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Viscous flow of two-component electron fluid in magnetic field
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In pure conductors with a low density of defects, frequent electron-electron collisions can lead to the formation

of a viscous fluid consisting of conduction electrons. In this work, is studied magnetotransport in a viscous fluid

consisting of two types of electrons, for which some of their parameters are different. The difference between such

system and the one-component electron fluid is as follows. The scattering of electrons with their transitions from

one component to another can lead to an imbalance in flows and concentrations, which affects the flow as a whole.

In this work, the balance transport equations for such a system are constructed and solved for the case of a long

sample with rough edges. The equation for the flow of the unbalance value towards the edges contains the bulk

viscosity term. It is shown that in sufficiently wide samples, the transformation of particles into each other during

scattering leads to the formation of a single viscous fluid flowing as a whole, while in narrow samples the two

components flow as two independent fluids. The width of the sample at which this transition occurs is determined

by the internal parameters of the fluid and the magnitude of magnetic field. The distributions of the flow of the fluid

components over a sample cross section and the magnetoresistance of a sample are calculated. The latter turns out

to be positive and saturating, corresponding to the transition with increasing of magnetic field from independent

Poiseuille flows of the two components to the Poiseuille flow of a uniform fluid.
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1. Introduction

Electron–electron collisions in two- and three-dimensional

conductors with a low density of defects may induce

the formation of a viscous electron fluid and estab-

lish the hydrodynamic transport regime. Although the

theory of a viscous electron fluid in solids has been

developed extensively for a long period of time [1–3],
unambiguous experimental evidence of the formation of

such a fluid have been obtained only recently in high-

quality graphene, Weyl semimetals, and quantum wells

based on GaAs [4–27]. The conclusion regarding the

presence of hydrodynamic flow in these experiments was

made based on observations of the dependence of the

average resistance of a sample on its width [4]; nonlo-

cal negative resistance [5–7]; giant negative magnetore-

sistance [12–20]; and magnetic resonance at a doubled

cyclotron frequency [21–27]. The spatial distribution of

the current density and the Hall electric field in a flow of

two-dimensional electrons in graphene strips has recently

been measured directly in [10,11]. The experimental

observation of hydrodynamic transport facilitated the de-

velopment of its theory in various new directions (see,
e.g., [28–42]).
Other types of hydrodynamic phenomena related to

nonuniform distributions of particle flows throughout a

sample may also be manifested in Ohmic samples, where

the scattering of carriers off defects produces the domi-

nant contribution to momentum relaxation. A consistent

microscopic calculation of shear and bulk viscosities for

two-dimensional electrons in a sample with defects of a

small radius was performed in [39,40]. Hydrodynamic

transport in two-component electron–hole systems was

studied both in Ohmic samples with defects and in pure

samples in [43–47]. It was demonstrated that near-edge

flow layers with active carrier diffusion and recombination

are formed in such systems. Specifically, the current through

the sample may flow primarily along these layers in two-

component systems with equal densities of electrons and

holes, inducing a strong linear magnetoresistance. Such

layers may form both in Ohmic samples with defects and

in pure samples [43,46,47]. In the latter case, balance

in near-edge layers is maintained by shear viscosity and

recombination effects.

It follows from the results of analysis of data on the

giant negative magnetoresistance that (see, e.g., [19,20]),
although viscous flows of a one-component electron fluid

are established in samples with a low defect density, the

hydrodynamic transport regime is retained at low tem-

peratures when electron–electron collisions become very

rare. Apparently, the interelectron interaction in this regime

remains important for the formation of a viscous fluid, but

the relaxation of shear stresses in it, which defines the shear

viscosity, proceeds [19,20] via the scattering of electron

fluid quasiparticles off defects. The viscosity coefficients

of electrons (or, in more exact terms, quasiparticles of an

electron Fermi fluid) due to their scattering off defects are

the quantities that govern hydrodynamic transport in this

regime. The authors of [19,20] obtained estimates of this
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”
residual shear viscosity“ by analyzing the experimental data

from [14–18].
In the present study, a theory of magnetotransport in

a viscous two-component fluid consisting of two types

of electrons, which differ in their parameters and may

transform into each other in the event of scattering,

is developed. Such systems are found, e.g., in two-

dimensional conductors in a strong tilted magnetic field,

which induces spin splitting of the electron spectrum and

the formation of two Zeeman-split subbands with different

parameters. The intensity of scattering of electrons within

each subband off each other is significantly higher than

the intensity of scattering of electron pairs from different

subbands.

Transport phenomena in such systems may be assigned

to the spin Hall effect group. Related effects of the

group of the spin Hall effect in a viscous electron

fluid have been studied recently in [41,42] in zero and

weak magnetic fields. In contrast to these studies, the

parameters of two types of electrons (e.g., electrons in

two strongly split Zeeman subbands) are assumed to

differ greatly in the present research; therefore, these

electrons have almost independent dynamics, with rare

transformations into each other in the event of scatte-

ring.

The flow of a two-component electron fluid in a long

sample with rough edges, where the momentum relaxation

is effected via particle scattering off edge irregularities,

is considered. Following [43–47], we construct balance

equations with allowance for the emergence of a Hall

electric field, shear viscosity, and weak scattering with

particle type change (e.g., spin-flip transitions). It is

demonstrated that independent Poiseuille flows of each fluid

component form in sufficiently narrow samples. Owing

to the transformation of fluid component flows into each

other, the flow along a sufficiently wide sample is ac-

companied by emerging flows of particles of each type

toward opposite sample edges. A deficiency or excess

of fluid components is established near opposite edges,

and the Poiseuille flow of a uniform two-component fluid

forms in the bulk of a sample. The near-edge flow

is governed by the balance between, on one side, the

shear viscosity effect and, on the other side, transitions

with particle type change and diffusion toward the edges.

The obtained hydrodynamic equations demonstrate that

the last two effects constitute a microscopic bulk viscosity

mechanism for transport of a density imbalance of two fluid

components.

Analytical formulae for the distributions of flows of

fluid components and the net current are derived. The

obtained formula for current yields a positive saturating

magnetoresistance in the region of small fields where

the dependence of viscosity coefficients on the magnetic

field is insignificant. It is noted that the predicted

positive magnetoresistance may constitute a mechanism

(or one element of a mechanism) of suppression of

the giant negative magnetoresistance by a tilted magnetic

field and thus provide an explanation for the observations

made in [14,23,27] in experiments with pure GaAs quan-

tum wells.

2. Model

Let us consider the flow of a two-dimensional two-

component electron fluid in a sufficiently narrow sample

where the disorder scattering of electrons is relatively in-

significant. Two types of electrons, α = 1, 2, have different

parameters: viscosity coefficients ηα , Fermi velocities vF,α ,

and concentrations n0,α . Magnetic field B is applied

perpendicularly to the fluid layer, and electric field E0 is

applied along the sample (see Fig. 1).
Such a system may be implemented, e.g., in a two-

dimensional electron Fermi liquid of Fermi gas in a quantum

well, which has both perpendicular magnetic field B and

strong magnetic field B‖ in the layer plane applied to it.

The latter filed splits the electron spectrum in spin by

1 ≫ T , where T ≪ εF is temperature. The value of 1 may

be much lower than Fermi energy εF or comparable to it.

Therefore, index α =↑, ↓ here characterizes electrons with

opposite spin directions (oriented along the quantization

axis aligned with field B‖ or in the opposite direction).
At low temperatures, electrons on two emerging Fermi

surfaces have different Fermi velocities and, consequently,

different concentrations, rates of electron-electron collisions,

and viscosity coefficients. A quantum well with two filled

size quantization levels or a double quantum well with a

filled split ground level are another examples of a two-

component electron system with rare scattering of two types

of electrons off each other.

The fluid flow is characterized by flows jα(r, t). Tran-

sitions with particle type change induce perturbations of

densities of two types of particles δn(r, t) in this flow.
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Figure 1. Long sample in magnetic field B with a two-component

electron fluid. Current flow lines of fluid components e1 and e2
are shown. Longitudinal electric field E0 is applied, and Hall

field EH(y) emerges due to the redistribution of densities δn1,2(y)
of two fluid components. Electric current I and its constituent

flows Js and Ja are directed along the sample, while flow J,

which characterizes the transport of imbalance of densities of

electrons e1 and e2, is perpendicular to the sample. An excess

or deficient concentration of components e1 and e2 is established

at longitudinal edges; therefore, intense particle diffusion and

scattering (with particle type change) proceed there. These

processes govern the bulk viscosity effect for flows along the

normal to edges.
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Following [43–47], we write the balance equations for the

number and momentum of particles in the following way:

∂δnα

∂t
+ div jα = −(Ŵαδnα − Ŵᾱδnᾱ),

∂jα

∂t
=

en0,α

m
E + ωc [ jα × ez ] − dα∇δnα + ηα1jα. (1)

Here, 1 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace

operator in layer plane xy ; the bar over α denotes the oppo-

site type of a particle: ē = h and h̄ = e; m are the effective

masses of two types of electrons, which are considered to

be equal; ωc = eB/(mc) are their cyclotron frequencies;

compressibility coefficients dα ∼ v2
F,α define the amplitude

of hydrostatic force ∇Pα expressed in terms of perturbation

of particle densities δnα (Pα are the contributions of fluid

components to pressure); and ηα = ηxx ,α are the diagonal

viscosity coefficients that depend on magnetic field [19] in
accordance with formula ηα = η0,α/[1 + (2ωcτ2,α)

2], where

η0,α are the viscosity coefficients in zero field and τ2,α are

the times of relaxation of shear stresses die to electron–
electron collisions.

The rates of transitions with particle type change Ŵα

in Eqs. (1) are proportional to the equilibrium concentra-

tions of particles of the opposite type: Ŵα = γn0,ᾱ, and

coefficient γ is defined by the microscopic mechanism

of such transitions. For example, scattering with
”
spin

flip“ due to the spin-orbit interaction of electrons is such

a mechanism for spin-split states. The terms with Hall

viscosity coefficient ηxy,α[1jα × ez ], which yields only minor

corrections in the Hall electric field in low-frequency

flows [47], are neglected in Eqs. (1). Electric field E in

Eqs. (1) contains the contribution from external applied

field E0 and Hall contribution EH(r, t), which emerges due

to the redistribution of densities δnα for compensation of

the magnetic Lorentz force.

The criterion of applicability of Eqs. (1) is the small-

ness of spatial variation of all quantities relative to mi-

croscopic lengths l2,α = vF,ατ2,α and (or) cyclotron radii

Rc,α = vF,α/ω2,α (hydrodynamic approximation) and the

slowness of collisions with particle type change. Specifically,

times τs ∼ 1/Ŵα should be much longer than times τ2,α
characterizing the shear viscosity [44].
It is also assumed that the scattering of one type of

electrons off the other type is very weak. Therefore, the

momentum relaxation in the bulk of the sample in collisions

of electrons of different types, which leads to relaxation

of flow difference j1−j2, in neglected in Eqs. (1). It was

demonstrated in [47] for an electron–hole system that, in

order for the latter processes to be negligible in transport

equations similar to (1), the following conditions regarding

characteristic time τ1 of these processes and the sample

width need to be satisfied:

τ2,α ≪ τs ≪ τ 2
1 /τ2,α, W ≪ lG0, (2)

where lG0 ∼
√
ηατ1 is the Gurzhi length that characterizes

the relative intensities of momentum relaxation in collisions

of different types of particles and in momentum diffusion

due to shear viscosity and scattering off rough sample

edges. Apparently, similar criteria apply to a system of two

types of electrons with sufficiently different characteristics:

|n0,1−n0,2| ∼ n0,α , |η0,1−η0,2| ∼ η0,α . Thus, only sufficiently

narrow samples (W ≪ lG0) are considered below, and the

momentum relaxation in the bulk of the sample is neglected.

Note that the relaxation of quantity j1−j2, which is

the z component of the spin current tensor, for two-

dimensional electrons in zero field or a sufficiently weak in-

plane magnetic field (when Zeeman splitting 1 of subbands

is smaller than temperature T or the quantum width of

levels) is a fast process. Since characteristic time τ1 of

such a process is in the last case close in the order of

magnitude to the quantum lifetime τq,ee,α ≪ τ2,α [48–51],
inequality (2) cannot be satisfied. However, the electrons of

the types 1 and 2 interact only weakly with each other

in the system considered here, and their states are not

coherent. Therefore, the characteristic times of relaxation

of their momentum and transformation into each other may

be close in this system at rare collisions of these two types

of particles: τs ∼ τ1 ≫ τ2,α , and inequality (2) is satisfied.

Let us consider the flow in a long sample with rough

edges (see Fig. 1). The applied electric field is directed along

the sample (Ex = E0), while the Hall field is perpendicular

to it: Ey = EH(y). Frequent interelectron collisions, which

define the shear viscosity effect, and rare events of scattering

of electrons off each other with change of a particle

type occur in the bulk of the sample. The scattering of

electrons at edges, y = ±W/2, is assumed to be purely

diffusive: the momentum of reflected electrons is distributed

isotropically. Such scattering may be characterized roughly

by the following simplest boundary condition:

jα
∣

∣

y=±W/2
= 0. (3)

Let us examine a sample with a metallic gate at

distance d from the layer with an electron fluid. The Hall

electric field in such a system is related to charge density

perturbation eδn by a simple formula for a plane capacitor:

EH(y) = −4πde
κ

∂δn
∂y

. (4)

Here, δn = δn1 + δn2 is the total perturbation of the elec-

tron concentration and κ is the permittivity of a dielectric

between the gate and the layer with an electron fluid.

The derivative with respect to coordinate y is denoted

hereinafter by a prime mark.

The balance equations for a steady-state flow in this

geometry take the form

j ′y,α = −γ(n0,ᾱδnα − n0,αδnᾱ),

en0,α

m
E0 − ωc jy,α + ηα j ′′x ,α = 0,

en0,α

m
EH(y) + ωc jx ,α − dαδn′

α + ηα j ′′y,α = 0. (5)
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In the case of degenerate electron statistics with a quadratic

dispersion law, εp = p2/(2m), the coefficients in Eqs. (5)
have the normal form: dα = v2

F,α/2, n0,α = k2
F,α/(4π),

vF,α = ~kF,α/m. Relaxation time τ2,α of shear stresses,

which enters the formulae for viscosity coefficients

ηα = (v2
F,ατ2,α/4)/[1 + (2ωcτ2,α)

2], depends on tempera-

ture and the Fermi energy in the following way if

the electron gas (or the electron liquid) are degenerate:

τ2,α = AεF,α/T 2, where εF,α = mv2
F,α/2 — are the Fermi

energies of components and A = A(εF,α , T ) is a function of

temperature and interelectron interaction strength parameter

r s = r s (εF,α). This function takes values on the order

of unity in typical GaAs quantum wells at temperatures

T ≪ εF,α [20].

3. Flow controlled by shear and bulk
viscosities

Let us solve Eqs. (5) describing viscous flows of a two-

component electron fluid in a long sample.

It follows from the balance equations for the particle

number (the first line of (5)) that derivatives of flows j ′y,1
and j ′y,2 are opposite. In view of boundary conditions (3),
we find that the following condition is satisfied within the

entire sample:

jy,1(y) = − jy,2(y). (6)

The physical meaning of this relation comes down to the

assertion that electric current e( jy,1 + jy,2) cannot flow in

the cross section of the sample (along axis y). However, the

”
imbalance flow“ J = jy,1(y)− jy,2(y), which amounts to

transport of perturbed concentrations of fluid components,

may be directed this way. This flow J relaxes in the vicinity

of sample edges y = ±W/2 due to the transition of particles

from one type to the other (see Fig. 1). The imbalance flow

for a two-component electron system formed by spin-split

subbands is a component of the spin current of particles

that corresponds to the spin component along field B‖ in

the well plane in direction y . A detailed description of

processes of this type for a two-component electron–hole
system was given in [43–47].

To simplify Eqs. (5), we introduce the following quanti-

ties: δρ = (n0,2δn1−n0,1δn2)/n0 is a quantity characterizing

the imbalance of density perturbation; 1/τs = 2γn0 is the

averaged rate of transitions between two fluid components;

n0 = n0,1 + n0,2 is the overall equilibrium electron concen-

tration; and ρ0 = n0,1−n0,2 is the equilibrium difference

between the concentrations of two types of electrons.

Condition d ≫ aB, where aB is the Bohr radius of two-

dimensional electrons, needs to be satisfied in order for

electrostatic relation (4) (
”
smooth channel approximation“)

to be applicable. It is easy to demonstrate (see, e.g., [26])
that this condition yields the following relation between

the coefficients of Eq. (5): e2n0,αd/(mκ) ≪ dα . Using

this inequality and the notation introduced in the previous

paragraph, we may rewrite Eqs. (5) in the following from:

J′ = −δρ/τs ,

en0E0/m + η1 j ′′x ,1 + η12 j ′′x ,2 = 0,

e̺0E0/m − ωcJ + η1 j ′′x ,1 − η12 j ′′x ,2 = 0,

M

(

n0,1

η1
+

n0,2

η2

)

δn′ + ωc

(

j1,x
η1

+
j2,x
η2

)

= 0,

M

(

n0,1

η1
− n0,2

η2

)

δn′ + ωc

(

j1,x
η1

− j2,x
η2

)

=

(

d1

η1
δn′

1 −
d2

η2
δn′

2

)

+ J′′. (7)

Here, M = 4πe2d/(mκ).
The first of these equations characterizes the relation

between imbalance current J and concentration perturba-

tion δρ imbalance. The second and the third equations

characterize the transport of momentum of two fluid

components along the sample (in direction x) due to the

shear viscosity effect and the contribution of imbalance

current J (in direction y) to this transport. The latter

contribution emerges due to the magnetic Lorentz force and

the difference in parameters of two fluid components. The

fourth equation in (7) characterizes the balance of the mag-

netic Lorentz force and the electric force from the Hall field

in direction y . The last equation in (7) defines the balance

of flows in direction y driven by the electric, ∼ δn′, and

magnetic, ∼ jα,x , forces; spatially nonuniform perturbations

of concentrations δnα(y), which lead to diffusion; and the

influence of shear viscosity on the flows along y .
Let us derive the expressions for overall density pertur-

bation δn and asymmetrized density perturbation δρ from

the fourth and the first equations in (7), respectively, and
insert the obtained quantities into the last (fifth) equation.

The resulting equation characterizes the balance of the

asymmetrized magnetic Lorentz force and the friction force

for flow J from the bulk viscosity effect:

ωc
n0,2 j1,x − n0,1 j2,x

n0

+ ζ J′′ = 0. (8)

It was taken into account here that τs ≫ τ2,α , and the

”
overall“ coefficient of bulk viscosity of a two-component

fluid, which is controlled by the scattering with particle type

change and the diffusion of concentration perturbation, was

introduced:

ζ =
ζ1η1 − ζ2η2

η1η2

n0,1η2 − n0,2η1

n0

, (9)

where
”
partial“ coefficients of bulk viscosity of each particle

type take the form of ζα = dατs/2. Since the criterion of

applicability of the initial equations is τs ≫ τ2,α , both ζα
and overall bulk viscosity ζ are large comparted to shear

viscosities ηα .

It follows directly from the second equation in (7)
that the symmetrized density of flow along the sample
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Js = (η1 jx ,1 + η2 jx ,2)/η is calculated independently of the

other quantities and has the Poiseuille profile:

Js(y) =
en0

m
E0

2η

[(

W
2

)2

− y2

]

, (10)

where η = η1 + η2.

The obtained Eq. (8) and the third equation in (7) need to

be used to find some asymmetric linear combination, Ja , of

flows j1 and j2 and imbalance current J . It is convenient to
choose Ja = (η1 jx ,1−η2 jx ,2)/η, which appears in the third

equation in (7), as such a combination. The third equation

in (7) and Eqs. (8) and (10) then yield the following final

equation for the imbalance current:

e1n0

m
E0 − ωc J − ζ η

a sωc
J′′′′ = 0, (11)

and boundary conditions J
∣

∣

y=±W/2
= 0 and J′′

∣

∣

y=±W/2
= 0.

Additional notation was introduced here:

1n0 =
2n0,1n0,2(η2 − η1)

n0,1η1 + n0,2η2
, a s =

η

n0

(

n0,2

η1
+

n0,1

η2

)

. (12)

The solution of the formulated boundary problem for

function J(y) takes the form

J(y) =
e1n0E0

mωc

×
[

1− cosh(
√

iλy)

2 cosh(
√

iλW/2)
− cosh(

√
−iλy)

2 cosh(
√
−iλW/2)

]

. (13)

Number λ in this formula is the modulus of eigenvalues of

Eq. (11). It depends on the magnetic field and the overall

coefficients of bulk and shear viscosities:

λ =
√
ωc

4

√

a s

ζ η
. (14)

This number specifies the widths of the near-edge regions,

lc = 1/λ, where intense diffusion and particle type trans-

formations, which define the bulk viscosity, and diffuse

transport of x -components of momenta of fluid components

in direction y due to the shear viscosity effect occur.

Note that intrinsic length lc is estimated as√
Rc,α

4
√

ls ,αl2,α in a weak magnetic field, when Rc,α ≫ l2,α,
at the parameters of two types of particles being of

the same order of magnitude (here, l2,α = vF,ατ2,α and

ls ,α = vF,ατs are the relaxation length of shear stress and the

relaxation length with respect to transitions 1 ↔ 2). Since

τs ≫ τ2,α , length lc is much greater than length l2,α ; this is
exactly the relation needed for the hydrodynamic equations

of the model to be applicable.

Asymmetric combination of longitudinal flows Ja is

expressed in terms of symmetric combination Js and

imbalance flow J in the following way:

Ja = −(aa/a s)Js − [ζ /(a sωc)]J
′′, (15)

where aa = η/n0[(n0,2/η1)−(n0,1/η2)]. The maximum

amplitude of flow Js at the channel center and the
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Figure 2. Distributions of imbalance flow J (a, b), symmet-

ric Js (c) and asymmetric Ja (d) flow components over the

sample cross section for several values of magnetic field B
corresponding to different ratios between the width lc of the

near-wall layers and the sample width W . These quantities

are plotted in characteristic scales of flows ju = enuE0/(mωu)
(panels (a), (c), (d)) and jc(B) = juωu/ωc (panel (b)). Here,

ωu = ηu/W 2 , nu, and ηu are the units of measurement of frequency,

concentration, and viscosity, the specific values of which do not

affect the profile shape. The curves are plotted for the following

parameters of two components of an electron fluid: n1/nu = 1,

n2/nu = 3, η1/ηu = 0.4, η1/ηu = 4, ζ /ηu = 29. Curves 1−7 in

each panel correspond to the following ratios ωc/ωu, which set the

magnitudes of magnetic field: ωc/ωu = 2.5, 9, 19, 50, 210, 700,

2700. The following widths of the near-edge layers correspond to

these field values: lc/W = 1.2, 0.66, 0.45, 0.28, 0,14, 0.074, 0.038.

Curves 1−7 in panel (c) are all matching.

amplitudes of flows J and Ja near the channel center

are related each to others (in order of magnitude) as the

following quantities: W 2/η, 1/ωc ,
√

τs/τ2,α/ωc (under the
condition that 1n0 ∼ n0 and aa ∼ a s).

In what follows, we consider the range of magnetic

fields where the field dependence of coefficients of shear

viscosity ηα is insignificant, which corresponds to the

condition ωcτ2,α ≪ 1.

Figure 2 shows the distributions of flows J, Js , Ja over

the sample profile at several values of magnetic field B and

certain values of shear viscosities ηα, concentrations n0,α,

and the overall bulk viscosity ζ . It can be seen that the

imbalance flow for narrow samples and weak fields, W . lc ,

has a parabolic profile and increases with magnetic field.

Semiconductors, 2022, Vol. 56, No. 9
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The imbalance current for wide samples and sufficiently

strong fields, W ≫ lc , decreases with increasing field and

assumes a flat profile in the bulk of the sample; at the

same time, it oscillates in near-edge layers with a thickness

on the order of lc and turns to zero at y = ±W/2 (see
Figs. 2, a, b). Thus, there exists a sample width W ∼ lc at

which amplitude J reaches its maximum (see the inset of

Fig. 3). The profiles of flow Js are exactly parabolic and

independent of the magnetic field. The profile of Ja are

almost parabolic, and their amplitude depends strongly on

the magnetic field (see Figs. 2, c, d).
With the flows J, Js , Ja determined, one may calculate

the contributions of each fluid component to the flow den-

sity: j1 = (η/η1)(Js + Ja)/2 and j2 = (η/η2)(Js−Ja)/2.
These values were, in turn, used to calculate the net electric

current, I = e
∫ W/2

−W/2
dy [ j1(y) + j2(y)], and the sample

resistance per unit width, R = E0W/I . The following

expression was obtained:

I =
en0E0/m

(n0,1/n0)η1+(n0,2/n0)η2

{

W 3

12
+
2ζ

ω2
c

× n0,1n0,2(η1−η2)
2

n0(n0,1η1 + n0,2η2)
Re

[√
i tanh

(√
i
λW
2

)]}

. (16)

It can be seen that the term with hyperbolic tangent is small

compared to the first term in curly brackets in samples with

their width being much greater than the characteristic near-

edge layer width: W ≫ lc , lc = 1/λ. Formula (16) thus

yields the following expression:

Iw =
eE0

M
W 3

12

n0

(n0,1/n0)η1 + (n0,2/n0)η2
, (17)

which corresponds to the Poiseuille flow of a fluid with

shear viscosity ηtot = (n0,1/n0)η1 + (n0,2/n0)η2 (viscosity of

a uniform two-component fluid with partial contributions

from two components). Frequent transformations of parti-

cles type 1 and 2 into each other occur in this regime near

the sample edges, and imbalance flux J(y) ≈ const emerges

in the bulk: particles of the first type move toward one edge,

while particles of the second type move toward the opposite

edge (see Eqs. (6) and (13) and Figs. 1 and 2).
It has been demonstrated that formula (16) for narrow

samples, W ≪ lc , yields the following expression for cur-

rent I , which consists of a sum of contributions from two

independent Poiseuille flows of particles type 1 and 2:

Ish =
eE0

M
W 3

12

(

n0,1

η1
+

n0,2

η2

)

. (18)

It follows from analysis that the value of Iw is always

lower than the value of Ish. Therefore, the averaged

sample resistivity R increases from E0W/Ish to E0W/Iw as

magnetic field B grows stronger and width lc(B) ∼ 1/B1/2

of the near-edge region decreases from the case of

W ≪ lc to W ≫ lc . We remind that only the limit of

weak magnetic fields, ωcτ2,α ≪ 1, with small variations of
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Figure 3. Dependence of averaged sample reistivity R on

magnetic field B for several values of bulk viscosity ζ . Magnetic

field B0 of transition from the flow regime with independent fluid

components 1 and 2 to the regime of unification of components

due to scattering with particle type change is characterized by

equality lc(B, ζ ) = W and formula (19). Resistance R is plotted

in units of R0 = E0W/Ish . The magnetic field is plotted in units

of Bu = mcωu/e. Curves 1−3 correspond to the values of the

bulk viscosity ζ /ηu = 8.7, 58, 203; the values of other parameters

are the same as in Fig. 2. The field dependence of imbalance

current J|y=0 at the sample center is shown in the inset. This

plot demonstrates that the absolute value of the imbalance current

induced by scattering with electron type change is small in the

limit of both strong, B ≫ B0, and weak, B ≪ B0, magnetic fields.

the diagonal shear viscosity coefficient η1 are considered

here. It can be demonstrated that the latter condition

is congruent with inequality W ≫ lc at sample width

τ
3/4
2,α τ 1/4

s ≪ W/vF,α ≪ τ
1/2
2,α τ

1/2
1 (it is assumed here that

the difference between the parameters of two types of

electrons is on the order of these parameters themselves:

|η1−η2| ∼ η1 ∼ η2 and |n0,1−n0,2| ∼ n0,1 ∼ n0,2).
Thus, a transition between the regimes described above

(the regime of the independent flows of two fluid compo-

nents and the regime with the imbalance flow J between the

near-edge regions where 1 ↔ 2 transformations proceed)
occurs near the magnetic field at which the quantity

lc = lc(B) assumes a value of W with the increase of

magnetic field. Figure 3 presents the dependences of

the averaged resistivity R on magnetic field B at several

values of the bulk viscosity ζ . The transition between the

mentioned regimes is a smooth crossover that occurs at

the magnetic field B0(W ) = mcωc,0/e corresponding to the

borderline cyclotron frequency:

ωc,0 =

√

ζ η

a s

1

W 2
. (19)

The obtained magnetoresistance is similar in nature to

the positive saturating magnetoresistance of two-component
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systems in bulk Ohmic samples with defects (see discussion

in [44]). A transition from independent uniform Ohmic

flows of two carrier types (e.g., electrons and holes) to

the flow of two types of recombinating carries occurs in

such systems as the magnetic field intensifies. Owing to

recombination and diffusion, the magnetic field affects flows

in the central part of a wide sample and in the near-

edge layers in different ways; this induces spatial flow

nonuniformity and a positive saturating magnetoresistance

in wide samples.

4. Discussion of results

Let us, first of all, point out the following uncommon

feature of the obtained result. As magnetic field B grows

from values being much lower than transition field B0 to

values much higher than it, longitudinal current I undergoes

a significant variation from Ish to Iw , although transverse

imbalance current J and the scattering with electron type

change in the central part of a sample, which produces

the dominant contribution to the change of the longitudinal

current, are relatively weak within the indicated range. The

reasons behind this are as follows.

The scattering with electron type change in zero magnetic

field is much less probable than collisions of electrons

of one and the same type (it is worth reminding that

sufficiently narrow samples, W ≪ lG0, with insignificant

momentum relaxation in collisions of electrons of different

types are considered here). Therefore, the processes

of shear momentum transport of two types of electrons

do not merge into a single process at B = 0, and each

component forms an independent Poiseuille flow with its

own viscosity ηα .

The characteristic distance traveled by an electron of a

certain type before transforming into another particle in

diffusion due to collisions with electrons of the same type

is estimated in zero field as vF
√
τ2τs (here and elsewhere in

the text below, index α is omitted for brevity).

A magnetic field is needed to mix longitudinal and

transverse flow components. The above analysis and the

solution of hydrodynamic equations (7) suggest that the

characteristic distance sufficient to complete all processes

(including field-induced flow turning) needed to obtain a

strong effect of scattering with type change on the net

current is estimated as lc ∼ √
RcvF

4
√
τ2τs . If length lc is

comparable to (or smaller than) sample width W , the time

interval of electron diffusion between edges is sufficiently

long for electrons to undergo scattering with type change.

Herewith longitudinal and transverse flows also are mixed

under the influence of the magnetic Lorentz force.

In moderate fields with lc ∼ W , the mixing of longitudinal

and transverse flows is significant within the entire sample,

and the contribution of the discussed processes to current I
is large. The case of strong magnetic fields with lc ≪ W is

more complicated. The mixing of x and y flow components

and the bulk viscosity effect are significant only in near-

edge regions W/2−|y | . lc . Although in the central region,

W/2−|y | ≫ lc , electrons manage to undergo transitions

with type change before reaching the edges, these processes

do not contribute to flows Js and Ja (owing to the spatial

uniformity of flow J). Indeed, the values of flows Js , Ja ,

and J in this region are derived from the balance condition

for the Hall field force, for the Lorenz force, and for the

forces of shear friction and the longitudinal electric field

(this follows from Eqs. (7) at J = const). Thus, Js , Ja ,

and J in the central region are not related to transitions with

electron type change and the bulk viscosity. The amplitude

of J is finite, but small compared to those of Js and Ja (see
formula (15) and explanation below it).
Thus, transitions with particle type change and the bulk

viscosity in this regime may be called a
”
catalysts“ of the

unification of electrons into a uniform fluid in wide samples,

W ≫ lc . The characterized nature of flow is reflected in

the fact that current I is independent of the bulk viscosity

coefficient in the limit of both weak and strong magnetic

fields. The discussed effect defines only the position and

the width of the transition region (see formulae (17), (18)
and Fig. 3). Note that catalysts in chemical reactions behave

in a similar way: they affect the reaction rate, but are not

present in the initial and final substances.

Let us now turn our attention to the probable experimen-

tal manifestations of the discussed effects.

Magnetotransport in high-purity GaAs quantum wells

with a magnetic field tilted by different angles applied to

them was examined experimentally in [14,23,27]. A strong

negative (
”
giant“) magnetoresistance in a moderate mag-

netic field perpendicular to the two-dimensional electron

plane was observed. This effect was attributed in [19] to

the formation of a viscous electron fluid of two-dimensional

electrons in a well and to the field dependence of their shear

viscosity. The application of a magnetic field component in

the well plane in experiments [14,23,27] resulted in a rather

fast suppression of the giant negative magnetoresistance

and the emergence of a positive magnetoresistance. This

suppression is considered to be an important characteristic

property of the giant negative magnetoresistance, but re-

mained unexplained (see, e.g., discussion in [52]).
Our hypothesis is that the emergence of Zeeman splitting

of states of two-dimensional electrons and the formation of

two weakly coupled components of an electron fluid with

opposite spins and differing parameters may contribute to

the observed suppression of the negative magnetoresistance

in the presence of an in-plane magnetic field component.

Indeed, the Fermi velocities, densities, relaxation times,

and viscosity coefficients of electrons in spin-split subbands

may differ considerably at low temperatures in sufficiently

strong in-plane fields. Thus, a one-component electron fluid

in quantum wells becomes a two-component one that may

sustain various types of flows (including the ones considered
in the present study).
The obtained results demonstrate that the magnetore-

sistance of a two-component fluid in sufficiently narrow
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samples, τ
3/4
2 τ 1/4

s ≪ W/vF ≪ τ
1/2
2 τ

1/2
1 , and in relatively

weak magnetic fields, ωcτ2 ≪ 1, becomes positive due to

the effect of shear viscosity and rare spin-flip scattering

events, which give rise to bulk viscosity for the imbalance

flow. The amplitude of this magnetoresistance is specified

by the difference in parameters of electrons in two Zeeman-

split subbands (thus, the strength of magnetoresistance

ultimately defined by the magnetic field component B‖ in

the well plane).

In order to apply this reasoning to the experimental

results reported in [14,23,27], one needs to investigate the

issue of coexistence of the giant negative magnetoresistance

due to the dependence of shear viscosities ηα on perpen-

dicular field component B z [19] and the positive magne-

toresistance examined in the present study. Apparently, this

requires calculating the influence of Zeeman splitting and

rearrangement of the electron spectrum in a quantum well

with increasing B‖ on relaxation times τ2 and τs . It appear

to be a promising avenue for further research to perform

such a calculation and compare its results with experimental

data [14,23,27].

5. Conclusion

Flows of a viscous two-component electron fluid in a

magnetic field in long samples with rough edges were

examined. It was demonstrated that the transition of

electrons from one fluid component to the other at scat-

tering results in the formation of a uniform viscous fluid,

which flows as a whole, in sufficiently wide samples. In

narrow samples, two fluid components flow independently.

The sample width corresponding to this transition is de-

fined by the magnetic field and internal fluid parameters

(specifically, bulk viscosity). The distributions of flows

of fluid components and the sample magnetoresistance

were calculated. The magnetoresistance was found to be

positive and saturating. The section of a rapid increase

in magnetoresistance corresponds to the transition between

two flow regimes characterized above.

Funding

This study was supported by Theoretical Physics and

Mathematics Advancement Foundation
”
Basis“ (project

No. 20-1-3-51-1).

Acknowledgments

The author would like to thank M.I. D’yakonov for

formulating the problem of characterizing the influence of a

tilted magnetic field on the giant negative magnetoresistance,

M.M. Glazov for reading the preliminary version of the

manuscript and stimulating advice and discussions, and

I.S. Burmistrov and M.O. Nestoklon for support, advice, and

stimulating discussions.

Conflict of interest

The authors declares that he has no conflict of interest.

References

[1] R.N. Gurzhi. Sov. Phys. Uspekhi, 94, 657 (1968).
[2] M. Hruska, B. Spivak. Phys. Rev. B, 65, 033315 (2002).
[3] A.V. Andreev, S.A. Kivelson, B. Spivak. Phys. Rev. Lett., 106,

256804 (2011).
[4] P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, A.P. Macken-

zie. Science, 351, 1061 (2016).
[5] D.A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom,

A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. No-

voselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim,

M. Polini. Science, 351, 1055 (2016).
[6] L. Levitov, G. Falkovich. Nature Physics, 12, 672 (2016).
[7] A.D. Levin, G.M. Gusev, E.V. Levinson, Z.D. Kvon,

A.K. Bakarov. Phys. Rev. B, 97, 245308 (2018).
[8] R. Krishna Kumar, D.A. Bandurin, F.M.D. Pellegrino,

Y. Cao, A. Principi, H. Guo, G.H. Auton, M. Ben Shalom,

L. A.Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi,

I.V. Grigorieva, L.S. Levitov, M. Polini, A.K. Geim. Nature

Physics, 13, 1182 (2017).
[9] A.I. Berdyugin, S.G. Xu, F.M.D. Pellegrino, R. Krishna

Kumar, A. Principi, I. Torre, M. Ben Shalom, T. Taniguchi,

K. Watanabe, I.V. Grigorieva, M. Polini, A.K. Geim, D.A. Ban-

durin. Science, 364, 162 (2019).
[10] J.A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D.J. Perello,

D. Dutta, M. Ben-Shalom, T. Taniguchi, K. Watanabe,

T. Holder, R. Queiroz, A. Principi, A. Stern, T. Scaffidi,

A.K. Geim, S. Ilani. Nature, 576, 75 (2019).
[11] M.J.H. Ku, T.X. Zhou, Q. Li, Y.J. Shin, J.K. Shi, C. Burch,

L.E. Anderson, A.T. Pierce, Y. Xie, A. Hamo, U. Vool,

H. Zhang, Francesco Casola, T. Taniguchi, K. Watanabe,

M.M. Fogler, P. Kim, A. Yacoby, R.L. Walsworth. Nature,

583, 537 (2020).
[12] J. Gooth, F. Menges, C. Shekhar, V. Suess, N. Kumar, Y. Sun,

U. Drechsler, R. Zierold, C. Felser, B. Gotsmann. Nature

Commun., 9, 4093 (2018).
[13] L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider,

R.J. Haug. Phys. Rev. B, 83, 113301 (2011).
[14] A.T. Hatke, M.A. Zudov, J.L. Reno, L.N. Pfeiffer, K.W. West.

Phys. Rev. B, 85, 081304 (2012).
[15] R.G. Mani, A. Kriisa, W. Wegscheider. Sci. Rep., 3, 2747

(2013).
[16] Q. Shi, P.D. Martin, Q.A. Ebner, M.A. Zudov, L.N. Pfeiffer,

K.W. West. Phys. Rev. B, 89, 201301 (2014).
[17] G.M. Gusev, A.D. Levin, E.V. Levinson, A.K. Bakarov. AIP

Advances, 8, 025318 (2018).
[18] G.M. Gusev, A.D. Levin, E.V. Levinson, A.K. Bakarov. Phys.

Rev. B, 98, 161303 (2018).
[19] P.S. Alekseev. Phys. Rev. Lett., 117, 166601 (2016).
[20] P.S. Alekseev, A.P. Dmitriev. Phys. Rev. B, 102, 241409

(2020).
[21] Y. Dai, R.R. Du, L.N. Pfeiffer, K.W. West. Phys. Rev. Lett.,

105, 246802 (2010).
[22] A.T. Hatke, M.A. Zudov, L.N. Pfeiffer, K.W. West. Phys. Rev.

B, 83, 121301 (2011).
[23] Y. Dai, K. Stone, I. Knez, C. Zhang, R.R. Du, C. Yang,

L.N. Pfeiffer, K.W. West. Phys. Rev. B, 84, 241303 (2011).

4 Semiconductors, 2022, Vol. 56, No. 9



658 P.S. Alekseev

[24] M. Bialek, J. Lusakowski, M. Czapkiewicz, J. Wrobel,

V. Umansky. Phys. Rev. B, 91, 045437 (2015).
[25] P.S. Alekseev. Phys. Rev. B, 98, 165440 (2018).
[26] P.S. Alekseev, A.P. Alekseeva. Phys. Rev. Lett., 123, 236801

(2019).
[27] X. Wang, P. Jia, R.R. Du, L.N. Pfeiffer, K.W. Baldwin,

K.W. West. arXiv: 2205.10196 (2022).
[28] A. Lucas. Phys. Rev. B, 95, 115425 (2017).
[29] F.M.D. Pellegrino, I. Torre, M. Polini. Phys. Rev. B, 96, 195401

(2017).
[30] R. Moessner, P. Surowka, P. Witkowski. Phys. Rev. B, 97,

161112 (2018).
[31] P.S. Alekseev, M.A. Semina. Phys. Rev. B, 98, 165412 (2018).
[32] P.S. Alekseev, M.A. Semina. Phys. Rev. B, 100, 125419

(2019).
[33] J.Y. Khoo, I.S. Villadiego. Phys. Rev. B, 99, 075434 (2019).
[34] E.I. Kiselev, J. Schmalian. Phys. Rev. B, 99, 035430 (2019).
[35] T. Scaffidi, N. Nandi, B. Schmidt, A.P. Mackenzie, J.E. Moore.

Phys. Rev. Lett., 118, 226601 (2017).
[36] T. Holder, R. Queiroz, T. Scaffidi, N. Silberstein, A. Rozen,

J.A. Sulpizio, L. Ella, S. Ilani, A. Stern. Phys. Rev. B, 100,

245305 (2019).
[37] A.N. Afanasiev, P.S. Aleksseev, A.A. Greshnov, M.A. Semina.

Phys. Rev. B, 104, 195415 (2021).
[38] A.N. Afanasiev, P.S. Aleksseev, A.A. Greshnov, M.A. Semina.

Semiconductors, 55, 566 (2021).
[39] I.S. Burmistrov, M. Goldstein, M. Kot, V.D. Kurilovich,

P.D. Kurilovich. Phys. Rev. Lett., 123, 026804 (2019).
[40] V.A. Zakharov, I.S. Burmistrov. Phys. Rev. B, 103, 235305

(2021).
[41] M.M. Glazov. 2D Materials, 9, 015027 (2022).
[42] A.N. Afanasiev, P.S. Alekseev, A.A. Danilenko, A.A. Gresh-

nov, M.A. Semina. arXiv:2203.06070 (2022).
[43] P.S. Alekseev, A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii,

B.N. Narozhny, M. Schutt, M. Titov. Phys. Rev. Lett., 114,

156601 (2015).
[44] P.S. Alekseev, A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii,

B.N. Narozhny, M. Schutt, M. Titov. Phys. Rev. B, 95, 165410

(2017).
[45] P.S. Alekseev, A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii,

M.A. Semina. Semiconductors, 51, 766 (2017).
[46] P.S. Alekseev, A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii,

B.N. Narozhny, M. Titov. Phys. Rev. B, 97, 085109 (2018).
[47] P.S. Alekseev, A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii,

B.N. Narozhny, M. Titov. Phys. Rev. B, 98, 125111 (2018).
[48] M.M. Glazov, E.L. Ivchenko. JETP Lett., 75, 403 (2002).
[49] M.M. Glazov, E.L. Ivchenko. JETP, 99, 1279 (2004).
[50] I. D’Amico, G. Vignale. Phys. Rev. B, 62, 4853 (2000).
[51] I. D’Amico, G. Vignale. Phys. Rev. B, 68, 045307 (2003).
[52] B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez,

T. Heinzel, K. Pierz, H.W. Schumacher, D. Mailly. Phys. Rev.

B, 104, 045306 (2021).

Semiconductors, 2022, Vol. 56, No. 9


