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SLs and CdSe/CdS nanoplatelets enables to separate the influence of size quantization and surface relaxation on

the vibrational frequencies in the nanoplatelets.
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1. Introduction

Vibrational spectroscopy techniques — Raman scattering

and infrared (IR) absorption — are powerful tools for

analyzing the properties of various materials. These

methods have found a wide application in studies of low-

dimensional structures [1–3]. They provide information

on the real structure of the samples under study: their

composition, size, mechanical strains present in them, the

state of the interfaces, and surface relaxation of atoms.

However, the interpretation of the obtained results is often

insufficiently substantiated. The aim of this work is to

analyze the vibrational spectra of CdSe/CdS superlattices

(SLs) in order to help in this interpretation. In the

course of numerical modeling of the vibrational spectra

of SLs, we will encounter a number of previously little

discussed vibrational modes such as confined acoustic

modes, gap modes, and local modes. In contrast to a large

number of previous works, in which simplified models were

usually used when calculating the lattice dynamics, in this

work, we use the density functional theory approach, in

which the electrical and mechanical boundary conditions

upon relaxation of the structure (in our case, the lattice

parameters of materials differ by 4%) are taken into account

and satisfied automatically.

The vibrational spectra of superlattices are subjects of

studies for more than 40 years [4–26]. Already in the first

papers, the main distinctive features of vibrational spectra

of SLs have been established: the appearance in them of

folded acoustic modes [4–6,10–14] and confined optical

modes [8,10–14].

The folded modes are longitudinal acoustic (LA) and

transverse acoustic (TA) vibrations that propagate in both

materials, experiencing weak reflections at the boundaries

of two materials differing in their acoustic properties.

The frequency of such vibrations in two materials of the

superlattice is the same, but the wave vectors are different.

The period of the superlattice determines new periodic

boundary conditions for the emergence of standing waves,

and the fact that the Brillouin minizone of the SL is several

times smaller than the Brillouin zone of bulk materials

results in a folding of this zone in the growth direction

so that a number of points from the bulk of the Brillouin

zones of the raw materials are projected to the Ŵ point

of the folded zone. Thus, a whole set of new vibrational

modes appear in the SL at the center of the Brillouin zone.

The appearance of discontinuities in the energy spectrum

of the modes (stop bands) observed at the center and at

the boundary of the Brillouin minizone is associated with

the difference in specific acoustic impedances of the used

materials.

In the region of optical vibrations, confined modes, in

which longitudinal optical (LO) and transverse optical (TO)
vibrations are localized in one of two materials of the

superlattice and are rapidly evanescent in another one,

are observed. For such modes to appear, it is necessary

that vibrations with a given frequency can propagate in

one of the materials and cannot propagate in the other

one. An indication of such vibrations is the absence

of mode dispersion and the strong dependence of their

frequency on the thickness of the layer of the first

material.
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Finally, under certain conditions, interface modes can

arise in superlattices — modes localized at the interface

between two meterials; these modes are evanescent in both

materials. Highly localized interface modes (they are also

called microscopic) were first discovered in InAs/GaSb [27]
and Ge/Si [28] superlattices. Like the confined modes,

these modes are characterized by the absence of dispersion

along the growth direction axis, but, in contrast to the

confined modes, their frequencies remain unchanged when

changing the layer thickness. We note that the appearance

of interface modes depends on the polarization of the

vibrations: it is determined by how their frequencies relate

to the frequencies in the continua formed by longitudinal

and transverse modes in bulk materials.

As follows from the experiment [9,11–14], one more type

of modes can arise in superlattices. They are also referred

to as interface modes, although they are not strongly loca-

lized. These vibrational modes describe joint macroscopic

vibrations of polar optical phonons in both materials of SL,

in which the electric fields generated by them are coupled

by electrostatic boundary conditions. In the limit of long

waves, the frequencies of these modes satisfy the conditions

d1ǫ1(ω) + d2ǫ2(ω) = 0 or d1ǫ2(ω) + d2ǫ1(ω) = 0, where di

is the thickness of the ith layer in the SL, and ǫi is its com-

plex dielectric constant [9,29]. Since one of the dielectric

constants must be negative to fulfill these conditions, these

frequencies fall into the Reststrahlen band of one of the

materials, that is, they lie between the frequencies of TO

and LO phonons in this bulk material. These modes can

be easily distinguished since their frequencies depend on

the ratio of the layer thicknesses. To observe these modes,

studies of Raman spectra are usually carried out under

resonance conditions [9]. In contrast to the microscopic

interface modes, in which atomic vibrations are localized

at the interfaces, a much larger number of atoms usually

participate in the vibrations of macroscopic interface modes

(in the long-wave limit, all atoms in both layers [10,30]).

The above results obtained for superlattices are also

useful for understanding the vibrational spectra of other

quasi-two-dimensional structures — nanoplatelets [31–33].

2. Calculation technique

First-principles calculations were performed within the

density functional theory in the plane-wave basis and the

local density approximation (LDA) using the ABINIT
software package [34]. Optimized pseudopotentials for Cd,

S, and Se atoms were constructed according to the RRKJ

scheme [35] using the opium program. The maximum

energy of plane waves in the calculations was 30Ha

(816 eV). Integration over the Brillouin zone was carried out

using the 8×8×4 or 8×8×2 Monkhorst–Pack meshs. The

lattice parameters and equilibrium positions of atoms in su-

perlattices oriented in the [001] direction and containing up

to twelve monolayers of semiconductor were obtained from

the condition that the Hellmann–Feynman forces become

less than 5 · 10−6 Ha/Bohr (0.25meV/Å) while the accuracy

of calculating the total energy is better than 10−10 Ha. The

phonon spectra of the obtained equilibrium structures were

calculated using the density-functional perturbation theory

analogously to [36].

In this work, when determining the nature of vibrational

modes, we will analyze the dispersion of these modes along

the 3 axis of the Brillouin zone since in real space it

corresponds to the z direction in which strong perturbations

are created in the superlattice structure. Fortunately, a high

symmetry of the little group of the 3 wave vector retains

the division of vibrations into the longitudinal and transverse

ones. We will not try to establish whether these modes

belong to macroscopic interface modes, since for this it is

necessary to analyze their properties at nonzero transverse

component of the phonon wave vector.

3. Calculation results and their
discussion

3.1. Phonon spectra of superlattices

The symmetry of all superlattices studied in this work is

described by the P4̄m2 space group, and the phonon modes

at the Ŵ point can have the A1, B2, and E symmetry. The

eigenvectors of all optical modes for the (CdSe)6(CdS)6 SL

as well as their frequencies and symmetries are shown in

Figs. 1 and 2. As follows from the figures, all obtained

optical modes are confined: the vibrations are localized in

one material of the SL and rapidly decay in the second

material.

An analysis of the dispersion curves for optical modes

(Fig. 3) shows that in the Ŵ−Z direction the frequencies

of these modes are practically independent of the wave

vector (changes in the mode frequencies do not exceed

0.01 cm−1). This behavior is consistent with the existing

concept of confined modes: they do not exhibit dispersion,

but their frequencies depend on the thickness of the SL

layers. The latter was demonstrated on (CdSe)n(CdS)n SLs

with individual layer thicknesses of n = 1−4.

When discussing the behavior of dispersion curves in

the Brillouin zone of a tetragonal structure, the following

should be borne in mind. When moving from the Ŵ point

to the 3 axis, the compatibility relations of irreducible

representations describing the symmetry of normal vibra-

tions are A1 → 31, B2 → 31, E → 33 + 34 (33 and 34

are conjugate representations degenerate in frequency) [37].
Thus, on the 3 axis, only longitudinal A1 and B2 modes

can mix with each other, although the mixing of acoustic

and optical modes is also possible. When moving from

the Ŵ point along the 1 and 6 axes of the Brillouin

zone, the situation is different: the compatibility relations

A1 → 11, B2 → 11, E → 11 + 12 and A1 → 61, B2 → 62,

E → 61 + 62 allow mixing of longitudinal and transverse

vibrations. In this case, significant dispersion appears on

the dispersion curves, and the E modes are strongly split.
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The component of the E mode, which transforms according

to the 12 representation, does not mix with the A1 and

B2 modes polarized in the z direction, and therefore its

eigenvector describes only the displacements u ⊥ q in the
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Figure 1. Eigenvectors and frequencies of longitudinal op-

tical modes with the A1 and B2 symmetry at q → 0 in the

(CdSe)6(CdS)6 superlattice.
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Figure 2. Eigenvectors and frequencies of transverse optical

modes of the E symmetry at q = 0 in the (CdSe)6(CdS)6
superlattice.

xy plane. The 11 mode as well as both 61 and 62 modes

experience intermixing and exhibit complex displacement

patterns in all three directions.

An analysis of the dispersion curves along the 3 axis in

the region of acoustic vibrations finds folded longitudinal

and transverse acoustic modes (Fig. 3) and the appearance,

in the region of 45−60 cm−1, of several dispersionless TA

modes, which will be discussed in Sec. 3.4.

Microscopic interface modes, whose eigenvectors are

localized at the interface and which decay when moving into

the interior of both materials, are not observed in CdSe/CdS

SLs. Apparently, in superlattices whose materials have one

common atom, this cannot be obtained in principle because
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Figure 3. Dispersion curves of (a) acoustic and (b) optical phonons in the (CdSe)6(CdS)6 superlattice.

the frequencies of potential interface modes in these SLs fall

into the continuum of optical vibrations of at least one of

the materials of the SL. However, a kind of a microscopic

interface mode can be created artificially if we consider the

properties of SLs with extremely thin layers of one of the

materials.

3.2. Local and gap interface modes

The microscopic interface mode in a superlattice can

be obtained from the confined mode when the minimal

thickness (one monolayer) of one of materials is used. If

the frequency of this mode is outside the continuum of

optical modes of the matrix, then such vibrations will not

be able to propagate in the matrix and will be localized.

We performed a search for such modes in the

(CdSe)11(CdS)1 and (CdSe)1(CdS)11 SLs, which contain

one CdS monolayer in the CdSe matrix and one CdSe

monolayer in the CdS matrix, respectively. As expected,

localized optical modes of S and Se vibrations arised in

the structures. In both cases, the incorporation of a

monolayer into a matrix gives rise to three split-off modes

whose symmetry (B2 + E) coincides with the symmetry

of optical phonons in bulk materials (Ŵ15 → B2 + E). In

the CdSe matrix, the vibration frequencies of the S layer

are, respectively, 265.2 and 274.6 cm−1; they lie above

the upper limit of the optical modes continuum of the

matrix and are local modes (we use here a terminology

used for classification of localized vibrations of impurities in

crystals). In the CdS matrix, the vibrational frequencies of

the Se layer are 187.3 and 217.0 cm−1, respectively; they lie

in the gap between the optical and acoustic modes continua

and are the gap modes. The eigenvectors of the local and

gap modes are shown in Fig. 4. The admixture of acoustic

vibrations to the transverse local optical mode reaches 20%

at the Z point, and that to the transverse gap mode reaches

45% at the Z point. In the local and gap longitudinal modes,

the admixture of acoustic vibrations does not exceed 1%.

As expected for the local modes, the dispersion of

both the E and B2 modes along the 3 axis in the

(CdSe)11(CdS)1 SL is absent. When the thickness of the

CdSe layer is decreased from 11 to 7 monolayers, the mode

frequencies exhibit a slight change (by 0.16 and 0.41 cm−1,

respectively), which is entirely due to a small (by 0.2%)
change in the in-plane lattice parameter of the SL. The gap

modes are also dispersionless, and their frequencies change

by no more than 0.002 cm−1 when decreasing the number

of CdSe monolayers from 11 to 7 at a fixed lattice parameter.

While the local modes are well known, the gap modes

have been studied in less detail. The possibility of their

appearance turns out to be more problematic since for

this the frequencies of these modes must fall into the gap

between the acoustic and optical modes continua of both

materials of the SL. For transverse vibrations in CdSe/CdS

SLs, the upper limit of the acoustic modes continuum lies

in the region of 60 cm−1, and the gap under discussion

is rather large. For longitudinal vibrations, the possibility

of the appearance of a gap mode is determined by the

4 Physics of the Solid State, 2022, Vol. 64, No. 14
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Figure 4. Eigenvectors of the (a) local and (b) gap LO and TO modes at q → 0 in (CdSe)11(CdS)1 and (CdSe)1(CdS)11 superlattices.

maximum frequency of the LA mode at the X point in

CdS, which is 152.2 cm−1. We note, however, that because

of the orthogonality of longitudinal and transverse modes

everywhere on the 3 axis, the possibility of observing

transverse gap modes turns out to be wider. For example,

the transverse In−Sb gap mode observed in the GaSb/InAs

SLs in Ref. [27] remained dispersionless (i.e., localized)
despite the fact that it was superimposed on the longitudinal

optical modes continuum for one of materials of the

SL (InAs).
Calculations show that the contributions of the discussed

localized modes to Raman and IR spectra are large enough

to be observed experimentally.

3.3. Dependence of TO-mode frequencies
on the superlattice period

In Ref. [33], when studying the vibrational spectra of

CdSe/CdS nanoplatelets, we discovered a mode associated

with TO vibrations in the CdS layer, whose frequency

rapidly decreased with increasing thickness of this layer.

This mode gave the strongest contribution to the IR spectra

from the CdS layers. The observed effect was explained

Frequencies of TO modes giving the strongest contribution to

the IR spectra from the CdS layers and the relaxation of the

average Cd−S bond length for (CdSe)4/(CdS)n nanoplatelets and

(CdSe)n(CdS)n superlattices with different number of monolayers

n in the CdS layer. All calculations were performed using the same

pseudopotentials

n
Mode frequency (cm−1) Relaxation RCd−S

Nanoplatelet Superlattice Nanoplatelet Superlattice

1 270.5 266.5 −0.758% +0.522%

2 259.8 257.2 −0.248% +0.485%

3 255.0 253.1 −0.114% +0.478%

4 − 250.9 − +0.473%

6 − 248.8 − +0.470%
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Figure 5. Frequencies of TO modes at q = 0 in (CdSe)n(CdS)n

superlattices. The wide vertical lines show the ranges of TO mode

frequencies in CdSe and CdS binary compounds.

by surface relaxation of the structure, which resulted in a

noticeable shortening of the Cd−S interatomic distances

near the surface and a corresponding increase in the

vibrational frequency. The appearance of an E mode

with similar properties in CdSe/CdS superlattices (lowest
points in the upper block of frequencies in Fig. 5) and

an analysis of the relaxations of the Cd−S distances (as
compared to those in bulk CdS) when changing the period

of (CdSe)n(CdS)n SLs showed that the maximum change in

these distances in SLs is an order of magnitude smaller than

in nanoplatelets, and, moreover, the changes in SLs have an

opposite sign (Table). This may mean that the mechanism

proposed in [33] is not the only one.

In order to understand the origin of the strong effect

of the thickness of CdS layer on the TO mode frequency

in CdSe/CdS SLs, we analyzed the projections of the

eigenvectors of vibrational modes in SLs by expanding them

in the orthonormal basis of normal vibrations of LA, LO,

Physics of the Solid State, 2022, Vol. 64, No. 14
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TA, and TO phonons of bulk CdS with the zinc-blende

structure:

Q SL
λ =

4
∑

n=1

∑

q

Cλ
nqQ

bulk
nq .

Here λ is the number of the vibrational mode, and q is

the wave vector of the normal mode. To make use of the

orthogonality of normal modes, we should work with eigen-

vectors of the dynamical matrix Qnq, which are obtained by

componentwise multiplication of the displacement vectors

of the normal modes unq by square roots of the masses of

corresponding atoms.

The basis of the normal modes in bulk CdS was

constructed according to a scheme similar to that used

in Ref. [31]. First, the eigenvectors of LA, LO, TA,

and TO phonons were calculated from first principles at

13 points of the Brillouin zone for dimensionless wave

vectors 0 ≤ qz ≤ 1 located between the Ŵ (qz = 0) and

X (qz = 1) points of the Brillouin zone. The ratio of

the displacements of Cd and S atoms for these phonons

was approximated by a fourth-order polynomial of the
√

cos(πqz /2) function for longitudinal modes and the

cos2(πqz /2) function for transverse modes. These poly-

nomials were then used to construct normalized basis

functions for arbitrary value of qz . For different qz , the basis

functions are orthogonal by construction. Checking the basis

functions for the same qz showed that the deviation from

their orthogonality does not exceed 0.003 for all qz values.

The squared moduli of the Cλ
nq coefficients as a function

of qz for TO modes in SLs are shown in Fig. 6, a. The

largest contribution to the displacement patterns of these

modes is made by TO phonons of CdS; the contribution of

TA phonons is about 100 times smaller. For the SL with

the smallest thickness of the CdS layer, TO phonons from

the entire Brillouin zone of bulk CdS contribute to this TO

mode. Therefore, it is not surprising that the frequency

of this mode in the (CdSe)1(CdS)1 SL is close to the

average frequency of TO vibrations in bulk CdS. With an

increase in the thickness of the CdS layer, phonons from

an increasingly narrow range of wave vectors of near the

Ŵ point start to dominate in the contributions. This, in

accordance with the dispersion curve for TO phonons in

bulk CdS, results in a decrease in the frequency of the

optical mode.

The projection analysis of the displacement patterns for

TO modes in (CdSe)4/(CdS)n nanoplatelets shows that

the range of wave vectors contributing to these modes

is noticeably narrower than in (CdSe)n(CdS)n superlat-

tices with the same thickness of the CdS layer (Fig. 6).
If the size quantization effect were the only one, the

mode frequency in nanoplatelets would be lower than

in superlattices. The fact that the opposite effect is

actually observed (Table) means that in nanoplatelets there

exists one more contribution, namely the surface relaxation

discussed in [33].

For the local TO mode in the (CdSe)11(CdS)1 SL

considered in Sec. 3.2, the projection onto TO phonons

in CdS (Fig. 6, b) is very similar to the projection for the

(CdSe)1(CdS)1 SL. However, in this case the contribution of

TA modes becomes quite noticeable (21% in the vicinity of

the X point). For the local LO mode in the (CdSe)11(CdS)1
SL, the dominant contribution to this vibration comes from

LO phonons of CdS from the vicinity of the X point, but the

fact that the frequency of this mode in the SL (274.6 cm−1)
is much lower than the frequency of LO phonon at the

X point in CdS (300.6 cm−1) may indicate a noticeable

contribution of CdSe to this mode. The observed frequency

shift is similar to the frequency shift for local vibrations of

isolated impurities (for longitudinal local vibrations of the

S impurity in the CdSe matrix, the calculated frequency is

280.3 cm−1).

4∗ Physics of the Solid State, 2022, Vol. 64, No. 14
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frequencies of (1) 47.9, (2) 53.4, (3) 56.8, and (4) 58.3 cm−1

(q = 0) in the (CdSe)6(CdS)6 superlattice.

3.4. Confined TA modes

In principle, the possibility of the appearance of confined

TA modes arises from the difference in the spectra of

acoustic vibrations in two materials of the superlattice.

In particular, such modes were observed in GaSb/InAs

SLs [27], where they were associated with the local
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Figure 8. (a) Eigenvector of the interface TA mode in the (CdSe)11(CdS)1 superlattice. (b) Projections of the eigenvector of this mode

onto the normal TA and TO modes of bulk CdS.

vibrations of the Ga−As atomic pair located at the interface.

The interface character of this mode was supported by the

independence of its frequency from the thickness of layers in

the superlattice. Similar modes did not appear at the In−Sb

interface, since their frequencies fell into the continuum of

acoustic modes of bulk materials.

An analysis of the acoustic modes in the phonon spec-

trum of the (CdSe)6(CdS)6 SL finds in it, according to the

vibration eigenvectors, four confined TA vibrational modes

with frequencies of 47.9, 53.4, 56.8, and 58.3 cm−1 (Fig. 7).
Similar modes were found in superlattices (CdSe)11(CdS)1
(frequency 52.0 cm−1), (CdSe)10(CdS)2 (frequencies 46.8

and 56.6 cm−1), and (CdSe)9(CdS)3 (frequencies 51.7 and

58.2 cm−1). According to our estimates, the number of

such modes in long-period SLs is about 70% of the

number of CdS layers. Calculations of the dispersion curves

along the 3 axis for these modes in (CdSe)6(CdS)6 and

(CdSe)11(CdS)1 SLs show that the modes are dispersionless

(the frequency change does not exceed 0.01 cm−1, Fig. 3).
Comparison of the frequencies of these modes with those

of TA phonons at the X point in bulk crystals (45.0 cm−1

in CdSe and 55.0 cm−1 in CdS) shows that transverse

vibrations with such frequencies indeed cannot propagate

in the CdSe layers and, therefore, are localized in the CdS

layers. It is interesting that the frequencies of several of

these modes even exceed the frequency of the upper limit

of the acoustic continuum in bulk CdS. This may be due,

first, to an admixture of up to 17−24% of optical vibrations

to these acoustic modes, and second, to an increase in the

frequency of TA phonons in the CdS layer upon biaxial

stretching of the structure, which results from the addition

of CdSe layers.

In SLs with a shorter period ((CdSe)4(CdS)4), it is more

difficult to draw conclusions about the nature of a mode

from its eigenvector; however, the calculation of the mode

dispersion along the 3 axis indicates that the mode with

an energy of 56.9 cm−1 is dispersionless, and modes with

frequencies of 53.1 and 45.9 cm−1 have a small dispersion

Physics of the Solid State, 2022, Vol. 64, No. 14
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(0.03 and 0.13 cm−1, respectively), which indicates a weak

interaction of vibrations in neighboring CdS layers in this

SL (recall that the decay rate of vibrations increases when

moving away from the upper limit of the acoustic modes

continuum in the CdSe matrix, which is 45.0 cm−1). Since
the vibrational frequencies of the discussed TA modes

depend on the layer thickness, these modes are confined

but not interface modes. Estimates of the contribution of

the considered TA modes to the infrared and Raman spectra

show that the experimental observation of these modes can

be problematic since their contribution to both types of

spectra is rather small.

In continuation of our discussion of localized vibrations

in SLs with one extremely thin layer, it is interesting to

discuss whether the confined TA mode with a frequency of

52.0 cm−1 arising in the (CdSe)11(CdS)1 SL (Fig. 8) can be

interpreted as an interface mode. In contrast to microscopic

interface optical modes, the peculiarity of acoustic vibrations

is that their eigenvectors have a double structure associated

with the simultaneous occurrence of stretching and bending

bond deformations that accompany lattice vibrations. The

authors of Ref. [27] considered the TA mode with similar

properties (resulting from the Ga−As pair vibrations in the

GaSb/InAs SLs) as an interface mode. As in that work, the

mode we are discussing is detached from the continuum of

folded modes, is localized, and has no dispersion along the

3 axis. Very small (by 0.17 cm−1) shift of the frequency

of this mode when the thickness of the CdSe layer in the

superlattice is decreased from 11 to 7 monolayers is entirely

caused by a change in the in-plane lattice parameter of the

SL and confirms the conclusion about its interface character.

According to the projection analysis (Fig. 8, b), the largest

contribution to the discussed TA mode is given by TA

phonons from a wide vicinity of the X point of bulk CdS

with a noticeable (up to 30%) admixture of TO phonons

(the same symmetry of these vibrations allows their mixing).

4. Conclusions

In this work, the vibrational spectra of CdSe/CdS super-

lattices (SLs) are calculated from first principles within the

density functional theory. It is shown that along with folded

acoustic and confined optical modes, a whole set of confined

acoustic modes, whose number is ∼70% of the number of

layers of material with a higher frequency of TA phonons,

appears in the SLs. In structures with a minimum thickness

of one of the layers, the formation of microscopic interface

modes such as local and gap modes is possible. An analysis

of the projections of the eigenvectors of vibrational modes in

SLs onto the orthonormal basis of normal modes in binary

compounds finds a fairly intense mixing of acoustic and

optical vibrations even in modes traditionally referred to as

acoustic or optical.
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A.C. Gossard. Appl. Phys. Lett. 36, 1, 43 (1980).
[30] R.E. Camley, D.L. Mills. Phys. Rev. B 29, 4, 1695 (1984).
[31] A.I. Lebedev. Phys. Rev. B 96, 18, 184306 (2017).
[32] S.V. Goupalov. J. Phys. Chem. C 123, 18, 11926 (2019).

Physics of the Solid State, 2022, Vol. 64, No. 14



2278 A.I. Lebedev

[33] A.I. Lebedev, B.M. Saidzhonov, K.A. Drozdov, A.A. Kho-

mich, R.B. Vasiliev. J. Phys. Chem. C 125, 12, 6758 (2021).
[34] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken,

F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Cara-
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