation,

and the integral over x = (i, r) is understood as the

integral over r supplemented by summation over the tensor

index i (in used in quantum physics
”
bra-ket“ notations

u = |u >, u† =< u|, so that u†u =< u|u > is a number, and

u u† = |u >< u| is a matrix operator). Such an approach

allows us to use the general properties of operators without

being bound in advance to any or fixed basis (see, for

example, [13]). At that the kernel of the adjoint operator

V † is expressed as V †(x , x0) = V ∗(x0, x).

3. Operator form of the generalized
optical theorem

The key point for what follows is to write the perturbation

operator V as the sum of the dissipative and conservative

parts. In the general case, the perturbation operator V , like

any linear operator, can be decomposed into Hermitian (V h)
and anti-Hermitian (iV a) components1

V ≡ V h + iV a, V h ≡ (V + V †)/2, V a ≡ (V −V †)/2i .
(9)

1 Instead of the Hermitian operator V a in (9) it would be possi-

ble to use the anti-emitter operator V a′
≡ iV a , thereby excluding the

“excessive
”
imaginary unit from consideration, but the record (9), similar

to the decomposition of a complex number into real and imaginary parts,

seems to be more illustrative. For the electromagnetic problem the

algebraic properties of linear operators are described in more details in

Appendices E, F of paper [8].

It is known that in the electromagnetic case considered

here, the time-averaged power dissipated in the scatterer

can be written as [14]:

Pabs =
ω

2
Im

∫

E†εEdr0 =
ω

2

∫

E†εa E dr0,

where εa = (ε − ε†)/2i , a† is the usual Hermitian conjuga-

tion of vectors and matrices. In accordance with the above

said, this relation can be abbreviated as

Pabs = b Im u†Vu = bu†V au, (10)

where the coefficient b = c2

2ω
depends on the choice of the

system of units and, for simplicity, is assumed to be equal

to one.

Thus, according to (10), the time-averaged absorbed

power up to a multiplier is expressed as the matrix element

u†V au of the anti-Hermitian, or otherwise, dissipative part

of the operator V a corresponding to the field u. In this case,

the field u = u(x) is considered as one of the basis vectors

in the space of functions depending on x , which can be

completed to a basis covering the entire space of functions

under consideration.

Using the scalar wave equation as an example, it was

shown in [6] that the following operator relation follows

from the operator equations (6) or (7) in the case of a

scatterer with absorption:

G0†T a G0 = G0†T †G0a T G0 + GV aG (11)

(for the particular case V a = 0, the equivalent (11) relation

was previously found in [5]).
It is shown in the Appendix that the fulfillment of (11)

is not related to the scalar nature of the wave equation,

and can be obtained from equation (7) in general form

using simple operator transformations. Relation (11) is the

operator form of GOT. In it, the operator on the left side is

directly related to the extinction of radiation, the first term

in the right side is due to radiative losses, and the last term

is due to absorption in the scatterer. Let us show how other

forms of OT used in the literature follow from this relation.

To pass from (11) to expressions for powers, we multiply

both parts of (11) in the right side by the source function q,
and in the left side by q†

q†G0†T a G0q = q†G0†T †G0a T G0q + q†G†V aGq

or taking into account (3) and (8)

u0†T a u0 = u0†T †G0a Tu0 + u†V au. (12)

This relation can be written as

Pext = Psc + Pabs , (13)

where

Pext = u0†T au0, Psc = u0†T †G0aTu0, Pabs = u†V au.
(14)
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Relation (13) is an extension of ordinary OT to the case

of a non-plane incident wave u0. In it, the extinction

power Pext, equal to the sum of radiative and heat losses,

according to (14), is represented as corresponding to u0

diagonal matrix element of the dissipative part T a of the

operator T . This element replaces the imaginary part of the

”
forward“scattering amplitude, and passes into it for a plane

incident wave. The value Pabs expresses the time-averaged

power of radiation absorbed by the scatterer and is given

by the diagonal matrix element V a for the total field u. The
defined (14) scattering power Psc is also represented by the

diagonal matrix element over the field u0 of the scattering

operator T †G0aT , which contains operator G0a describing

radiative losses. Let us consider these conclusions, as well

as some consequences of the operator optical theorem (11)
in more details.

4. Scattering of plane electromagnetic
wave by isolated scatterer

Let us consider the incidence of the plane wave

u0 = E0 ≡ e0e
ik0n0r (15)

on the isolated scatterer in free space. Here n0 = k0/|k0|
and e0 are unit vectors, respectively, of the direction and

polarization of the incident wave. In the case under

consideration, the scattered field usc ≡ Esc = G0TE0 away

from scatterer has the form of a diverging spherical wave,

so that in the wave zone at k0r ≫ 1 the scattered field is

expressed as

Esc = G0TE0 ∼
eikεr

r
F(n, n0),

where n = r/|r| is the unit vector of the scattered wave

direction. The scattering vector amplitude F(n, n0) is

proportional to the polarization vector of the incident wave,

F(n, n0) = f (n, n0)e0.

In this case, the polarization transformation tensor

f (n, n0) is expressed in terms of the
”
T -operator on the

energy surface“ by the relation

f (n, n0) =
1

4π
ρ(n)T (k0n, k0n0)ρ(n0). (16)

Here

T (k, k0) =

∫

e−ikrT (r, r0)e
ik0rdrdr0

is tensor kernel of the T - operator in the wave vectors

representation, and ρ(n) = 1− n× n is projection onto the

plane with the normal n (for the scalar model the relation

similar to (16) was derived in [5]). If {eα(n)} is an

arbitrarily chosen orthogonal basis in the plane with the

normal n(α, β = 1, 2, eα(n)†eβ(n) = δαβ), then ρ(n) can be

written as

ρ(n) =
∑

δ=1,2

eδ(n)eδ(n)†.

According to (16), the tensor f (n, n0) is transverse with

respect to the direction of propagation of the incident and

scattered waves, so that n†f(n, n0) = f(n, n0)n0 = 0. This

allows us to reduce the 3× 3 tensor f(n, n0) to 2× 2

matrix f α,β relating polarization vectors of the incident and

scattered waves [15]:

f α,β(n, n0) = eα(n)† f (n, n0)eβ(n0)

=
1

4π
eα(n)†T (k, k0)eβ(n0). (17)

In the case considered here, it is easy to pass from

the operator OT (11) to the usual generalized OT for the

electromagnetic field, restricting ourselves to the description

of fields in the far zone. To do this, it sufficient to take

into account that in the representation of wave vectors the

action of the operator G0a , included into (11), is reduced to

multiplication by the delta-function:

G0a
k = ρ(n)

π

2k0

δ(|k| − k0), (18)

so that

G0a(r, r0) =

∫

G0a
k eik(r−r0)

dk
(2π)3

, (19)

and calculate the off-diagonal matrix elements of (11)
corresponding to the incidence and scattering of plane

waves.

Note that, in accordance with (18) and (19), the part

G0a of the free propagation operator G0 describing the

radiative losses in the space of wave vectors is localized

on the
”
energy surface“ |k| = k0 and is

”
transverse“ with

respect to the direction n. Speaking nonstrictly, we can

say that the operator G0a
”
remembers“that radiative losses

occur in the far zone, where the wave field approximately

has the structure of plane waves, for which these conditions

are satisfied.

Using (17)−(19) and integrating over modulus k , we can

transform the optical theorem (11) to the form

1

2i

(

( f α,β(n, n0) − ( f ∗
β,α(n0, n)

)

=
k0

4π

∑

δ=1,2

∮

4π

f ∗
δ,α(n

′, n)) f δ,β(n
′, n0)dn

′ +
∑

abs

, (20)

where the matrix
∑

abs is related to absorption in the

scatterer and is not written explicitly. This relation is

the usual form of the generalized optical theorem for

the electromagnetic field [15]. When the directions and

polarizations of the scattered and incident waves coincide,

n = n0, α = β (20) passes into the
”
classical“ optical theo-

rem relating the extinction cross-section with the imaginary

part of the forward scattering amplitude. In this case,
∑

abs
passes into the absorption cross-section, and the extinction

cross-section is expressed by the relation

σext = Pext =
4π

k0

Im f α,α(n0, n0).
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5. Optical theorem for incident and
scattered waves and case of scatterer
near lossless half-space

One more form of the optical theorem widely cited in the

literature follows directly from the general expressions for

powers (14). Using the relations A+BaA= (A+BA)a and

u0†T a u0 = Imu0†Tu0, and also (5) from (14) it is easy to

obtain expressions (see Appendix)

Pext = Im u0†Vu,

Psc = −Im us†Vu,

Pabs = Im u†Vu. (21)

Since the total field is expressed as the sum of the

incident and scattered components, u = u0 + us , this, in

particular, immediately implies the fulfillment of the optical

theorem (13).
Equivalent to (21) relations were obtained in [16] for the

scalar model, and in [17] for the electromagnetic radiation

model (see also [8]). In these papers, the role of G0 belongs

not to the
”
operator of free propagation“, but to similar

operators for a transparent half-space, explicit expressions

for which are given, in particular, in [16,17]. Relations (21)
were used in the indicated papers to obtain the optical

theorem for scatterer near the transparent half-space, when

instead of the
”
forward“ scattering amplitude there is a

weighted sum of the scattering amplitudes in the direction of

the reflected and transmitted waves. The latter reflects the

interference nature of the optical theorem for this problem,

which is related to the in-phase nature of the scattered wave

with the incident wave only for the directions of reflection

and refraction.

Conclusions

In this paper, using the example of electromagnetic

radiation scattering, we consider the operator form deriva-

tion of the generalized optical theorem related to the

fulfillment of the law of conservation of energy in scattering

theory problems. In contrast to the traditional approach

to obtaining OT, this derivation is not directly related to

the calculation of energy flows through closed surfaces and

asymptotic estimates of rapidly oscillating integrals, and uses

only simple general properties of linear operators acting

in a unitary space. The main condition leading to this

form of GOT is formulated. It requires the possibility of

separating conservative and dissipative terms in the original

differential formulation of the problem. In particular, it

follows from the operator form of GOT that in the general

case of a non-plane incident wave and observation points

near the scatterer the value of the imaginary part of the

”
forward“ scattering amplitude, which appears in the usual

optical theorem, passes into the diagonal matrix element of

scattering T -operator corresponding to the incident wave.

The transition from the operator to the usual form of GOT

for the electromagnetic field is traced, as well as to the

case of scatterer near a lossless half-space described in the

literature.

The proposed scheme is illustrated by the example of

electromagnetic radiation scattering; however, the general

results obtained cover the case of waves of an arbitrary

nature that satisfy the conditions formulated above.
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Appendix

Let A and B be two linear invertible, generally non-

commuting operators (AB 6=BA). For further it is sufficient
to use the well-known simple properties of inversion

and Hermitian conjugation (AB)† =B†A†, as well as

(A+B)
a

=A
a

+B
a

, and (A†)
a

=−A
a

, where the super-

script
”
a“ means the calculation of the dissipative part

of the corresponding operator in accordance with (9).
These relations are valid both for ordinary matrices and for

operators. Using them and (9), it is also easy to check that

(A−1)a = −(A†)−1Aa(A)−1 (A1)

and

(A†BA)a = A†B
a

A. (A2)

Let us take the Hermitian conjugation from the equa-

tion (6)
G† = G† + G0†T †G0†.

Multiply this relation in the right side by TG0, replacing

TG0 in the left side of the resulting expression by V G in

accordance with (5):

G†V G = G0†TG0 + G0†T †G0†T G0.

Taking from here the dissipative part (a) considering (A2)
and (A1), we obtain the required equation (11).
The transition from the operator form of GOT (11) to the

power values (21) is equivalent to calculation of the diagonal

matrix element from both parts (11) corresponding to the

incident wave u0. Taking into account relations (5) and (8),
the values (14) can be easily transformed as follows:

Pext = Im u0†Tu0 = Im u0†TG0q = Im u0†V Gq

= Im u0†Vu, (A3)

Psc = − Im u0†T †G0†Tu0 = −Im u0†T †G0†Vu

= −Im us†Vu, (A4)

Pabs = u†V au = Im u†Vu. (A5)

The expressions for powers (A3)−(A5) are equivalent to

relations (21).
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