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Using molecular dynamics simulation, we have shown that multilayer graphene nanoribbons located on the flat

surface of the h-BN crystal (on the flat substrate) delaminate due to thermal activation into a parquet of single-

layer nanoribbons on the substrate. The delamination of graphene nanoribbons requires overcoming the energy

barrier associated with the initial shift of its upper layer. After overcoming the barrier, the delamination proceeds

spontaneously with the release of energy. The value of this barrier has been estimated and the delamination of

two-layer nanofilms has been simulated. The existence of two delamination scenarios has been shown. The first

scenario is the longitudinal (along the long side of the nanoribbon) sliding of the upper layer. The second one is in

the sliding of the upper layer with the rotation of the layers relative to each other. The first scenario is common for

elongated nanoribbons, the second — for two-layer graphene flakes having close to a square shape.
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1. Introduction

Layered two-dimensional (2D) materials such as

graphene (G), hexagonal boron nitride (h-BN), molybde-

num and tungsten disulfides (MoS2, WS2) attract great

interest because of their unique electronic [1–3] and

mechanical [4–7] properties. Currently, heterogeneous

layered materials are of increased interest, which can

demonstrate various new physical properties compared to

their homogeneous analogues [8–10]. For example, the

use of heterostructures G/h-BN makes it possible to obtain

the necessary electronic properties [11,12], as well as

significantly reduce friction between layers [13].
Graphene nanoribbons are ultra-soft on bending, they can

slide over each other, bend, filling the irregularities of the

substrate [7]. This allows multilayer nanoribbons placed on

a flat substrate (for example, using the technique described

in [7]), under mechanical stress on it, to delaminate

and form a smooth
”
parquet“ on it from single-layer

nanoribbons [14]. It was noted in the study [15] that

ideal flat surfaces of multilayer crystals have the ability to

self-purify from contaminants. This study will show that

on the flat surface of a multilayer crystal, for example,

on the surface of h-BN, multilayer graphene nanoribbons

can, due to thermal activation, spontaneously delaminate,

turning the rough surface initially contaminated with them

into a perfectly smooth one. Using a coarse-grained

2D chain model and an all-atom 3D-model, the process

of delamination of multilayer graphene nanoribbons on the

surfaces of h-BN and graphite crystals will be simulated.

The work is structured as follows. In Sec. 2 a 2D chain

model is constructed, which is then used to simulate the

displacement of layers of multilayer graphene nanoribbons.

In Section 3 we simulate the delamination of multilayer

graphene nanoribbons located on the flat surface of the

h-BN crystal. In Section 4 we simulate the delamination

of nanoribbons on a flat surface of a graphite crystal.

In Section 5 we discuss the delamination of two-layer

nanoribbons using a full-atomic 3D-model, analyze the

influence of the shape of the nanoribbon on the rate of

separation of its layers. Conclusion is presented in Section 6.

2. 2D-model

To describe the dynamics of layered structures from

sheets and nanoribbons of graphene (G), hexagonal boron
nitride (h-BN), it is convenient to use a two-dimensional

model of the molecular chain system [16–18]. If we assume

that the nanosheets (nanoribbons) G and h-BN lie in such

a way that the zigzag direction of all of them coincides

with the axis x (see Fig. 1), then the two-dimensional

chain model will describe the cross section of the multilayer

system along the axis x . Then one particle in the two-

dimensional model will correspond to all the atoms of the

nanoribbon that have the same coordinates x , z .
If atoms along the same line parallel to the y axis move

synchronously, changing only the coordinates x , z , then the

Hamiltonian of one graphene nanoribbon (h-BN) will have
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the form of a Hamiltonian of chain located in plane xz :

Hi =

N
∑

n=1

[

1

2
M i(u̇n, u̇n) + Vi(Rn) + Ui(θn)

]

. (1)

Here, the index i = 1 if the graphene nanoribbon (G)
is considered, and i = 2 if the boron nitride nanoribbon

(h-BN) is considered. Two-dimensional vector un = (xn, z n)
sets the coordinates of the n-th particle of the chain. The

particle mass for the G chain is the same as the mass of the

carbon atom M1 = MC = 12mp, and for the BN chain —
it equals to the mean mass of boron and nitrogen atoms

M2 = (MB + MN)/2 = 12.41mp (mp = 1.66 · 10−27 kg —
the mass of the proton).
The potential

Vi(R) =
1

2
κi(R − Ri)

2 (2)

describes the longitudinal stiffness of the chain, κi — the

stiffness of the interaction, Ri — the equilibrium length of

the bond (chain pitch), Rn = |un+1−un| — distance between

neighboring nodes n and n + 1.

The potential

Ui(θ) = εi [1 + cos(θ)] (3)

describes the bending stiffness of a chain, θ — angle be-

tween two adjacent bonds, cos(θn) = −(vn−1, vn)/Rn−1Rn,

vector vn = un+1−un.

The parameters of the potentials (2), (3) for the G chain

are defined in [16,17], and for the h-BN chain in [19]
from the analysis of dispersion curves of graphene and

boron nitride nanoribbons. For chain G longitudinal stiff-

ness κ1 = 405N/m, chain pitch R1 = rCC

√
3/2 = 1.228 Å

(rCC = 1.418 Å — valence bond length C−C in graphene

sheet), energy ε1 = 3.5 eV. For the h-BN chain, the

stiffness κ2 = 480N/m, pitch R2 = rBN
√
3/2 = 1.252 Å

(rBN = 1.446 Å — the length of the valence bond B−N

in the sheet h-BN), energy ε2 = 1.10 eV.

We note that the Hamiltonian of the chain (1) gives

the deformation energy of the nanoribbon, which falls on

the longitudinal band of the width 1y =
√
3Ri . Further,

the energy of the chains will be normalized by the

graphene nanoribbon, so the energy of the h-BN nanorib-

bons must be normalized by multiplying by c = R1/R2

= rCC/rBN = 0.9808.

Pair interactions of chain nodes are described with high

accuracy by Lennard–Jones potentials (5,11)

Wi(r) = εi
[

5(r i/r)11 − 11(r i/r)5
]

/6. (4)

Here r — the distance between the interacting nodes, εi —
interaction energy, r i — the equilibrium length (index i = 1

if the interaction of the nodes of the chain G is described,

i = 2 — the interaction of the nodes of the h-BN chain,

i = 3 — the interaction of the node of the G chain with

the node of the h-BN chain). Potential parameters (4):
ε1 = 0.00832 eV, r1 = 3.607 Å [20]; ε2 = 0.01511 eV,

r2 = 3.642 Å; ε3 = 0.01433 eV, r3 = 3.701 Å [19].

x

y

z

Figure 1. The scheme for constructing a two-dimensional chain

model for a two-layer graphene flake lying on a flat surface of

a h-BN crystal.

Number of layers should be limited when modeling the

dynamics of a multilayer substrate. Therefore, we will

assume that the first (lowest) layer interacts with a fixed

flat surface of the crystal (on Fig. 1, this surface is shown

by a black line). The interaction energy of the atoms of the

layers with a fixed substrate can be described by the (k, l)
Lennard−Jones potential

P i(h) = ei

[

k(hi/h)l − l(hi/h)k
]

/(l − k), (5)

where h — the distance of the atom to the plane of the fixed

substrate, ei — interaction energy, hi — the equilibrium

length, exponents are l = 10, k = 3.75. Index i = 1 for a

multilayer sheet G, i = 2 — sheet BN. Potential parame-

ters (5): e1 = 0.0903 eV, h1 = 3.46 Å [19]; e2 = 0.0974 eV,

h2 = 3.49 Å [20].
Let us examine K-layer structures presented in Fig. 1. Let

us assume, that the first k = 1, . . . , K1 layers correspond to

BN chains (h-BN crystal layers), consisting from Nk = Nbn

links. These layers are on a flat fixed substrate and interact

with it (let us assume, that fixed substrate surface coincides

with z = 0 plane). The last K2 layers (K = K1 + K2)
correspond to the G chains of K2-layered nanoribbon (flake)
of graphene lying on the multilayer substrate h-BN. The

coordinates of such a system of K chains are given by

vectors
{

un,k = (xn,k , z n,k)
}Nk ,K

n=1,k=1
,

where n — the node number of the k-th chain (Nk — the

number of nodes in the chain). The Hamiltonian of the

chain system will have the form

H =

K1
∑

j=1

Nbn
∑

n=1

1

2
cM2(u̇n, j , u̇n, j)

+

K
∑

j=K1+1

N j
∑

n=1

1

2
M1(u̇n, j , u̇n, j) + E1 + E2 + E3, (6)
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where the potential energy of the G chain system

E1 =

K
∑

j=K1+1

N j
∑

n=1

[V1(Rn, j ) + U1(θn, j )]

+

K−1
∑

i=K1+1

K
∑

j=i+1

Ni
∑

n=1

N j
∑

k=1

W1(rn,i ;k, j ), (7)

energy of BN chain system

E2 = c
K1

∑

j=1

Nbn
∑

n=1

[V2(Rn, j) + U2(θn, j ) + P2(z n, j)]

+ c
K1−1
∑

i=1

K1
∑

j=i+1

Nbn
∑

n=1

Nbn
∑

k=1

W2(rn,i ;k, j ), (8)

interaction energy of G chains with BN chains

E3 =

K1
∑

j=1

K
∑

i=K1+1

Nbn
∑

n=1

Ni
∑

k=1

W3(rn, j ;k,i ). (9)

3. Delamination of graphene flakes
on substrate h-BN

Let us first analyze the process of delamination of a

two-layer graphene flake located on the flat surface of the

h-BN crystal — see Fig. 2, a. Let us assume that the

substrate consists of three h-BN chains lying on a fixed

substrate (K1 = 3, Nbn = 300), and a two-layer G chain

(K2 = 2, N2 ≤ N1 = 100) on it lies. Let us first consider

a symmetrical configuration in which the upper layer of the

flake lies completely above the lower one.

To find the stationary state of the system, it is necessary

to numerically solve the problem for a minimum of potential

energy

E = E1 + E2 + E3 → min : un, j
N j ,K
n=1, j=1. (10)

To obtain a stationary state of the flake with the shifted

upper layer, one need to move the upper chain to the

right and, when solving the problem (10), fix x of the

coordinate of the left end of the lower chain and the

right end of the upper one. Then, by successively shifting

the upper chain and solving the problem (10), we will

get the dependence of the energy of the system E on

the amount of overlap of the layers of the flake, which

is conveniently characterized by the distance between the

projections on the axis x of the right edges of the flake

d = xK,N2
−xK−1,N1

.

The characteristic shape of dependencies E(d) is shown

in Fig. 3. If the upper layer of the flake is much smaller

than the lower layer, then its displacement to the edge

of the flake does not change the energy of the system at

first. The energy begins to grow noticeably at a distance

a

b

c

d

e

Figure 2. Change of the shape a two-layer graphene flake

(number of links N1 = 100, N2 = 75) located on a multilayer

substrate formed by the surface of the h-BN crystal from the

distance d between projections on axis x of the right ends of

the flake layers: (a) d = −1.50, (b) 0.47, (c) 0.98, (d) 4.48,

(e) 9.43 nm.
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Figure 3. The dependence of the energy of a two-layer graphene

flake E, located on a multilayer substrate formed by the surface of

the h-BN crystal, from the distance d between the projections on

the axis x of the right edges of the flake The number of links in the

lower layer of the flake N1 = 100, in the upper one — N2 = 25,

75, 100 (curves 1, 2, 3). Dependencies E(d) are normalized so that

the maximum energy value is zero.

between the edges of d > −5 Å and reaches a maximum

value at d = d0 = 4.7 Å. A further shift to the right leads

to a monotonous decrease in energy. When d = d0, the

maximum allowable
”
cornice“ is formed, see Fig. 2, b.

With further shift, the upper edge bends and touches the

substrate (Fig. 2, c). Next, the upper layer slides onto the

substrate (Fig. 2, d), the energy of the system decreases

linearly with increasing displacement d . The minimum

energy is achieved with the complete sliding of the upper

layer from the lower one and the contact of their edges

(Fig. 2, e). Further shifting of the upper layer of the flake

leads to an increase in energy due to a decrease in the

energy of the interaction of the edges. The interaction

Physics of the Solid State, 2022, Vol. 64, No. 10
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energy of a carbon atom with an h-BN sheet is higher than

the interaction energy with a graphene sheet. Therefore,

it is always energetically more favorable for a graphene

nanoribbon to lie on the surface of an h-BN crystal than

to be on another graphene nanoribbon. To start sliding,

the upper nanoribbon must go to the edge of the lower

one and bend over it. This requires overcoming the

energy barrier of 1E = 0.16 eV (if graphene nanoribbons

have the same length, 1E = 0.083 eV). After overcoming

this barrier, further sliding of the upper layer will be

accompanied by the release of energy. Note that this

value of the barrier value is calculated per the band of

the nanoribbon width 1y = 3rCC/2. Therefore, the wider

the two-layer nanoribbon, the greater the magnitude of the

energy barrier of its delamination.

To describe the delamination scenario of a multilayer

nanoribbon, consider a three-layer graphene nanoribbon lo-

cated on the flat surface of the h-BN crystal, see Fig. 4, a. To

find its ground state, it is necessary to numerically solve the

problem for a minimum of (10) with K1 = 3, Nbn = 300,

K2 = 3, N1 = N2 = N3 = N. To obtain a stationary state

of the flake with shifted layers, it is necessary to move the

lower chain to the right and, when solving the problem (10),
fix x of the coordinate of the right end of the lower chain

and the left end of the second chain. Then, sequentially

shifting the lower chain and solving the problem (10), we
get the dependence of the energy of the system E from the

amount of overlap of the first two layers of the flake, which

is conveniently characterized by the distance between the

projections on the axis x of the right ends of the first two

layers of the flake d = xK1+1,N−xK1+2,N .

The characteristic shape of dependencies E(d) is shown

in Fig. 5. In the ground state, when all chains are located

strictly above each other, the displacement of the lower

chain d = −0.1 Å, see Fig. 4, a. Shifting to the right of

the lower chain first leads to an increase in energy, which

reaches its maximum value at d = d0 = 5.8 Å (Fig. 4, b).
Further displacement leads to a monotonous decrease in

energy. At the d = d0, the maximum allowable
”
cornice“

is formed from the two upper layers. With further

displacement, the upper two-layer chain bends and comes

into contact with the substrate (Fig. 4, c). Next, the upper

layers slide onto the substrate (Fig. 4, d), the energy of the

system decreases as a linear function d . The minimum

energy is achieved with the complete detaching of the lower

layer from under the upper layers and the contact of their

edges — with the formation of two-layer and single-layer

nanoribbons adjacent to each other (Fig. 4, e). Further

displacement of the lower layer leads to an increase in

energy due to a decrease in the interaction energy of the

edges of these nanoribbons.

Thus, for the delamination of a three-layer nanoribbon, it

is necessary to overcome the energy barrier 1E = 0.10 eV,

the value of which does not depend on the length of the

nanoribbon. The same scenario of delamination with a

shift along the substrate of the lower layer is realized for

nanoribbons with a large number of layers. At K2 > 3, a

a

b

c

d

e

Figure 4. Change of the shape of a three-layer graphene

nanoribbon (number of links N1 = N2 = N3 = 50) located on a

multilayer substrate formed by the surface of the h-BN crystal from

the distance d between the projections on the axis x of the right

edges of the first two layers of the nanoribbon: (a) d = −0.01,

(b) 0.58, (c) 1.13, (d) 2.53, (e) 6.34 nm.
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Figure 5. The dependence of the energy of a three-layer graphene

nanoribbon E, located on a multilayer substrate formed by the

surface of the h-BN crystal, on the distance d between projections

on the axis x of the right edges of the first and second layers with

the number of links N1 = N2 = N3 = 25 and 50 (curves 1 and 2).
Dependencies E(d) are normalized so that the maximum energy

value is zero.

complete shift of the lower layer will require overcoming

the barrier 1E = 0.11 eV. We note that the delamination

scenario of the nanoribbon with a slide to the substrate

of its upper layer requires overcoming a higher energy

barrier.

Physics of the Solid State, 2022, Vol. 64, No. 10
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4. Delamination of graphene flakes
on crystalline graphite substrate

Let us analyze the process of delamination of a two-

layer graphene flake located on a flat surface of crystalline

graphite, see Fig. 6, a. In this case, the interaction energy

of the layers of the flake coincides with the energy of

interaction with the layers of the substrate. Here, the energy

a

b

c

d

e

Figure 6. Change of the shape of a two-layer graphene flake

(number of links N1 = N2 = 75) located on a multilayer substrate

formed by the surface of crystalline graphite from the distance d
between projections on the axis x of the right edges of the first two

layers of the flake: (a) d = −0.02, (b) 1.52, (c) 3.52, (d) 7.02,

(e) 9.43 nm.
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Figure 7. The dependence of the energy of a two-layer graphene

nanoribbon E, located on a multilayer substrate formed by the

surface of a graphite crystal, on the distance d between projections

on the axis x of the right edges of the first and second layers with

the number of links N = 25, 50 and 75 (curves 1, 2 and 3). The
dependences E(d) are normalized so that the energy of the two-

layer nanoribbon in the ground state is zero.

gain from the delamination of the flake is associated with

the ability to increase the energy of interaction of its edges.

Let us assume that the substrate consists of K1 = 5G

chains lying on a fixed substrate. Potential energy of the

system of K = K1 + 2 chains

E =

K
∑

j=1

N j
∑

n=1

[V1(Rn, j) + U1(θn, j ) + P1(z n, j)]

+

K−1
∑

j=1

K
∑

j=i+1

Ni
∑

n=1

N j
∑

k=1

W1(rn,i ;k, j ). (11)

Let us take the number of links for the first five chains

modeling a multilayer substrate N1 = . . . = N5 = 300,

and N6 = N7 = N.

The numerical solution of the problem for the minimum

potential energy showed that the shift to the right of the

lower chain of the two-layer nanoribbon first leads to an

increase in energy, which reaches a maximum when shifting

d = 1.52 nm, see Fig. 6, b. With this shift, the left edge of

the top nanoribbon attaches to on the substrate. Further

shifting of the lower nanoribbon does not result in a change

in energy as long as the right edge of the upper nanoribbon

remains lying above the lower (c), (d). The energy begins to

decrease only when the right end of the upper nanoribbon

slides off the lower one. The most energetically favorable

state is obtained by the complete sliding of the end and the

formation of two adjacent single-layer nanoribbons (e).

Dependence of the energy of a two-layer nanoribbon E on

the magnitude of the shift of their layers d is shown in Fig. 7.

The delamination of the nanoribbon requires overcoming

the energy barrier 1E0 = 0.168 eV. The magnitude of this

barrier does not depend on the length of the nanoribbon

(it corresponds to the bending energy of a single-layer

nanoribbon when it is raised from the substrate to the edge

of another layer). The width of the barrier corresponds to

the length of the nanoribbon. The energy gain from the

delamination of the nanoribbon 1E1 = 0.11 eV also does

not depend on the length of the nanoribbon.

5. 3D-model

The use of a chain 2D-model allows one only to qualita-

tively describe the mechanisms of delamination of multilayer

nanoribbons. A more detailed description necessitates the

use of 3D-models requiring much larger computational

resources for numerical modeling. Therefore, we will

confine ourselves here only to modeling the delamination

of two-layer graphene nanoribbons located on a fixed flat

substrate that serves as a model of the surface of the h-BN

crystal.

The Hamiltonian of a two-layer graphene nanoribbon,

each layer of which consists of N atoms, located on a flat

Physics of the Solid State, 2022, Vol. 64, No. 10
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substrate, has the appearance

H =

2
∑

i=1

N
∑

n=1

[

1

2
Mn,i(u̇n,i , u̇n,i) + En,i + P(z n,i )

]

+

N
∑

n=1

N
∑

k=1

W (rn,1;k,2), (12)

where the vector un,i = (xn,i , yn,i , z n,i ) specifies the coor-

dinates of the n-th carbon atom of the i-th nanoribbon

(i = 1, 2).
The first term of the sum (12) specifies the kinetic energy.

Let us assume that hydrogen atoms are attached to the

edge atoms of nanoribbons, so the mass of the inner atoms

Mn,i = 12mp, and the Mn,i = 13mp (mp — the mass of

the proton). The term En,i sets the interaction energy of

the n-atom of the i-of that nanoribbon with neighboring

nanoribbon atoms (the deformation of valence bonds,

valence and torsion angles, as well as paired interactions

of atoms are taken into account — a detailed description

of the used force the fields are given in [21]). The P(z )
potential describes the interaction energy of a nanoribbon

atom with a flat substrate (5) where the interaction energy

e1 = 0.0903 eV and the equilibrium distance h1 = 3.46 Å.

The last term in the formula (12) describes the energy

of the van der Waals interaction of atoms of different

nanoribbons, rn,1; k,2 = |uk,2−un,1| — the distance between

the n-th atom of the first and k-th atom of the second

nanoribbon, potential

W (r) = εc [(rc/r)6 − 1]2 − 1, (13)

where εc = 0.002757 eV, rc = 3.807 Å.

Let us first take the ground state of a two-layer nanorib-

bon located on a flat h-BN substrate. To do this, we will

numerically solve the problem for a minimum of potential

energy

E =

2
∑

i=1

N
∑

n=1

[En,i + P(z n,i )]

+

N
∑

n=1

N
∑

k=1

W (rn,1; k,2) → min : u n,i
N,2
n=1,i=1. (14)

Then we put the nanoribbon in a Langevin thermostat

and get its thermalized state. For this purpose, let us

numerically integrate the system of Langevin equations

Mn,i ün,i = − ∂H
∂un,i

− ŴMn,i u̇n,i + 4n,i , (15)

n = 1, . . . , N, i = 1, 2,

with an initial condition corresponding to the ground

state of a two-layer nanoribbon. Here Ŵ = 1/tr — co-

efficient of friction characterizing the intensity of energy

exchange with the thermostat (relaxation time tr = 0.2 ps),

4n,i = {ξn,i, j}3j=1 — three-dimensional vector of normally

distributed random forces normalized by conditions

〈ξn,i1, j1(t1)ξk,i2, j2(t2)〉 = 2Mn,i1kBT δnkδi1i2δ j1 j2δ(t2 − t1)

(T — thermostat temperature, kB — Boltzmann constant).
During the t = 10tr , the two-layer nanoribbon reaches

a thermalized state with a temperature T . Next, we turn

off the interactions with the thermostat by removing the

last two terms in (15) and analyze further dynamics of

the system. The dynamics will be analyzed according to

256 trajectories corresponding to independent realizations

of the initial thermalized state.

We used LAMMPS program for our numerical simula-

tions [22]. Pair interactions are described by the Lennard–
Jones potential (13) with cutoff radius r s = 20 Å smoothed

to zero in the range 19−20Å.

For certainty, let us take a two-layer nanoribbon consisting

of layers of the same size, with a zigzag structure along the

axis x , see Fig. 1. Consider a nanoribbon with a width

of Ly = 1.1 nm and a length of Lx = 5.9, 12.0, 24.3 nm

(the number of atoms in one layer of the nanoribbon

N = 294, 594, 1194). Modeling the shift of the upper

layer of the nanoribbon along the axis x showed that the

upper layer forms the largest cornice when it is shifted

by 5−6 Å, the further shift leads to the bending over of the

upper layer and its adhesion to the substrate. To start the

delamination of the nanoribbon, it is necessary to overcome

the energy barrier of height 1E = 0.081 eV to the width

of 1y = 3rCC/2. This value is in good agreement with the

result of 1E = 0.083 eV obtained when using a 2D chain

model.

The delamination of the nanoribbon requires a ther-

mally activated overcoming of a sufficiently high barrier.

Therefore, during the possible time of numerical simulation

on modern supercomputers, it is possible to simulate the

delamination only at high temperatures T ≥ 900K.

Modeling showed that two delamination scenarios are

possible. The first scenario is the longitudinal (along the

long side) displacement of the layers, see Fig. 8, a. This

delamination mechanism is well described by the 2D-model.

In the second scenario detaching of layers is accompanied

by their relative rotation. After the initial rotation, the upper

layer slides over the long edge of the lower one, see Fig. 8, b.

The first scenario is common for elongated nanoribbons

with an aspect ratio of 3 : 1 and more, and the second —
for two-layer flakes having close to the square shape.

Analysis of the dependence of the delamination time

(the time during which the complete detaching of layers

occurs) on the temperature value showed that the elongated

nanoribbons are most rapidly exfoliated, see Fig. 9. For all

nanoribbons, the time of their delamination is proportional

to the exponent of the inverse temperature

td ≈ c2 exp(c1T−1), (16)

where the coefficients c1 and c2 depend on the size

and shape of the nanoribbon (on its aspect ratio). The
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resulting approximation (16) allows one to make estimates

of the value of the delamination time at T = 300K. So

for nanoribbons of size 5.9× 1.1, 24.3× 1.1, 12.0 × 1.1

and 7.1× 2.0 nm2 their delamination time is td ≈ 0.2, 22,

0.15 10−4 s and 0.3 s, respectively.

The exponential type of dependence of the delamination

time on the inverse temperature (16) is explained by

a b

Figure 8. Longitudinal (a) and transverse (b) delamination of

a two-layer nanoribbon of size Lx × Ly = 5.9× 1.1 nm2 . Red

indicates the lower layer of the nanoribbon, gray — the upper one.

The frames presented in the figure are taken from a numerical

experiment at T = 900K with an interval of 5 ps (the arrows

indicate the direction of the frames).
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Figure 9. The dependence of the delamination time td

on the reverse temperature T−1 for a two-layer graphene

nanoribbon of size 5.9× 1.1, 24.3× 1.1 nm2, 12.0× 1.1 and

7.1× 2.0 nm2 (curves 1, 2, 3 and 4). Dotted lines give depen-

dencies td = c2 exp(c1T−1). For curves 1, 2, 3 and 4: c1 = 4734,

6280, 4539 and 7522K, c2 = 2.87, 1.78, 3.92 and 3.83 ps,

respectively.

the need to overcome the energy barrier during the

initial separation of the layers, the magnitude of which

is proportional to the width of the edge along which the

delamination occurs. We note that at high temperatures,

the discreteness of nanoribbons has practically no effect on

their dynamics. The effects of discrete structure resulting

in static friction [23] will occur only at low temperatures

T < 100K.

For long nanoribbons, the delamination will occur ac-

cording to the first scenario through its transverse (narrow)
edge, see Fig. 8, a. The narrower the nanoribbon, the faster

its delamination will occur. For graphene nanoflakes having

close to the square shape, a second delamination scenario

will be more probable. Here, it is energetically more

advantageous to first rotate the layers relative to each other

so that hanging corners form at the upper layer that directly

interact with the substrate, and then the upper layer slides in

the direction of these angles, see Fig. 8, b. The delamination

of nanoribbons can be accelerated by mechanical action on

the substrate.

6. Conclusion

The simulation shows that on the flat surface of a

multilayer crystal, for example, on the surface of h-BN,

multilayer graphene nanoribbons can spontaneously delam-

inate due to thermal activation, turning the rough surface

initially contaminated with them into a perfectly smooth

one. The delamination of a multilayered nanoribbon requires

overcoming the energy barrier associated with the initial

shift of its upper layers. After overcoming the barrier, the

delamination already goes with the release of energy. The

magnitude of this barrier is estimated. The consequence

of the presence of a barrier is a directly proportional

dependence of the delamination time of the nanoribbon

on the exponent of the inverse temperature. Delamination

of two-layer nanoribbons can occur in two scenarios. In

the first scenario, the upper layer will slide from the lower

along the edge of the nanoribbon, in the second — the

sliding is accompanied by the rotation of the layers relative

to each other. Modeling shows that for long nanoribbons,

their delamination occurs according to the first scenario,

and for short, close to the square shape — according to the

second.
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[3] E. Koren, I. Leven, E. Lörtscher, A. Knoll, O. Hod, U. Duerig.

Nature Nanotech. 11, 752 (2016).
[4] J.C. Meyer, A.K. Geim, M. Katsnelson, K. Novoselov,

T. Booth, S. Roth. Nature 446, 60 (2007).
[5] C. Lee, X. Wei, J.W. Kysar, J. Hone. Science 321, 385 (2008).
[6] A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang,

Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, M.R. Barnett,

Y. Chen, R.S. Ruoff, L.H. Li. Nature Commun. 8, 15815

(2017).
[7] E. Han, J. Yu, E. Annevelink, J. Son, D.A. Kang, K. Watanabe,

T. Taniguchi, E. Ertekin, P.Y. Huang, A.M. van der Zande.

Nature Mater. 19, 305 (2020).
[8] I. Leven, D. Krepel, O. Shemesh, O. Hod. J. Phys. Chem. Lett.

4, 115 (2013).
[9] A. Geim, I. Grigorieva. Nature 499, 419 (2013).

[10] K.S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro

Neto. Science 353, 6298, 461 (2016).
[11] C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu,

H.M. Guo, X. Lin, G.L. Yu, Y. Cao, R.V. Gorbachev,

A.V. Kretinin, J. Park, L.A. Ponomarenko, M.I. Katsnelson,

Y.N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi,

H.J. Gao, A.K. Geim, K.S. Novoselov. Nature Phys. 10, 451

(2014).
[12] G.J. Slotman, M.M. van Wijk, P.L. Zhao, A. Fasolino,

M.I. Katsnelson, S. Yuan. Phys. Rev. Lett. 115, 186801 (2015).
[13] D. Mandelli, I. Leven, O. Hod, M. Urbakh. Sci. Rep. 7, 1,

10851 (2017).
[14] H.A. Loh, C. Marchi, L. Magagnin, K.A. Sierros. ACS Omega

6, 30607 (2021).
[15] A.K. Geim. Nano Lett. 21, 6356 (2021).
[16] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92,

035412 (2015).
[17] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. FTT 57, 11, 2278

(2015) (in Russian).
[18] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 99,

235411 (2019).
[19] A.V. Savin. ZhETF 160, 6(12), 885 (2021) (in Russian).
[20] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 99,

235411 (2019).
[21] A.V. Savin, Yu.S. Kivshar, B. Hu. Phys. Rev. B 82, 195422

(2010).
[22] S. Plimpton. J. Comput. Phys. 117, 1 (1995).
[23] W. Ouyang, D. Mandelli, M. Urbakh, O. Hod. Nano Lett. 18,

9, 6009 (2018).

Physics of the Solid State, 2022, Vol. 64, No. 10


