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Thermomechanics and statistical mechanics of an adiabatically
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A statistical distribution for an adiabatically isolated body is proposed and its temperature is defined as a

function of a given energy. It is obtained as a result of the generalization of the statistical distribution for an

ensemble of oscillators, in which the probability is proportional to the time of motion on each small section of the

oscillator trajectory in the phase space. This distribution makes it possible to explain the thermoelastic effect —
the dependence of the body temperature on the deformation under its adiabatic mechanical loading. The proposed

explanation is in clear agreement with the first law of thermodynamics.
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1. Introduction

Close interrelations can be found between two rather

remote sections of thermal physics — experimental study

of mechanical and thermal phenomena in an adiabatically

isolated body and statistical mechanics in adiabatic isolation

conditions. The key condition here is the adiabatic isolation

condition which releases a body from
”
shaking“ by external

fluctuations. The first experimental results which form

the basis of thermomechanics were presented in classical

papers [1,2]. They can be combined into a simple empirical

formula which describes a relative change of temperature

of an adiabatically isolated body under uniaxial mechanical

deformation
1T
T

= −
α

cρ
σ, (1)

where α is (linear) thermal expansion coefficient, c is

specific heat capacity, ρ is body density, σ is mechanical

stress. Note that temperature decreases (1T < 0) for most

bodies under tension (σ > 0). It should be also noted that

the effect itself is, evidently, a manifestation of the nonli-

nearity (anharmonicity) of interatomic forces. A statistical

distribution for small subsystems of an isolated body, which

can also include its atoms, is only approximately described

by the Gibbs distribution [3]:

f B(p, q) = A exp

[

−
H(p, q)

kBT

]

, (2)

since the body state equation in this case reduces to a simple

equality

H(p, q) = E. (3)

Here H is the Hamiltonian function, p and q — generalized

momentums and coordinates, kB — the Boltzmann constant,

A — normalization constant, E — system energy. Thus,

it is of current interest to find a proper substitute of

distribution (2) for an adiabatically isolated body.

While noting the long-time history of the thermome-

chanics of an adiabatically isolated body [4], we would

like to point out the non-decreasing interest in it and

the new experimental results obtained recently [5,6]. The

thermoelastic effect can also be a ground for advanced

technologies of solid-state cooling in cooling units [7].
Thereat, the effect itself is still explained somewhat vaguely.

This applies, in particular, to the energy balance in the

adiabatic deformation process [8].

A relation between thermomechanics and statistical me-

chanics is established in the present paper on the basis of

a simple mechanical explanation [9] of the thermoelastic

effect, where an adiabatic invariant is used [10]:

I =
E
ω

(4)

in the dynamics of a parametrically perturbed harmonic

oscillator (ω is oscillator frequency). This mechanical

approach is somewhat modified and generalized. The

generalization consists in the transition to an ensemble of

harmonic (anharmonic) oscillators which demands that the

appropriate statistics be introduced. Special attention is

paid to the energy balance in the thermomechanics of an

isolated body which, of course, reduces to the first law of

thermodynamics

dQ = 0 = dE − dA, (5)
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where dQ is the transferred heat energy, dE is the change

of system energy, dA is the work of external forces.

2. Statistical mechanics
of an adiabatically isolated body

Statistical mechanics in the general sense [3,11] describes
the evolution of small subsystems of a large system in its

”
equilibrium“ state, which in the considered case depends

on the single initial parameter E in equation (3). Here we

will reformulate the conventional mechanics of an isolated

system in terms of statistical mechanics by introducing the

corresponding distribution density in its phase space. We

begin with the simplest mechanical system — a harmonic

oscillator described by a Hamiltonian function

H(p, q) =
p2

2m
+

f 0q2

2
, (6)

where m is mass, f 0 is the elastic constant. Oscillations of

an isolated oscillator with the given energy E have a half-

period

τ0 =

a
∫

−a

dq
√

2
m

(

E −
f 0q2

2

)

= π

√

m
f 0

, (7)

which does not depend on energy E and oscillation

amplitude a . The statistical mechanics considers, instead

of a real motion trajectory, the probability of detection of a

system in the small neighborhood of each point of a phase

space

dP(p, q) = f (p, q)d pdq. (8)

This probability in the given case is, evidently, proportional

to the time interval

dt =
dq

√

2
m

(

E −
f 0q2

2

)

, (9)

which is occupied by mechanical movement in the region

under consideration. Thereat, the canonical momentum

p =

√

2m

(

E −
f 0p2

2

)

(10)

is an associated parameter. It can be easily checked that

the desired distribution density can be written as a delta

function

f (p, q) = Aδ

(

p2

2m
+

f 0p2

2
− E

)

, (11)

while the statistical sum, which determines the normaliza-

tion, is equal to the half-period of mechanical movement

Z = τ0. (12)

The notion of temperature must be also defined for a

complete transition to the terms of statistical mechanics in

this mechanical problem. In [9], oscillator
”
temperature“

is naturally identified with the total mechanical energy of

its oscillations: T = E (kB = 1). Though this simplification

does not belittle the physical justification of the approach

suggested in [9], we need a proper definition of temperature

for a large system. The only simple definition of temperature

(reciprocal temperature β = 1/T ) of an isolated body can

be as follows [12]:

〈β〉 =
∂ lnZ
∂E

. (13)

We get 〈β〉 = 0 for one harmonic oscillator, so that its

temperature is not defined. We may state that this simple

mechanical system does not have full statistics, and the

notion of temperature also has no sense.

In order to use formula (13), we pass on to an

oscillator ensemble which will be considered as an isolated

body model (Einstein model). Oscillators can also be

anharmonic. It is easy to write down the distribution density

for an ensemble of N independent oscillators

f N(p, q) = Aδ(E1 + E2 + . . . − E)δ

(

p2
1

2m
+ V (q1) − E1

)

× δ

(

p2
2

2m
+ V (q2) − E2

)

. . . , (14)

where i = 1, 2, . . . , N is oscillator number, V (q) is potential
energy, and its statistical sum

ZN =

E
∫

0

dE1

E−E1
∫

0

dE2 . . . τ (E1)τ (E2) . . . (15)

Here τ is the half-period of anharmonic oscillations. We

obtain the following for an ensemble of harmonic oscillators

in which the half-period τ0 does not depend on energy

ZN =
EN−1

2N−2
τ N
0 . (16)

Temperature in this case is defined and equal to

T =
1

〈β〉
=

E
N − 1

, (17)

which agrees with [9] and seems to be quite reasonable.

For a statistical explanation of the thermoelastic effect,

let us consider an ensemble of anharmonic oscillators with

potential energy

V (q) =
f 0q2

2
−

gq3

3
, (18)

where g is the anharmonicity constant. Now the oscillation

half-period τ depends on oscillator excitation energy. Let

us find this dependence approximately using a harmonic

approximation of potential (18) in the neighborhood of the

average value of its minimum point

qE =
g〈q2〉

f 0

=
gE

f 2
0

. (19)
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Mean displacement of the equilibrium point of anharmonic

oscillations defines the linear expansion of an anharmonic

body [13]. The half-period of oscillator oscillations is found

using formula (7) where f 0 should be substituted by

f = V ′′(qE) = f 0 −
2g2E

f 2
0

. (20)

Then we get

τ (E) =
τ0

√

1−
2g2E

f 3
0

∼= τ0

(

1 +
g2E

f 3
0

)

. (21)

The statistical sum of an ensemble of anharmonic oscillators

is also found accurate to the second order according to the

anharmonicity constant g :

ZN ≈
EN−1

2N
τ N
0

(

1 +
g2E

f 3
0

)

. (22)

Then we determine the ensemble temperature in the

specified approximation

T =
E

N − 1
−

g2

f 3
0

(

E
N − 1

)2

. (23)

It means that the average energy of an anharmonic oscillator

in the ensemble E/(N−1) should not be identified with

average oscillation energy which defines ensemble temper-

ature T . The disparity in the considered approximation is

equal to the energy of oscillator oscillations with an ampli-

tude equal to the average value of thermal expansion qE .

The disparity in (23) confirms the rightfulness of the first

law of thermodynamics (5) in the thermomechanics of an

adiabatically isolated body. Indeed, the work of an external

force, let us say, under tension (F > 0) of an anharmonic

oscillator increases its internal energy

E
N − 1

= T +
g2

f 3
0

(

E
N − 1

)2

+
F2

2 f 0

. (24)

Let us regroup the terms in the right member of this equa-

lity, by separating the elastic energy of total deformation

qE + F/ f 0:

E
N − 1

= (T − qEF) +
f 0q2

E

2
+

f 0

2

(

qE +
F
f 0

)2

. (25)

Separation of the elastic energy of total deformation is

required for consistency with the first law of thermody-

namics [14]. Thus, the suggested statistical description

of the dynamics of an isolated ensemble of anharmonic

oscillators makes it possible to explain the thermoelastic

effect described by empirical formula (1) (the first term

in (25)), as well as to justify the energy balance in the

process of deformation of an adiabatically isolated body.

To conclude the present paper, let us formulate a

generalization of statistical distribution (14) for an Einstein

model for the general case of an adiabatically isolated body:

f (p, q) = Aδ
(

H(p, q) − E
)

, (26)

where

H(p, q) =
1

2
m−1

ik pi pk + V (q) (27)

— Hamiltonian function, mik — symmetric matrix of mass

constants in the quadratic form of kinetic energy, arising

after exclusion of the system center of mass coordinates. It

is assumed here that the body center of mass coordinates are

excluded, since they are cyclic variables with zero potential

energy. The half-period τ for such variables is infinite.

3. Conclusion

We have approached the determination of distribution

density (26) for an adiabatically isolated body based on

the empirical regularities observed during its mechanical

deformation. A new approach to statistical mechanics

provides a corresponding definition of temperature of an

isolated body entirely in internal terms

〈

1

T

〉

=
∂ lnZ
∂E

, (28)

Z =

∫

∏

dqd p δ
(

H(p, q) − E
)

. (29)

Of course, the new statistics with distribution density (26),
in addition to the suggested empirical justification, needs

a theoretical justification as well. Such a justification can

be a formulation of the quantum theory and the associated

statistical mechanics in the covariant form suggested in [15].
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É.S.N. Lopes, A.M.G. Caevalano. arXiv.1806.07959 [cond-
mat.mtrl-sci] (2020).

[8] I.A. Stepanov. JCBPS Section C 10, 2, 51 (2020).
[9] A.I. Slutsker, V.P. Volodin. Thermochim. Acta 247, 111

(1994).

Physics of the Solid State, 2022, Vol. 64, No. 11



1776 N.N. Gorobey, A.S. Lukyanenko, A.V. Goltsev

[10] L.D. Landau, E.M. Lifshitz. Mekhanika. Izd-vo fiz.-mat. lit. M.

(1958). 206 s. (in Russian).
[11] R.F. Feynman. Statistical mechanics. Mir, M. (1975). 408 s.

(in Russian).
[12] N.N. Gorobey, A.S. Lukyanenko. FTT 63, 663 (2021) (in

Russian).
[13] Ch. Kittel. Introduction to Solid State Physics. Nauka, M.

(1978). 792 s. (in Russian).
[14] N.N. Gorobey, A.S. Lukyanenko. FTT 59, 1793 (2017) (in

Russian).
[15] N. Gorobey, A. Lukyanenko, A. Goltsev, arXiv:2205.07232v1

[cond-mat.stat-mech] (2022).

Physics of the Solid State, 2022, Vol. 64, No. 11


