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The Lennard−Jones potential model is used to investigate the effects of pressure on the elastic and ultrasonic

properties of CaAuBi half-Heusler compound. Potential model technique approaches is used to evaluate second- and

third-order elastic constants of CaAuBi compound at various pressures (0−15GPa). The pressure dependence of

elastic constants is studied and it has been observed that the elastic constants of the half-Heusler CaAuBi compound

increase monotonically as pressure is increased. The hexagonal half-Heusler CaAuBi compound is mechanically

stable at different pressures according to Born’s elastic stability criteria. The Voigt−Reuss−Hill method was used to

compute elastic parameters such as Young’s modulus Y , shear modulus G, bulk modulus B , and Poisson’s ratio ν

under various pressures. For the provided pressure range, the second-order elastic constants were also utilized to

determine ultrasonic velocities along with z -axis at various angles. The half-Heusler CaAuBi compound’s hardness,

ultrasonic attenuation, melting temperature, and anisotropy are also determined. The computation have been also

satisfactory in estimating the thermal conductivity k(min) and Debye average velocity under varied pressure.
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1. Introduction

The XYZ formula is used to describe the half-Heusler

structural family of ternary compounds (space group F43m,

prototype MgAgAs), in which X is typically a rare-earth

or transition metal, Y is a transition metal, while Z is a

main-group element. X atoms are crammed into YZ zinc

blende lattice structure in this cubic structural type [1,2].
Many of the compounds have been studied for thermo-

electric& spintronic technologies and superconductivity has

been reported for some of them [3–5]. The structural type of
essentially all half-Heusler compounds has 18 total valence

electrons, and this parameter encompasses a wide range of

constituent materials [1]. More specifically, experimentally

observed phase transitions in various ternary systems have

proven structural proximities between the half-Heusler type

of structure and thus the LiGaGe and ZrBeSi structure

types. Under high-pressure circumstances, the compounds

VCoSb and VFeS that crystallise in the half-Heusler type

of structure under standard pressure have been stabilised

in a ZrBeSi-type structure [6]. High-temperature and low-

temperature phases of the combination YbAuBi have been

seen in LiGaGe and half-Heusler structures, respectively [7].
These findings show that infusing energy through half-

Heusler systems can reveal incipient structural instabilities.

Half-Heusler compounds are structurally proximal to nu-

merous other structure types, according to trends in crystal

structures among many groups of related compounds. The

compounds with smaller rare-earth elements crystallise in

the half-Heusler structure type, while those with bigger

rare-earth elements crystallise in the LiGaGe structure type,

e. g., inside this REAuSn family (where RE is a rare-

earth metal). LiGaGe is a hexagonal variation of the

half-Heusler structural type, with X atoms packed into a

hexagonal Y Z wurtzite sub-lattice instead of a cubic Y Z
zinc blende sub-lattice [2]. A similar trend is seen in the

REAuPb family, but the compounds containing the bigger
RE elements crystallise in the ZrBeSi structure type instead

of the LiGaGe structure type. The ZrBeSi structural type

can be viewed of as a LiGaGe variation with rectangular

honeycomb-like Y Z layers rather than a puckered Y Z sub-

lattice [6]. The hexagonal ZrNiAl and orthorhombic TiNiSi

structural types impose additional distortions on the YZ sub-

lattice, according to studies of other ternary 18 electron

systems. These patterns suggest that even little relative size

as well as chemistry of the individual elements can cause
structural alterations in these systems. SrAuBi and BaAuBi,

CaAuBi’s chemical analogues, both crystallise in the ZrBeSi

type of structure. EuAuBi possesses the LiGaGe structural

type among divalent REAuBi compounds, while YbAuBi

has temperature-dependent half-Heusler and LiGaGe-type

phases. CaAuBi has previously been investigated for

high/low-temperature phases, and only the single half-

Heusler phase had been discovered [7]. Nonetheless,
the wide range of structure types identified in chemically

related compounds to CaAuBi motivates more research into

structural transitions inside the CaAuBi system. Powder

synchrotron diffraction patterns taken at pressures up to

15GPa reveal a structural transition in CaAuBi from a

previously unreported phase in the cubic half-Heusler type
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of structure to a previously unknown phase in the hexagonal

LiGaGe structure type. For the cubic and hexagonal forms

of CaAuBi with pressure, we offer comprehensive structural

solutions and total energy estimates [8,9].
In this study, we only focused on the pressure-dependent

mechanical, elastic, and thermo-physical properties of

CaAuBi compound. Half-Heusler compound CaAuBi will

contribute in the study of CaAuBi compound mechanical

behavior, as well as serve a significant role in the creation of

production apparatus with effective physical properties un-

der reasonable working conditions. We evaluated pressure-

dependent ultrasonic velocity, acoustic coupling constants,

ultrasonic attenuation (UA) coefficient, and elastic stiffness

constant and thermal relaxation time for CaAuBi compound

in the present research work. Poisson’s ratio ν , Young’s

modulus Y , bulk modulus B , shear modulus G, and

Pugh’s ratio B/G were also calculated and analyzed for this

CaAuBi compound.

2. Theory

There exist several approaches to analyses high-order elas-

tic factors of hexagonal materials. According to present our

effort, the Lennard-Jones interaction potential approaches

was using for the evaluation for six second- and ten third-

order elastic constants (SOECs and TOECs).
Higher-order elastic constants of hexagonal structured

materials are a function of lattice parameters, according to

the potential model approach to evaluation. The following

formulas can be used to calculate the SOECs [10,11]:

CIJ =
∂2U
∂eI∂eJ

, I, J = 1, . . . , 6, (1)

CIJK =
∂3U

∂eI∂eJ∂eK
, I, J, K = 1, . . . , 6, (2)

where eI = ei j (i, j = x , y, z , I = 1, . . . , 6) is a component

of the strain tensor, and U represents elastic energy density.

For hexagonal closely packed structural materials, Eqs (1)
and (2) lead to SOEC and TOEC [11,12].

C11 = 24.1p4C′ C12 = 5.918p4C′

C13 = 1.925p6C′ C33 = 3.464p8C′

C44 = 2.309p4C′ C66 = 9.851p4C′















, (3a)

C111 = 126.9p2B + 8.853p4C′

C112 = 19.168p2B − 1.61p4C′

C113 = 1.924p4B + 1.155p6C′

C123 = 1.617p4B − 1.155p6C′

C133 = 3.695p6B C155 = 1.539p4B

C144 = 2.309p4B C344 = 3.464p6B

C222 = 101.039p2B + 9.007p4C′ C333 = 5.196p8B



































































.

(3b)

Here, p = c/a is axial ratio;

C′ = χ · a/p5; B = ψa3/p3;

χ = (1/8)[{nb0(n − m)}/{an+4}],
ψ = −χ/{6a2(m + n + 6)},

m and n are integer quantities chosen below; b0 is the

Lennard−Jones parameter. The pressure affects the lattice

properties of CaAuBi compound.

In a hexagonal structured crystal, the ultrasonic longi-

tudinal and shear wave velocities (VL and VS) for wave

propagation along a z -axis are given by the equations [12]:

VL =

√

C33

ρ
, (4)

VS =

√

C44

ρ
. (5)

The density of hexagonally structured material d can be

calculated using the formula below [13]:

d = 2Mn/3
√
3a2cNA, (6)

where n, M, and NA represent atoms per unit cell,

molecular weight of the compound, and Avogadro number,

respectively.

Because ultrasonic velocities are related to elastic con-

stants, Debye average velocity VD is an important measure

in low temperature physics, defined as [12]:

VD =

[

1

3

(

1

V 3
L

+
1

V 3
S1

+
1

V 3
S2

)]

−1/3

. (7)

Through Debye average velocity, elastic constants are

related to Debye temperature TD in an indirect way [14]:

TD = ~VD(6π2na)
1
3 /kB, (8)

where kB and na are the Boltzmann constant and atomic

concentration constant, respectively. The energy distribution

of thermal phonons is disrupted by the propagation of

ultrasonic waves. Through the relaxing mechanism, it

achieves equilibrium. Thermal relaxation time τ is defined

as the time it takes for thermal phonons to re-establish

themselves after an ultrasonic wave has propagated. It is

directly connected to thermal conductivity k , Debye average

velocity, and specific heat CV [11,15]:

τ = τS = τL/2 =
3k

CVV 2
D

. (9)

The shear modulus and bulk modulus were calculated

using the methods of Voigt and Reuss [16,17]. The Voigt

and Reuss techniques use unvarying stress and unvarying

strain computations, respectively. Furthermore, using Hill’s

approaches, the average values of both methodologies were
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used to compute the resulting values of B and G [18].
Young’s modulus and Poisson/s ratio ν are calculated using

the bulk and shear modulus values [19,20]. For the

evaluation of Y, B, G, and ν the following expressions were

considered.

M = C11 + C12 + 2C33 − 4C13;

C2 = (C11 + C12)C33 − 4C13 + C2
13;

BR =
C2

M
; BV =

2(C11 + C12) + 4C13 + C33

9
;

GV =
M + 12(C44 + C66)

30
;

GR =
5C2C44C66

2[3BVC44C66 + C2(C44 + C66)]

Y =
9GB

G + 3B
; B =

BV + BR

2
;

G =
GV + GR

2
; ν =

3B − 2G
2(3B + G)












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
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(10)

The thermal conductivity of a substance can be calculated

using the formula below [21]:

k = AMT 3
Dδ

3/γ2Tn2/3, (11)

where A is a constant, δ3 is volume per atom, γ is Grüneisen

number, and T is temperature. The constant A is determined

by the Grüneisen number and is expressed as follows:

A = 2.43 · 10−8
/

(

1− 0.514

γ
+

0.228

γ2

)

. (12)

The elastic constants C11 and C33 are correlated to the

melting temperatures Tm of hexagonal crystals [22]. The

melting point Tm is calculated as follows

Tm = 354 + 4.5(2C11 + C33)/3, (13)

where C11 and C33 are in GPa, and Tm is in K.

As a result, there is a high chance of acoustic phonons

and free electrons coupling [12]. For longitudinal (VL) and

shear waves (VS), the mathematical formulation of UA is as

follows

αlong =
2π2 f 2

ρV 3
L

(

4

3
ηe + χ

)

, (14)

αshear =
2π2 f 2

ρV 3
S

ηe, (15)

where f is the frequency of the ultrasonic wave, ρ is

the density of hexagonal compound, ηe is the electron

viscosity, and χ is the compression viscosity. At higher

pressure, both thermoelastic loss and Akhieser’s loss are

significant for ultrasonic wave attenuation. The equation

given below describes the attenuation caused by Akhieser’s

loss calculated by Yadav et al. [12].

(α/ f 2)Akh = 4π · 2τ E0(D/3)/2ρV 3. (16)

The ultrasonic wave frequency is represented by f , and
the thermal energy density is represented by E0.

The following equation considers the thermoelastic loss

(α/ f 2)Th:

(α/ f 2)Th = 4π2〈γ j
i 〉2

kT

2ρV 5
L

. (17)

The total UA is specified by the subsequent equation as

(α/ f 2)Total =
(

α/ f 2
)

Th
+
(

α/ f 2
)

L
+
(

α/ f 2
)

S
, (18)

where (α/ f 2)Th is the thermoelastic loss,
(

α/ f 2
)

L
and

(

α/ f 2
)

S
are the UA coefficients for the longitudinal wave

and shear wave, correspondingly.

3. Results and Discussion

3.1. Higher-order elastic constants

We have evaluated the six SOECs and ten TOECs using

interaction potential method in this investigation. Based on

synchrotron X-ray diffraction patterns taken under pressures

up to 18GPa, we report a structural phase change of

the ternary compound CaAuBi from the known cubic

half-Heusler phase to a hexagonal LiGaGe type phase.

The hexagonal form of the half-Heusler structural type is

LiGaGe. In this study, we only focused on hexagonal

phase of CaAuBi compound under the pressure range (0 to

15GPa). For the CaAuBi compound, the lattice parameters

a (basal plane parameter), p (axial ratio), and density ρ

are 4.80 to 4.66 Å, 1.65 to 1.48, 9.40 to 11.61 103 kgm−3

under the pressure range 0−15GPa. Evaluated value of

thermal conductivity (k(min) Erg/cm · s ·K) under the same

pressure range is shown in Fig. 1 [23]. For CaAuBi

compound, the recommended values of m and n are 6 and 7.

For the CaAuBi compound, the value of b0 is taken as

3 · 10−63 erg cm7.

The highest elastic constant values were found in the

CaAuBi compound, which are crucial for the material

because they are linked to the stiffness parameter. In

Fig. 2, we can see that SOECs are increasing with pressure.

In Fig. 3, we can see that the values of TOECs are negative

and negative value of TOECs is increasing with pressure.

The UA and related properties are determined using SOECs.

The compound CaAuBi has the highest elastic constant

values, indicating that it has higher mechanical properties

than other compound.

Consequently, they would satisfy the well-known

Born−Huang stability rules [24,25], given by Eq. (19), for
the hexagonal compound to be stable (Fig. 4).

Ć44 > 0, Ć11−|Ć12| > 0,

(Ć11 + Ć12)Ć33 − 2Ć2
13 > 0, (19)

where Ć j j = Ć j j − P (P = 1, 3, 5). Ć12 = C12 + P , Ć13 =
= C13 + P .
Because the above elastic constant values are positive,

this CaAuBi compound meets Born−Huang’s mechanical
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stability requirements, suggesting that its mechanical stabi-

lity increases within the given pressure range. Fig. 2 shows

how to determine the bulk modulus of compound CaAuBi.

The evaluated value of bulk modulus of CaAuBi compound

is 28.32GPa at zero pressure, which is almost the same as
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Figure 1. a, c/a , density, and thermal conductivity k vs pressure

of CaAuBi compound.
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Figure 2. SOECs vs pressure of CaAuBi compound.
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Figure 3. TOECs vs pressure of CaAuBi compound.
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Figure 4. C44 — P vs pressure of CaAuBi compound.
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Figure 5. M and C2 vs pressure of CaAuBi compound.

Pressure, GPa
0 5 10 15

20

40

60

0

80

B
B

G
G

Y
R

V
R

V
;

;
;

;

CaAuBi
BR
GR
Y

BV
GV

Figure 6. BR, BV, GV, GR, and Y vs pressure of CaAuBi

compound.

28.5GPa calculated by Lilia S. Xie et al. [23]. Our approach
achieves comparable values of the elastic constants C11, C33,

and C66. As a result, there is a fair amount of agreement

between the reported and informed values, which is related
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Figure 7. Hardness HV and melting temperature Tm vs pressure

of CaAuBi compound.

to elastic constants. As a result, our theoretical methodology

for evaluating SOECs of hexagonally structured molecules

is well justified. In Fig. 3, we show the calculated TOEC

values. TOECs with negative values indicate that the solid

is under strain.

The values of Voigt−Reuss’ constants (M and C2), BR (in
1010 Nm−2), BV (in 1010 Nm−2), GR (in 1010 Nm−2), GV

(in 1010 Nm−2), Y (in 1010 Nm−2) of CaAuBi at different

pressures (0 to 15GPa) are calculated using Eq. (10) and

shown in Figs 5 and 6.

All mechanical properties like hardness, brittleness, com-

pressibility, toughness, ductility, and bonding nature are

evaluated with the SOECs. The melting temperature was

used as a factor for developing improved materials. It

is considered as a significant basis for evaluating alloy

materials. The analysis of melting temperature has attracted

the interest of materials researchers in order to improve

the heat resistance of magnesium alloy. In this study, the

melting temperature Tm of CaAuBi is investigated. Fig. 7

shows the estimated melting temperature and hardness as a

function of pressure. It can be seen that when pressure is

increased, the melting temperature increases as well. The

unified anisotropic index (AU), percent anisotropy (AB and

AG), and shear anisotropic factors (A1, A2, and A3) can

always be used to describe anisotropy in elasticity, as shown

in the equations below in the table below [26,27].
The table shows that under different pressures of CaAuBi,

percent anisotropy AB is greater than AG. This indicates

Pressure-dependent anisotropy constants and Poisson’s ratio ν of

CaAuBi compound

Pressure, GPa AU AB AG A1 A2 A3 ν

0 0.16 0.05 0.02 0.66 0.66 2.07 0.22

5 0.14 0.04 0.02 0.63 0.63 2.08 0.22

10 0.16 0.02 0.02 0.62 0.62 2.07 0.22

15 0.15 0.02 0.02 0.61 0.61 2.07 0.23

that the shear modulus is more oriented than the bulk

modulus. Table also shows the results of A1, A2, and A3

under different pressures. The material is an isotropic crystal

if A1 = A2 = A3 = 1. It’s an anisotropic crystal otherwise,

according to the conclusions. The highly single crystal

anisotropy is defined as the departures of the universal

anisotropic index AU from zero at different pressures [28,29].

3.2. Ultrasonic velocity and allied parameters

In this study, the isotropic and mechanical properties of

the hexagonally structured material are linked to ultrasonic

velocity. For the compound CaAuBi, we estimated VL,

VS, VD, and τ . The pressure-dependent CV values and

the thermal energy density E0 were determined using the

physical constant tables and Debye temperatures, as shown

in Fig. 9. It shows the values of the temperature-dependent

acoustic coupling constants (DL and DS).
Fig. 8 shows that the values of DL are greater even than

DS for compound CaAuBi at all pressures. It means that the

conversion of ultrasonic energy into thermal energy is lower
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Figure 8. DL and DS vs pressure of CaAuBi compound.
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Figure 9. E0 and CV vs pressure of CaAuBi compound.
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for shear ultrasonic waves than for longitudinal ultrasonic

waves.

The dependencies of ultrasonic velocities on pressure are

shown in Figs 10−13. The velocity VL of the compound

CaAuBi has minima at 0◦ in Fig. 10, and the velocity VS1 has

a maximum at angle 45◦ in Fig. 11. Fig. 12 shows that VS2

increases as the z -axis is rotated. The occurrence of SOECs

and density causes the irregular behavior of orientation-

dependent velocity. The alignment-dependent velocity

curves in this study are similar to the orientation-dependent

velocity curves seen in other hexagonal materials [28,29].
In the compound CaAuBi, the angle dependency of the

velocities is thus justified.

Fig. 13 illustrates the difference in Debye average velocity

VD as a function of the angle made with the crystal’s

z -axis. For the compound CaAuBi, VD increases with

angle and reaches a maximum at θ = 55◦. Because the
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0
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Figure 10. VL vs the angle from z -axis of crystal.
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Figure 11. VS1 vs the angle from z -axis of crystal.
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Figure 12. VS2 vs the angle from z -axis of crystal.
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Figure 13. VS2 vs the angle from z -axis of crystal.

velocities VL, VS1, and VS2 are used in the computation

of VD [30,31], it is understandable that the fundamental

ultrasonic velocities influence the variation of Debye’s

average velocity. A considerable increase in both shear

and longitudinal wave velocities, as well as a decrease in

quasi-shear wave velocities, results in a maximum value of

VD at 55◦. The average sound wave velocity demonstrates

that the maximum when a sound wave propagates at 55◦

degrees with the z -axis of this crystal.
Fig. 14 shows a graph of the evaluated thermal relaxation

time as a function of orientation. The reciprocal character

of VD as τ ∝ 3k/CVV 2
D is measured by angle-dependent

curves. Thermal relaxation time for the compound CaAuBi

is obviously affected by k . The thermal relaxation time

of hexagonal structured materials is in the picosecond

range [30,31]. The hexagonal structure of the compound

CaAuBi is therefore explained by the computed results. The

Physics of the Solid State, 2022, Vol. 64, No. 10
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Figure 14. Relaxation time vs the angle from z -axis of crystal.

lowest value of thermal relaxation time for wave propagation

along 55◦ indicates that the re-establishment time for

thermal phonon equilibrium distribution will be shortest for

wave propagation in this direction due to phonon−phonon

(p−p) interaction and thermal relaxation, UA occurs.

3.3. Ultrasonic attenuation due
to phonon−phonon interaction
and thermal relaxation phenomena

When calculating UA, the wave is assumed to propagate

down the z -axis of the CaAuBi compound. The attenuation

coefficient divided by frequency squared (α/ f 2)Akh is cal-

culated for the longitudinal wave (α/ f 2)L and for the shear

wave (α/ f 2)S using Eqs (14−16). Figs 15, 16 presented

values of the pressure-dependent longitudinal, shear, and

total attenuation of the CaAuBi.

The ultrasonic wave is expected to propagate along the

crystal’s z -axis in this study. It is evident that the Akh. Type

of energy losses (α/ f 2)Akh is proportional to D, E0, τ , and

V−3, see Eq. (16). As a result, E0 and k have a significant

impact on Akhieser losses in CaAuBi.

As a result, the increase in UA is caused by a decrease in

thermal conductivity. As a result, it is the p−p interaction

that affects UA; due to a lack of theoretical/experimental

data of UA, we could not compare.

Eq. (17) shows that the thermoelastic loss for compound

CaAuBi is substantially lower than Akhieser loss, as well

as the total attenuation using Eq. (18). UA related to

p−p interaction for longitudinal wave and shear wave is the

major factor. The key factors that influence total attenuation

are thermal conductivity and thermal energy density. Thus,

at given pressure range, compound CaAuBi behave as

their purest form and are further ductile, as evidenced by

the minimum attenuation, despite the fact that compound

CaAuBi compounds are least ductile. As a result, the

compound CaAuBi compound will have the least impurity

at ambient temperature. Because the compound CaAuBi
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CaAuBi compound.
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has the highest velocities at 15GPa, α ∝ V 3 should be

maximum at this pressure, and the materials should be

the most ductile. At a pressure range of 0 to 15GPa, the

minimum values of UA for the compound CaAuBi defends

its hexagonal type structural state, which is quite stable.

4. Conclusion

The pressure-dependent mechanical and thermodynamic

characteristics of the CaAuBi are investigated using the

simple interaction potential approach at pressures varies

from 0 to 15GPa in this study. The concept of determining

higher-order elastic coefficients for hexagonally structured

CaAuBi compounds based on a simple interaction po-

tential technique is still applicable at different pressure.

Born−Huang stability criteria show that the mechanical

stability of CaAuBi is increasing with pressure within

the pressure range. The Pugh’s ratio indicates that the
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hexagonal CaAuBi compound is ductile at both ambient and

high pressure, and that the ductility of CaAuBi compound

increases as pressure increases. Furthermore, we noticed

that CaAuBi compound has a significant anisotropy at

0GPa, which becomes stronger with increasing pressure.

With increased pressure, the Debye temperature increases

well as. The calculated melting temperature and hardness

of CaAuBi are increasing with pressure. It can be seen

that when pressure is increased, the melting temperature

increases as well. For CaAuBi, τ is found to be of the order

of picoseconds, which defends their hexagonal structure.

As τ has smallest value along θ = 55◦, at all pressures,

the time for re-establishment of symmetry spreading of

phonons will be minimum, for the wave propagation in

this direction. Over total attenuation, UA caused by p−p

interaction mechanism is dominant and is a leading factor

of k . At greater pressures, CaAuBi compound behaves as

its pure state and is more flexible, as seen by the smallest

attenuation.

The research could help with CaAuBi compounds pro-

cessing and non-destructive characterization. These studies

will form a basis for further research into the essential

thermo-physical features of various compounds.

Funding

No funding was received to assist with the preparation of

this manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

[1] T. Graf, C. Felser, S.S.P. Parkin. Prog. Solid State Chem. 39, 1,

775 (2011).
[2] F. Casper, R. Seshadri, C. Felser. Physica Status Solidi A 206,

5, 1090 (2009).
[3] G. Goll, M. Marz, A. Hamann, T. Tomanic, K. Grube,

T. Yoshino, T. Takabatake. Physica B: Phys. Condens. Matter

403, 5−9, 1065 (2008).
[4] N.P. Butch, P. Syers, K. Kirshenbaum, A.P. Hope, J. Paglione.

Phys. Rev. B 84, 22, 220504 (2011).
[5] F.F. Tafti, T. Fujii, A. Juneau-Fecteau, S.R. de Cotret,

N. Doiron-Leyraud, A. Asamitsu, L. Taillefer. Phys. Rev. B 87,

18, 184504 ( 2013).
[6] Y. Noda, M. Shimada, M. Koizumi. Inorg. Chem. 18, 11,

3244 (1979).
[7] F. Merlo, M. Pani, M.L. Fornasini. J. Less Common Metals

166, 2, 319 (1990).
[8] R. Marazza, D. Rossi, R. Ferro. J. Less Common Metals 138,

2, 189 (1988).
[9] A. Iandelli. Rev. Chim. Min. 24, 1, 28 (1987).

[10] D.K. Pandey, P.K. Yadawa, R.R. Yadav. Mater. Lett. 61, 30,

5194 (2007).
[11] P.K. Yadawa. Arabian J. Sci. Eng. 37, 1, 255 (2012).
[12] N. Yadav, S.P. Singh, A.K. Maddheshiya, P.K. Yadawa,

R.R. Yadav. Phase Transit. 93, 9, 883 (2020).

[13] D.K. Pandey, S. Pandey. Ultrasonics: A technique of material

characterization. Sciyo Publisher, Sciyo, Croatia (2010).
Pp. 397−407.

[14] S.O. Pillai. Solid State Physics: Crystal Physics. New Age

International Publisher, USA (2005). Pp. 100−134.

[15] D. Singh, D.K. Pandey, P.K. Yadawa, A.K. Yadav. Cryogenics

49, 1, 12 (2009).
[16] P.K. Yadawa. J. Pure. Appl. Ultrasonics 40, 1, 16 (2018).
[17] P.K. Yadawa, D. Singh, D.K. Panday, R.R. Yadav. Open

Acoustics J. 2, 61 (2009).
[18] R. Hill. Proc. Phys. Soc. A 65, 5, 349 (1952).
[19] N. Turkdal, E. Deligoz, H. Ozisik, H.B. Ozisik. Phase Transit.

90, 6, 598 (2017).
[20] P.F. Weck, E. Kim, V. Tikare, J.A. Mitchell. Dalton Trans. 44,

18769 (2015).
[21] D.T. Morelli, G.A. Slack. High lattice thermal conductivity

solids in high thermal conductivity of materials. Springer

Publisher, USA (2006). Pp. 37−68.

[22] M.E. Fine, L.D. Brown, H.L. Marcus. Scripta Metallurgica 18,

9, 951 (1984).
[23] L.S. Xie, L.M. Schoop, S.A. Medvedev, C. Felser, R.J. Cava.

Solid State Sci. 30, 6 (2014).
[24] N. Yadav, S.P. Singh, A.K. Maddheshiya, P.K. Yadawa,

R.R. Yadav. Phase Transit. 93, 9, 883 (2020).
[25] C.P. Yadav, D.K. Pandey, D. Singh. Indian J. Phys. 93, 9, 1147

(2019).
[26] A.L. Ivanovskii. Int. J. Refract. Met. Hard Mater. 36, 179

(2013).
[27] A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou,

N. Guechi. J. Alloys Compd. 623, 219 (2015).
[28] S.I. Ranganathan, M. Ostoja-Starzewski. Phys. Rev. Lett. 101,

5, 055504 (2008).
[29] K.B. Panda, K.S. Ravi Chandran. Comput. Mater. Sci. 35, 2,

134 (2006).
[30] S.P. Singh, G. Singh, A.K. Verma, P.K. Yadawa, R.R. Yadav.

Pramana — J. Phys. 93, 83 (2019).
[31] A.K. Jaiswal, P.K. Yadawa, R.R. Yadav. Ultrasonics 89, 22

(2018).

11 Physics of the Solid State, 2022, Vol. 64, No. 10


