05,04

Сравнение магнитных свойств ферроборатов GdFe₃(BO₃)₄, выращенных с использованием различных растворителей

© И.А. Гудим, Е.В. Еремин, Н.В. Михашенок, В.Р. Титова

Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН, Красноярск, Россия

E-mail: eev@iph.krasn.ru

Поступила в Редакцию 25 октября 2022 г. В окончательной редакции 25 октября 2022 г. Принята к публикации 1 ноября 2022 г.

> Монокристаллы GdFe₃(BO₃)₄ выращены из растворов-расплавов на основе тримолибдата висмута и вольфрамата лития. Монокристаллы ферробората гадолиния из литиево-вольфраматного раствор-расплава были выращены впервые. Проведено сравнение магнитных свойств выращенных кристаллов.

> Показано, что в ферроборате GdFe₃(BO₃)₄, полученном с использованием тримолибдат висмутового раствор-расплава, присутствуют примеси ионов Bi³⁺ (6% at.), которые замещают ионы Gd³⁺. Тогда как ферроборат GdFe₃(BO₃)₄, выращенном из раствор-расплава на основе вольфрамата лития, по-видимому, подобных неконтролируемых примесей не содержит.

Ключевые слова: рост кристаллов, антиферромагнетики, мультферроики.

DOI: 10.21883/FTT.2023.02.54297.505

1. Введение

В последние годы редкоземельные ферробораты со структурой хантита с общей формулой $ReFe_3(BO_3)_4$ (Re = Y, La-Lu) привлекают повышенное внимание благодаря обнаружению у них мультиферроичных свойств [1–7]. Главным элементом кристаллической структуры редкоземельных ферроборатов (при высоких температурах пространственная группа R32) являются спиральные цепочки соприкасающихся по ребру октаэдров FeO₆, ориентированные вдоль с-оси (оси третьего порядка). Кристаллическая структура такова, что обменное взаимодействие внутри цепочки значительно сильнее, чем взаимодействие между цепочками.

В магнитном отношении ферробораты являются антиферромагнетиками с двумя взаимодействующими магнитными подсистемами (редкоземельной и железной). Железная подсистема упорядочивается при $T_{\rm N} = 30-40$ К. Редкоземельная подсистема подмагничена f-d взаимодействием и дает существенный вклад в магнитную анизотропию и ориентацию магнитных моментов.

Изначально для изоструктурных нелинейнооптических кристаллов тригональных алюмоборатов $ReAl_3(BO_3)_4$, была разработана методика выращивания из растворов-расплавов на основе тримолибдата калия $K_2Mo_3O_{10} - B_2O3$ [8]. Позже для выращивания монокристаллов $ReAl_3(BO_3)_4$ и $ReFe_3(BO_3)_4$ были предложены новые растворы-расплавы на основе тримолибдата висмута $Bi_2Mo_3O_{12} - B_2O_3$ [9]. В этих растворах-расплавах Bi_2O_3 и MoO_3 связаны сильнее, чем K_2O_3 и MoO_3 . Поэтому предполагалось, что замещение редкоземельного элемента висмутом и молибденом в выращиваемом кристалле относительно невелико [10]. Однако в работе [11] на ферроборате $GdFe_3(BO_3)_4$ методами химического анализа и структурными исследованиями было показано, что ионы Bi^{3+} замещают редкоземельный ион в количестве до 5% at., что, тем не менее, меньше, чем вхождение калия и молибдена [10]. Тогда и были предложены растворы-расплавы на основе вольфрамата лития.

Как известно оксидные соединения, содержащие ионы Ві³⁺ (или ионы Pb²⁺) обладают не связанной парой электронов на *s*-оболочке, и могут создавать условия для возникновения в структуре кристалла локальных диполей и, это обязательно сказывается на электрических свойствах соединения [12], а возможно, и на магнитных свойствах.

Например, ранее магнитные исследования в SmFe₃(BO₃)₄ показали, что использование растворителя на основе тримолибдата висмута приводит к тому, что примесь ионов Bi³⁺ в небольших количествах (примерно 5% at.) замещает ионы Sm³⁺. Тогда как, использование растворителя на основе вольфрамата лития дает возможность выращивать более чистый ферроборат SmFe₃(BO₃)₄ [13].

Настоящая работа посвящена исследованию влияния примеси ионов Bi^{3+} на магнитные свойства редкоземельных ферроборатов $GdFe_3(BO_3)_4$, выращенных из двух различных раствор-расплавов: на основе вольфрамата лития $Li_2WO_4 - B_2O_3$ и тримолибдата висмута $Bi_2Mo_3O_{12} - B_2O_3$.

2. Подготовка образцов и методика измерений

Кристаллы гадолиниевого ферробората GdFe₃(BO₃)₄ были одними из первых, на которых авторы работы

отрабатывали методики выращивания монокристаллов хантитов [8,14]. Для их выращивания использовался широко известный растворитель на основе молибдата калия K_2MoO_4 . Такие кристаллы достаточно широко изучались [15,16]. Однако, как показали оптические исследования, в выращенных таким образом кристаллах регистрируется достаточно большое количество примесей, как калия, так и молибдена [10].

Авторами работы был предложен другой растворитель для выращивания кристаллов редкоземельных ферроборатов со структурой хантита. В его основе — тримолибдат висмута $Bi_2Mo_3O_{12}$. Из системы $Bi_2Mo_3O_{12}-B_2O_3-Gd_2O_3-Fe_2O_3$ были выращены монокристаллы тригонального гадолиниевого ферробората. Сравнительные исследования [10] показали, что кристаллы, выращенные из такой системы, содержат примеси ионов висмута и молибдена, хотя и в существенно меньшем количестве, чем выращенные из системы с молибдатом калия. Более того от примеси висмута удается практически избавиться введением небольшого, 7-10%, избытка молибдена. Количество же самого молибдена в кристалле при этом не увеличивается.

Однако хотелось бы избавиться и от остаточного количества примесей, и для этого был предложен еще один растворитель, на основе вольфрамата лития.

Для каждой раствор-расплавной системы была определена последовательность кристаллизующихся фаз и ее зависимость от соотношения компонентов растворителя. При использовании в качестве растворителя как молибдата калия, так и тримолибдата висмута и вольфрамата лития, единственной кристаллизующейся фазой, содержащей железо, оказался гематит (α -Fe₂O₃). При добавлении в растворитель оксида бора она сменялась боратами железа FeBO₃ и Fe₃BO₆. И лишь при введении в растворитель сверхстехиометрического оксида гадолиния, удалось добиться того, что единственной высокотемпературной кристаллизующейся фазой стал тригональный гадолиниевый ферроборат в достаточно широком температурной диапазоне, более 100°С.

Запишем изучавшиеся раствор-расплавные системы в квазибинарном виде

$$(100 - n)$$
%wt. [K₂MoO₄ + pB₂O₃ + qGd₂O₃]
+ n% wt. GdFe₃(BO₃)₄, (a)

$$(100 - n)\%$$
 wt. [Bi₂Mo₃O₁₂ + pB₂O₃ + qGd₂O₃]
+ n% wt. GdFe₃(BO₃)₄, (b)

$$(100 - n)\%$$
 wt. [Bi₂Mo₃O₁₂ + pB₂O₃ + mMoO₃ + qGd₂O₃]
+ n% wt. GdFe₃(BO₃)₄, (c)

$$(100 - n)\%$$
 wt. [Li₂WO₄ + pB₂O₃ + qGd₂O₃]
+ n% wt. GdFe₃(BO₃)₄. (d)

В табл. 1 приведены соотношения компонентов растворителей и температура насыщения.

Таблица 1. Состав растворов-расплавов

Раствор-расплав	п	р	q	т	$T_{\rm sat}, \ ^{\circ}{\rm C}$	
1	30	2	0.4		980	
2	28	2.5	0.5		960	
3	27	3	0.5	0.05	976	
4	12	3	0.3		990	

Таблица 2. Программа понижения температуры в печи

№ суток	1	2	3	4	5	6	7	8	9	10
dT/Dt, °C/day	0	1	1	1	1	1.5	1.5	2	2	2

Дабы избежать влияния технологических факторов на свойства выращенных кристаллов они выращивались по единой методике.

Растворы-расплавы массой 150 g готовились сплавлением смеси компонентов при температуре 1050°С с последующей выдержкой в течение 24 h для гомогенизации. В течение этого времени раствор-расплав перемешивался стержневым держателем, вращавшимся со скоростью 60 грт.

Затем температура в печи снижалась до $T = 950^{\circ}$ С и после выдержки в течение 20 h оценивалось кристаллообразование на стержне. Во всех случаях мы получили спонтанные кристаллы, с помощью которых затем уточнялась температура насыщения (T_{sat}). Наиболее качественные кристаллы использовались в качестве затравок. 4—6 таких затравок закреплялись на стержневом кристаллоносце.

После промежуточной гомогенизации при $T = 1050^{\circ}$ С в течение 16–20 h температура в печи понижалась до $T = T_{sat} + 7^{\circ}$ С. Кристаллоносец с затравками вносился в печь и выдерживался 0.25 h над раствором-расплавом. Затем он погружался в растворрасплав, и через 0.25 h температура в печи понижалась на 14°С. Дальнейшее снижение температуры велось с возрастающим темпом, от 0 до 3°С/day (табл. 2).

Продолжительность роста составляла от 7 до 10 day. За это время вырастали кристаллы размером от 5 до 7 mm, качество которых позволяло провести комплексное исследование свойств.

Магнитные свойства были исследованы на вибрационном магнитометре PPMS QuantumDesign (центр коллективного пользования ФИЦ КНЦ СО РАН) в температурном интервале 4.2–300 К и магнитных полях до 9 Т.

3. Результаты и обсуждение

Поскольку в работах [11,13] было показано, что при использовании растворителя тримолибдата висмута, ионы Bi³⁺ присутствуют в кристалле как примесь, то в дальнейшем кристаллы, выращенные из этого

Рис. 1. Температурные зависимости намагниченности GdFe₃(BO₃)₄ (сплошные кривые) и GdFe₃(BO₃)₄:Ві (штриховые кривые) измеренные в магнитном поле 1 kOe и в геометрии $B \parallel c$ (a) и $B \perp c$ (b). На вставках то же самое в другом масштабе.

раствор-расплава будем обозначать как $GdFe_3(BO_3)_4$: Ві, а кристаллы выращенные из раствор-расплава на основе вольфрамата лития будем обозначать как $GdFe_3(BO_3)_4$, так как предполагается, что при таком растворителе не должно быть неконтролируемых примесей.

Определение магнитной структуры в ферроборате гольмия вызывает некоторые сложности из-за сильного поглощения нейтронов ионами Gd³⁺, что делает весьма затруднительным использование метода упругого рассеивания нейтронов для нахождения магнитной структуры.

Относительно магнитной структуры ферробората гадолиния в литературе имеются противоречивые данные. В работе [17] на основе исследования антиферромагнитного резонанса показано, что возникающее при температуре Нееля T_N магнитное фазовое превращение подсистемы ионов Fe³⁺ соответствует двухподрешеточному спиновому упорядочению типа легкая плоскость. При понижении температуры ниже T_S , под влиянием взаимодействия железной и гадолиниевой подсистем, происходит спин-переориентационный переход из легкоплоскостного состояния в легкоосное.

В работе [15] было рассмотрено магнитное поведение гадолиниевого ферробората в рамках трехподрешеточного упорядочения (треугольного типа) железной подсистемы. В этой модели спины ионов Fe^{3+} в интервале температур 10 K < T < 38 K располагаются в "легкой плоскости" под углом 120° друг к другу. Ниже 10 K в результате взаимодействия железной и гадолиниевой подсистем спины Fe^{3+} переориентируются в направлении к легкой оси, образуя при этом конус с осью *с*.

Дальнейшие исследования с помощью рентгеновского резонансно-обменного рассеяния показали, что магнитное упорядочение имеет место при $T_{\rm N} \approx 37 \, {\rm K}$ [18]. Магнитная структура становится несоизмерима ниже $T_{\rm N}$, причем степень несоразмерности монотонно уменьшается с понижением температуры до тех пор, пока при $T \approx 10 \, {\rm K}$. не наблюдается переход в соразмер-

ную магнитную фазу. Моменты Fe претерпевают спинпереориентационный переход при $T_{\rm SR} \approx 9$ K, так что они ориентируются вдоль кристаллографической *c*-оси при низких температурах.

Наши магнитные измерения подтверждают сделанные ранее выводы. На рис. 1 приведены температурные зависимости намагниченности монокристаллов GdFe₃(BO₃)₄, выращенных с использование различных растворителей: тримолибдата висмута и вольфрамата лития. Измерение температурных зависимостей намагниченностей M_{\parallel} и M_{\perp} производилось в магнитном поле 0.1 Т, направленном вдоль кристаллографической *с*-оси и в базисной плоскости вдоль *а*-оси соответственно.

В парамагнитной области для обоих составов намагниченность изотропна и подчиняется закону Кюри–Вейсса. Экспериментально найденные парамагнитные температуры Кюри отличаются незначительно и равны соответственно: $\theta = -45.7$ К для GdFe₃(BO₃)₄ и $\theta = -44.7$ К для GdFe₃(BO₃)₄: Вi. Отрицательный знак говорит о наличии антиферромагнитного обмененного взаимодействия в магнитной системе. Видно, что величина парамагнитной температуры Кюри меньше в GdFe₃(BO₃)₄: Bi, т. е. уменьшается, как и должно быть по мере замещения магнитных ионов Gd³⁺ немагнитными ионами висмута Bi³⁺. Эффективный магнитный момент одной структурной единицы GdFe₃(BO₃)₄ оказался равен $\mu_{\rm eff} = 12.96\mu_{\rm B}$, что в точности равно теоретическому значению $\mu_{\rm eff}$, определенному как

$$\mu_{\rm eff} = \sqrt{3 \cdot g_{\rm S}^2 \cdot \langle S_{\rm Fe} \rangle^2 \cdot \mu_{\rm B}^2 + g_J^2 \langle J_{\rm Gd} \rangle^2 \cdot \mu_{\rm B}^2}, \qquad (1)$$

где $g_{\rm S} = 2$ *g*-фактор, учитывающий только спиновый момент, $g_J = 2$ — фактор Ланде для иона ${\rm Gd}^{3+}$, $\langle S_{\rm Fe} \rangle^2 = S \cdot (S+1)$ — квадрат оператора спинового момента иона железа (S = 5/2 для ${\rm Fe}^{3+}$), $\langle S_{\rm Gd} \rangle^2 = J \cdot (J+1)$ — квадрат оператора полного момента иона гадолиния (J = 7/2 для ${\rm Gd}^{3+}$).

Рис. 2. Температурные зависимости намагниченности $GdFe_3(BO_3)_4$ (сплошная кривая) и $GdFe_3(BO_3)_4$:Ві (штриховая кривая) измеренные в магнитном поле 10 kOe и в геометрии $B \parallel c$.

С другой стороны эффективный магнитный момент одной структурной единицы GdFe₃(BO₃)₄:Bi оказался равен $\mu_{eff} = 12.8\mu_B$, что немного меньше теоретически найденного значения μ_{eff} . Предполагая, что ионы Gd³⁺ замещаются ионами Bi³⁺ и используя разность в величинах μ_{eff} для GdFe₃(BO₃)₄ и GdFe₃(BO₃)₄:Bi можно оценить сколько примеси Bi³⁺ вошло в матрицу кристалла. В нашем случае получается, что в GdFe₃(BO₃)₄:Bi присутствуют ионы Bi³⁺ в количестве 6% at.

С понижением температуры при T_N (температура Нееля) происходит упорядочение магнитной структуры. T_N можно довольно точно определить из рис. 1, *b*. Она равна $T_N = 37.1$ К для GdFe₃(BO₃)₄ и $T_N = 36.4$ К для GdFe₃(BO₃)₄: Ві соответственно. Это опять же говорит

о том, что наличие ионов Bi³⁺ приводит к уменьшению магнитного упорядочения. Далее при понижении температуры наблюдается спин-переориентационный переход при $T_{\rm S} = 10.5 \,{\rm K}$ для ${\rm GdFe_3(BO_3)_4}$ и $T_{\rm S} = 8.7 \,{\rm K}$ для $GdFe_3(BO_3)_4$: Ві. Важно отметить, что данный переход наблюдается в ориентации магнитного поля как $H \parallel c$, так и $H \perp c$. Это говорит о том, что данную магнитную структуру нельзя рассматривать как классический двухподрешеточный антиферромагнетик. А разница в температурах перехода почти в два градуса еще раз говорит о том, что ионы Bi³⁺ замещают ионы Gd³⁺, так как, например в ферроборате YFe₃(BO₃)₄ (где магнитная подсистема представлена только ионами Fe³⁺) отсутствуют какие либо спин-переориентационные переходы. Стоит отметить, что спин-переориентационный переход имеет место только в сравнительно небольших полях. Так в поле 10 kOe он уже фактически не наблюдается (рис. 2).

Полевые зависимости намагниченности M(H) для обоих составов в направлении магнитного поля $H \parallel c$ и $H \perp c$ представлены на рис. 3. Из рис. 3, *а* видно, что по мере увеличения магнитного поля $(H \parallel c)$ имеет место спин-флоп переход при $H_{\rm SP1} = 7.4$ кОе для GdFe₃(BO₃)₄ и $H_{\rm SP1} = 6.4$ К для GdFe₃(BO₃)₄:Ві соответственно. В случае ориентации магнитного поля $H \perp c$ также наблюдается индуцированный магнитным полем спин-переориентационный переход, но при более высоких полях: $H_{\rm SR2} \approx 40$ кОе для GdFe₃(BO₃)₄ и $H_{\rm SR2} \approx 35$ К для GdFe₃(BO₃)₄:Ві соответственно. Здесь опять видна тенденция к уменьшению температуры перехода по мере замещения ионов Gd³⁺ ионами Bi³⁺.

Таким образом, магнитные исследования показывают, что в кристаллах ферробората $GdFe_3(BO_3)_4$, выращенных с использованием тримолибдат висмутового раствор-расплава, ионы Bi^{3+} замещают ионы Gd^{3+} в количестве 6% at. и оказывают существенное влияние на магнитные свойства выращенных кристаллов.

Рис. 3. Полевые зависимости намагниченности $GdFe_3(BO_3)_4$ (сплошные кривые) и $GdFe_3(BO_3)_4$:Ві (штриховые кривые) измерены при температуре 4.2 К и в геометрии $B \parallel c \ (a)$ и $B \perp c \ (b)$. На вставках то же самое в другом масштабе.

4. Заключение

Впервые из раствор-расплава на основе вольфрамата лития были выращены монокристаллы GdFe₃(BO₃)₄. Для сравнения были выращены монокристаллы GdFe₃(BO₃)₄ с использованием растворителя на основе тримолибдата висмута. Проведён сравнительный анализ магнитных свойств этих ферроборатов.

Из магнитных исследований следует, что использование растворителя на основе тримолибдата висмута приводит к тому, что ионы Bi^{3+} в небольших количествах (6% at.) замещают ионы Gd^{3+} . Тогда как, использование растворителя на основе вольфрамата лития дает возможность выращивать более чистый ферроборат $GdFe_3(BO_3)_4$, что видно, например, при определении эффективного магнитного момента из закона Кюри–Вейса, который в точности соответствует теоретически рассчитанному значению.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда и Красноярского краевого научного фонда № 22-12-20019.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова. Письма в ЖЭТФ 81, 6, 335 (2005).
- [2] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ **36**, *6*, 640 (2010).
- [3] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 10, 104424 (2009).
- [4] А.Н. Васильев, Е.А. Попова. ФНТ 32, 8/9, 968 (2006).
- [5] В.И. Зиненко, М.С. Павловский, А.С. Крылов, И.А. Гудим, Е.В. Еремин. ЖЭТФ 144, 6, 1174 (2013).
- [6] А.П. Пятаков, А.К. Звездин. УФН 182, 6, 593 (2012).
- [7] T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, T. Kimura. Nature Mater. 13, 6, 618 (2014)
- [8] N.I. Leonyuk L.I. Leonyuk. Prog. Cryst. Growth Charact. 31, 179 (1995).
- [9] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Crystallogr. Rep. 50, S1, 97 (2005).
- [10] K.N. Boldyrev, M.N. Popova, M. Bettinelli, V.L. Temerov, I.A. Gudim, L.N. Bezmaternykh, P. Loiseau, G. Aka, N.I. Leonyuk. Opt. Mater. 34, 11, 1885 (2012).
- [11] I.S. Lyubutin, A.G. Gavriliuk, N.D. Andryushin, M.S. Pavlovskiy, V.I. Zinenko, M.V. Lyubutina, I.A. Troyan, E.S. Smirnova. Cryst. Growth Des. **19**, *12*, 6935 (2019).

- [12] R. Seshadri, G. Baldinozzi, C. Felser, W. Tremel. J. Matter. Chem. 9, 2463 (1999).
- [13] E. Eremin, I. Gudim, V. Temerov, D. Smolyakov, M. Molokeev. J. Cryst. Growth 518, 1 (2019).
- [14] N.I. Leonyuk. Prog. Cryst. Growth Charact. 31, 279 (1995).
- [15] A.D. Balaev, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, S.G. Ovchinnikov, S.A. Kharlamova. J. Magn. Magn. Mater. 258–259, 532 (2003).
- [16] А.М. Кадомцева, Ю.Ф. Попов, С.С. Кротов, А.К. Звездин, Г.П. Воробьев, Л.Н. Безматерных, Е.А. Попова. ФНТ 31, 8/9, 1059 (2005).
- [17] А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, О.А. Баюков. ЖЭТФ 246, 10, 887 (2004).
- [18] H. Mo, C.S. Nelson, L.N. Bezmaternykh, V.L. Temerov. Phys. Rev. B 78, 214407 (2008).

Редактор Т.Н. Василевская