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Interaction of an electromagnetic H-wave with a semiconductor nanolayer

© I.A. Kuznetsova, O.V. Savenko

Demidov State University,

150003 Yaroslavl, Russia

E-mail: kuz@uniyar.ac.ru

Received March 2, 2022

Revised March 25, 2022

Accepted March 25, 2022

A theoretical model of the electromagnetic H-wave interaction with a semiconductor nanolayer, the thickness

of which can be comparable to or less than charge carrier de Broglie wavelength is constructed. We assume the

frequency range of the electromagnetic wave to be much less than the plasma frequency. Analytical expressions are

derived for optical coefficients as the functions of the dimensionless thickness, electromagnetic wave frequency and

incidence angle, chemical potential, and surface roughness parameters. The results derived for the limiting cases of

degenerate and nondegenerate electron gas are analyzed.

Keywords: nanolayer, Liouville equation, de Broglie wavelength, Soffer model, optical coefficients.

DOI: 10.21883/SC.2022.08.54116.33

1. Introduction

Studying the optical characteristics of the semiconductor

layers is of considerable interest for researchers due to rapid

development of the nanotechnologies in recent decades.

The developments are taken to increase the efficiency and

the energy efficiency of multi-layer solar elements [1–3].
It includes active development of the technologies of

manufacturing and growing lamellar nanostructures, which

can create layers of the thickness of several atomic layers.

In this regard, there is an increasing number of the studies

dedicated to theoretical and experimental research of the

resonance transmission of the charge carriers through the

multi-layer quantum-sized structures [4–8]. The gas of

the free charge carriers in layers of the thickness of

about an atomic one can be regarded as a quasi-two-

dimensional gas contained in a special well with end-

lessly high walls. With small thicknesses, the surface

irregularity at the atomic level substantially affects the

transport of the charge carriers in the nanolayer. Thus,

there is interest in the studies of transfer phenomena in

the nanolayers taking into account quantization of the

energy spectrum of the charge carriers and the surface

scattering.

The first known scientific studies, which examine the

effects of dimensional quantization in the semiconductor

and half-metallic films, were published in the middle of

the 20-th century [9–12]. They substantiate in detail

the causes and conditions of occurrence of the quantum

dimensional effect. There are studies, whose authors used

the various methods taking into account the roughness of

the surface for solving the quantum problem on the static

conductivity of the metallic film: the method of Green’s

functions [13–15] and direct calculation of the transfer

probability of the charge carrier as a result of scattering

processes [16–18].The studies [19,20] have solved the

above-mentioned problem using the boundary conditions

of Soffer [21] and examined the cases of a metal and

a semiconductor with arbitrary degeneracy. There are

some studies dedicated to taking into account the effect

of dimensional quantization for solving the problems of

interaction of the IR electromagnetic radiation with a super-

thin metal film [22–26].The authors of these studies have

restricted themselves in a case of the smooth surface and

have not used the strict mathematical calculation based on

the solution of the Liouville’s quantum equation. Thus,

the question on impact of the quantum electron transport

on the electric and optical characteristics of the conductive

nanolayers is still underinvestigated and requires additional

investigation.

The present study has built a theoretical model of

the interaction of the electromagnetic radiation with the

semiconductor nanolayer. The problem was solved by

the method similar to the studies [19,20], which takes

into account the surface carrier scattering by the Soffer’s

boundary conditions imposed on the Liouville’s equation.

2. Problem formulation

Let us consider the semiconductor nanolayer of the

thickness a within the field of the flat monochromatic elec-

tromagnetic wave. Let us introduce the coordinate system

so that the coordinate axes X and Y are directed in parallel

to the plane of the nanolayer, so is the axis Z perpendicular

thereto. It is suggested that the vector of the electric field

strength is parallel to the axis X (the H-configuration).

The nanolayer thickness can be comparable or less than

the de Broglie wavelength of the charge carrier. In this

case, the energy spectrum of the charge carrier will be

perpendicularly discrete and longitudinally continuous. In

case of the spherically-symmetrical energy band, the full
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energy of the electron (hole) is expressed as follows:

εl =
m
2

(v2x + v2y) + εz l, (1)

where εz l = (π~l)2/(2ma2) — the eigenvalue of the charge

carrier energy at the l-th subband, m — the effective mass

of the electron (hole), ~ — the Planck constant.

The system of the charge carriers is characterized by the

density operator [27]:

ρ̂(z , k‖, t) =
∑

l

Wl|ψl(z , k‖, t)〉〈ψl(z , k‖, t)|, (2)

which complies with the Liouville’s quantum equation.

i~
∂ρ̂

∂t
= [Ĥ, ρ̂]. (3)

Here, ψl — the wave function of the system of the

charge carriers, Wl — the statistical weight characterizing

the probability of the system being the state ψl , Ĥ —
the Hamiltonian of the system, k‖ — the longitudinal

component of the wave vector.

The present study suggests a small deviation of the system

of the charge carriers from the equilibrium state. The

density operator will be written as a sum of the equilibrium

operator ρ̂(0) and the non-equilibrium correction ρ̂(1):

ρ̂(z , k‖, t) = ρ̂(0) + ρ̂(1)(z , k‖) exp(−iωt). (4)

A case of the semiconductor with arbitrary degeneracy is

examined. The operator of the density of the equilibrium

system of the charge carriers will be written as

ρ̂(0) =
1

1 + exp
(

(Ĥ0 − µ)/k0T
) , (5)

where Ĥ0 — the Hamiltonian of the equilibrium system,

µ — the chemical potential, k0 — the Boltzmann’s constant,

T — the temperature.

Using (4) and allowing the elastic carrier scattering, the

Liouville equation (3) can be reduced to the form (6) by

the method similar to the studies [19,20]:

−iω f (1)
l + νz l

∂ f (1)
l

∂z
+

eE
~

∂ f (0)
l

∂k‖
= − f (1)

l

τ
, (6)

where τ — the relaxation time, f l — the function of

distribution of the charge carriers on the l-th subband, which

acts as a diagonal element of the density matrix ρll . For the

function f l , the expansion similar to the density operator is

true:

f l(z , k‖, t) = f (0)
l + f (1)

l (z , k‖) exp(−iωt), (7)

f (0)
l =

1

1 + exp
(

(εl − µ)/k0T
) . (8)

The boundary conditions are described by the Soffer

model, which takes into account the dependence of the re-

flectorizing coefficients of the surfaces of the q1,2 nanolayer

on the g1,2 roughness parameters and the charge carrier

incidence to the internal surface of the ϑ nanolayer:







f (1)+
l = q1(g1, ϑ) f (1)−

l atz = 0,

f (1)−
l = q2(g2, ϑ) f (1)+

l atz = a,
(9)

q1,2(g1,2, ϑ) = exp
(

−(4πg1,2 cos ϑ)2
)

, (10)

g1,2 =
gs1,2

λB
, (11)

where f (1)±
l — the functions of the distribution of the

electrons (holes) with a positive and negative projection

of the wave vector on the axis Z, respectively, gs1,2 — the

mean square height of the surface relief of the lower and

upper surface, respectively, λB — the de Broglie wavelength

of the charge carrier.

The found function of distribution allows calculating the

density of the current j induced by the electromagnetic

wave and the integral conductivity σa [19,20] by the

formulas (12), (13):

j = 2e

(

m
h

)3

v1
∑

l

∞
∫

−∞

∞
∫

−∞

vx( f (1)+
l + f (1)−

l )dvxdvy ,

(12)

σa =

a
∫

0

j
Ex

dz , (13)

where v1 — the projection of the velocity of the electron

(hole) at the first subband to the axis Z.
The present study suggests that the range of the

electromagnetic-radiation frequencies is limited from above

the frequency of the plasma resonance. The electromagnetic

wave is weak, so the effects related with the quantum nature

of the electromagnetic radiation are not taken into account.

The behavior of the electromagnetic wave can be described

by the Maxwell’s equations [28]:















∂Ex

∂z
= ikHy ,

∂Hy

∂z
− ik(1− sin2 θ)Ex = −4π

c
j .

(14)

Here k — the module of the wave vector, θ — the incidence

of the electromagnetic wave, c — the speed of light in

vacuum.

By solving the system (14) of the equations, we can

determine the relation between the components of the

strength of the electric and magnetic field and the current

density induced by the electromagnetic wave (the integral

conductivity). This relation allows finding the surface

impedances and the optical coefficients.
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3. Mathematical calculations

Let us note that the problem is solved by the method

similar to the studies [19,20]. By solving the equation (6)
taking into account the boundary conditions (9), we obtain

the following expressions for the functions f (1)±
l :

f (1)+
l (z ) = −evxEx

ν

∂ f (0)
l

∂ε
(1− φ+

l e−�lξ), (15)

f (1)−
l (z ) = −evxEx

ν

∂ f (0)
l

∂ε
(1− φ−

l e−�l(1−ξ)), (16)

φ+
l =

(1− q1) + q1(1− q2)e−�l

1− q1q2e−2�l
, (17)

φ−
l =

(1− q2) + q2(1− q1)e�l

1− q1q2e2�l
, (18)

�l = aν/νz l, ξ = z/a . (19)

Here ν = τ −1−iω — the complex frequency of the carrier

scattering. By substituting (15), (16) in the expression for

the current density (12) and the integral conductivity (13),
we obtain

σa =
2πe2ν1a
νk0T

(

m
h

)3(
2k0T

m

)2

×
∞
∑

l=1

ln

(

exp

(

µ − εz l

k0T

)

+ 1

)

(

1− χ(�l)
)

, (20)

χ(�l) =
1

2�l
(1− e−�l )

× 2− q1 − q2 + (q1 + q2 − 2q1q2)e−�l

1− q1q2e−2�l
. (21)

Let’s introduce the dimensionless parameters:

uz l =
εz l

k0T
, uµ =

µ

k0T
, (22)

x0 =
a
λB0

, xλ =
3

λB0
, y0 = ωτv , (23)

z 0 = ντv =
τv

τ
− iωτv = κ − iy0, (24)

where 3 — the length of the free path of the charge carriers

taking into account the volume scattering. The present study

assumes that 3 is determined by thermal oscillations of the

crystal lattice and the presence of an impurity, i.e. it does

not depend on the thickness. The parameters uz l and uµ
characterize respectively a discrete components of the full

energy of the charge carrier and the chemical potential,

as rated to k0T .y0 — the product of the frequency of

the electromagnetic wave by the time of the free path of

the charge carriers in the macroscopic sample τv . The

parameters x0 and xλ are a thickness of the nanolayer and

a length of the free path of the charge carriers rated to the

de Broglie wavelength of the charge carrier λB0, moving at

some characteristic speed v0v . Since for parameter rating, it

is necessary to use the values independent on the nanolayer

thickness, the for v0v one accepts the mean square speed

of motion of the charge carrier without quantization of the

energy spectrum [20]:

nvv
2
0v = 2

(

m
h

)3
5

3

y
v2 f (0)d3v, (25)

where nv — the concentration of the charge carriers in the

macroscopic sample, f (0) — the equilibrium function of

distribution of the charge carriers in a classic case.

Using the standard expression for the concentration of the

charge carries [20] in case of the arbitrary degeneracy and

integrating the expression (25), we obtain

v0v =

(

10

3

k0T
m

I3/2
I1/2

)1/2

, (26)

Is =

∞
∫

0

us du
exp(u − uµ) + 1

. (27)

The z 0 parameter includes the ratio of the times of the

free path in the quantum and classical cases κ . From the

condition of independence of 3 on the thickness, we obtain

the following expression for κ :

κ =
τv

τ
=

v0

v0v
, (28)

where v0 — the characteristic speed proportional to the

mean square speed of the charge carrier taking into

account the quantization of the energy spectrum, which is

determined as follows [19,20]:

nv20 = 4

(

m
h

)3

v1
5

3

∞
∑

l=1

x
(v2‖ + v2z l) f (0)

l d2v, (29)

where v‖ — the longitudinal component of the speed in the

nanolayer, n — the concentration of the charge carriers in

the nanolayer determined by the expression [19,20]

n = 4

(

m
h

)3

v1

∞
∑

l=1

x
f (0)

l d2v. (30)

Taking into account (29), (30), the expression for the

speed v0 takes the following form:

v0 =

(

10

3

k0T
m

K
P

)1/2

, (31)

K =

∞
∑

l=1

∞
∫

uz l

udu
exp(u − uµ) + 1

, (32)

P =

∞
∑

l=1

ln
(

exp(uµ − uz l) + 1
)

. (33)
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By substituting the dimensionless parameters in the expres-

sion for the conductivity, we obtain:

σa = σ0a6; (34)

σ0 =
nve2τv

m
, (35)

6=

√
u0v

2x0I1/2z 0

∞
∑

l=1

ln
(

exp(uµ−uz l) + 1
)

(

1−χ
(

2x2
0z 0

lxλ

))

,

(36)
q1,2(g1,2, ϑ) = exp

(

−(2πg1,2l/x0)
2
)

, (37)

u0v =
mv20v
2k0T

. (38)

Here σ0 — the classical conductivity of the macroscopic

sample.

The problem of interaction of the electromagnetic wave

of the H-configuration with the thin metal layer was solved

in the study [28] in the quasi-classical approximation. Using

the system (14) of the equations and taking into account

that the wavelength of the electromagnetic radiation is

much bigger than the nanolayer thickness, the authors

of the study [28] have obtained the relation between

the reflectances R, the coefficients of transmission T ,
absorption A and the integral conductivity σa :

R =
B2

|1 + B |2 , (39)

T =
1

|1 + B |2 , (40)

A = 1− R − T =
2Re(B)

|1 + B |2 , (41)

B =
2πσa

c cos θ
. (42)

The function B included in the expressions (39)−(41), is
proportional to the nanolayer conductivity and the mobility

of the charge carriers. It characterizes the responsiveness of

the charge carriers to the external electromagnetic radiation.

If this function is zero, then the reflectances and the

coefficients of absorption will be zero, so will the coefficient

of transmission unity. In this case, the electromagnetic wave

is passing through the nanolayer: the system of the charge

carriers will neither absorb the radiation nor participate

in the formation of the reflected wave. By substituting

the expression for the integral conductivity (34) in the

function B (42), we obtain

B =
1

2

6ρs2

cos θ

x0

xλ
. (43)

Here, the additional dimensionless parameters are intro-

duced:

ρ =
ν0v

c
, s = ωpτv, (44)

where c — the speed of light in vacuum, ωp — the plasma

frequency.

Let us note that the above-described theoretical model is

built for the case of the semiconductor with the arbitrary

degeneracy. Such parameters, as the band gap Eg , the

concentration of the donor ND and acceptor NA impurity

will affect the degeneracy degree of the conductor. With

the increase in the band gap, the valence band and the

conductivity band are widened: the valence band ceiling

is shifted downward in relation to the Fermi level, so is a

bottom of the conductivity band upward. Therefore, with

the increase in Eg for the electron and hole gases the

chemical potential will go into the negative range of the

values. This results in the decrease of the degree of the

degeneracy of the electron and hole gas. The increase in

the concentration of the donor impurity shifts the Fermi

level upward, thereby resulting in the degeneracy degree of

the electron gas and the decrease in the degeneracy of the

hole gas. And vice versa, the acceptor impurity increases

the degeneracy degree of the hole gas and decreases the

degeneracy degree of the electron gas.

3.1. Limit cases

Let us examine the case of the degenerate electron

gas corresponding to the condition uµ ≫ 1. This case is

contributed by the high concentration, the small effective

mass of the charge carriers and the low temperature. The

equilibrium function of distribution takes the form of the

stepped approximation:

f (0)
l (εl) =

{

1, 0 < εl < εF,

0, εl > εF,
(45)

where εF — the Fermi energy.

In this case, the exponent in the expression (36) is much

higher than unity. It can be written:

ln

(

exp

(

uµ −
u0v l2

4x2
0

)

+ 1

)

≈ uµ −
u0vl2

4x2
0

. (46)

From the expression for the distribution function (45) it

follows that the charge carriers occupy a limited number

of the subbands, whose number is found as the ration

of the wave number of the charge carrier at the highest

subband kN to the wave number of the charge carrier at the

first subband k1:

N =
kN

k1

=

[

kF

k1

]

= [2x0], (47)

where kF — the wave vector of the charge carrier with

the Fermi energy. It is followed from the above said that

the upper limit of summing in the expression (36) will

be the number N (47). The reflectances, the coefficients

of transmission, absorption will be determined by the

expressions (39)−(41), which include the function B to be

determined as follows:

B =
3ρs2

8xλz 0 cos θ

N
∑

l=1

(

1− l2

4x2
0

)(

1− χ

(

2x2
0z 0

xλl

))

. (48)
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Let us proceed to the case of the nondegenerate electron

gas, which corresponds to the condition uµ → −∞. This

case is characterized by the low concentration, the big ef-

fective mass of the charge carriers and the high temperature.

The equilibrium function of distribution takes the form of

the classical distribution of the Maxwell-Boltzmann.

f (0)
l (εl) = exp

(

(µ − εl)/k0T
)

. (49)

In contrast to the previous limit case, the exponent in

the expression (35) is a small magnitude. Expanding the

logarithm into a Taylor series, we obtain

ln

(

exp

(

uµ −
u0v l2

4x2
0

)

+ 1

)

≈ exp

(

uµ −
u0v l2

4x2
0

)

+ . . .

(50)
Based on the above, we obtain the following expression

for the function B :

B =
ρs2

2 cos θxλz 0

√

5

2π

∞
∑

l=1

exp

(

− 5l2

8x2
0

)(

1− χ

(

2x2
0z 0

xλl

))

.

(51)
Let us examine the quasi-classical case, in which the

thickness of the nanolayer is much bigger than the de

Broglie wavelength of the charge carries, but it is still

comparable with their length of free path (a ≫ λB , a . 3).
In this case, we can come from summing by the number

of the subband l to the integration by the z -component of

the velocity vector vz . As a result, we obtain the following

expression:

B =
ρs2

2 cos θ

x0

xλz 0

{

1− 1

2I1/2

∞
∫

0

1√
uz

ln
(

exp(uµ − uz ) + 1
)

× χ

(√
u0vx0z 0

xλ
√

uz

)

duz

}

. (52)

In the case of the degenerate electron gas, the expres-

sion (52) agrees with the result of the study [28].

4. Analysis of results

Figures 1−3 show the plotted dependences of the

reflectances, the coefficients of transmission and absorption

on the dimensionless thickness of the nanolayer. It follows

from the figures that with the decrease in the thickness the

reflectance is decreasing, and the coefficient of transmission

is increasing. This effect can occur due to the decrease in

the concentration of the free charge carriers, creating the

secondary reflected wave, which is due to the reduction of

the number of the allowed energy states. The coefficient of

absorption is increasing with the decrease in the thickness,

and when x0 < 0.75 it is decreasing. At the value x0 ≈ 0.5

(the thickness of the nanolayer is equal to the half of the

de Broglie of the charge carrier), the reflectance is close

to zero, so is the coefficient of transmission to unity: the

electromagnetic radiation is almost fully passing through the

nanolayer.

0.5 1.0 1.5 2.0 2.5 3.00
0

0.2

0.4

0.6

0.8

1.0

x0

R

1 3

4 5 6

2

Figure 1. Dependences of the reflectance R on the dimensionless

thickness x0 at the values g1 = g2 = 0.15, xλ = 8, θ = 66◦,

ρ = 0.005, s = 200. 1, 4 — y0 = 10; 2, 5 — y0 = 20; 3, 6 —
y0 = 30. Solid curves 1−3 are built for the case of the degenerate

electron gas, so are the dashed curves 4−6 — for the non-

degenerate electron gas.

0.5 1.0 1.5 2.0 2.5 3.00
0

0.2

0.4

0.6

0.8

1.0

x0

T

1

3

4

5

62

Figure 2. Dependences of the coefficient of transmission T on the

dimensionless thickness x0 at the values g1 = g2 = 0.15, xλ = 8,

θ = 66◦, ρ = 0.005, s = 200. 1, 4 — y0 = 10; 2, 5 — y0 = 20;

3, 6 — y0 = 30. Solid curves 1−3 are built for the case of the

degenerate electron gas, so are the dashed curves 4−6 — for the

non-degenerate electron gas.

There are evidently oscillations of the dependences

of the optical coefficients on the thickness. In case

of the degenerate electron gas the oscillations are more

pronounced than in the case of the non-degenerate gas. Let

us note that among all the optical coefficients the strongest

oscillation is in the coefficient of absorption, while the

ratio between the first maximum and the first minimum

of absorption at the frequency of the incident radiation

y0 = 30 is equal to 4. The possible reason of occurrence

of the oscillations is the following one. At the thicknesses

comparable or less than the de Broglie wavelength of the

charge carriers, the perpendicular component of the velocity

Semiconductors, 2022, Vol. 56, No. 8
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Figure 3. Dependences of the coefficient of absorption A on the

dimensionless thickness x0 at the values g1 = g2 = 0.15, xλ = 8,

ρ = 66◦, θ = 0.005, s = 200. 1, 4 — y0 = 10; 2, 5 — y0 = 20;

3, 6 — y0 = 30. Solid curves 1−3 are built for the case of the

degenerate electron gas, so are the dashed curves 4−6 — for the

non-degenerate electron gas.

vector takes a discrete number of the values. Therefore,

the discrete magnitude will be the frequency of the surface

scattering of the charge carrier. Provided that τs = nT
(τs — the time of motion of the charge carrier from one

surface of the nanolayer to another, T — the period of

oscillations of the electric field strength, n — the positive

integer number), the part of the charge carriers on one

subband is subjected to the surface scattering when the

orientation of the electric field strength is changing (when

the field strength is zero). Therefore, at some values x0

and y0 the surface of the nanolayer will weakly affect

the optical characteristics: there are the minimums of

the coefficient of absorption and the maximums of that

of transmission. The smooth change of the thickness

results in the continuous change of the parameter τs , and

periodically this parameter will satisfy the condition of

occurrence of the above-mentioned effect τs = nT , creating
the oscillations of the dependences of the optical coefficients

on the thickness. With the increase in the frequency, the

oscillation maximums (minimums) are shifted towards the

lesser thicknesses, and the oscillation period is decreasing.

At the relatively low frequencies (y0 < 10) the above-said

oscillation effect is disappearing. In case of the degenerate

electron gas, there are small oscillations of the coefficients

of absorption and transmission, which are caused by the

surges of the density states, with the period equal to the

half de Broglie wavelength of the charge carriers.

Figures 4−6 show the dependences of the reflectances,

the coefficients of transmission and absorption on the

dimensionless thickness of the incident electromagnetic

wave. It is clear from the figures that with the increase in the

frequency, the reflectances and the coefficients of absorption

are decreasing, while the coefficient of transmission is

increasing. This behavior is related to the fact that the

carriers fail to response to the high-frequency oscillations of

the electric field strength. Therefore, with the increase in the

frequency, the transfer of the energy of the electromagnetic

wave by the charge carrier is decreasing. There are evidently

the oscillations of the optical spectra. The cause of the

occurrence of the oscillations is similar to Fig. 1−3, but here

the period of the oscillations of the electric field strength

is changing. With the change of the frequency y0, the

parameter T will periodically satisfy the condition τs = nT
of occurrence of the minimums of absorption and the

maximums of transmission. It results in the oscillating

dependence of the optical spectra. We note that in the

10 20 30 40 50 600
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0.4

0.6
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1  4,

3
5

6

2

Figure 4. Dependences of the reflectance R on the dimensionless

frequency of the electromagnetic wave y0 at the values x0 = 1,

xλ = 8, θ = 66◦, ρ = 0.005, s = 200. 1, 4 — g1 = g2 = 0;

2, 5 — g1 = 0, g2 = 0.25; 3, 6 — g1 = g2 = 0.25. Solid

curves 1−3 are built for the case of the degenerate electron gas,

so are the dashed curves 4-6 — for the non-degenerate electron

gas.
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Figure 5. Dependences of the transmittance T on the dimension-

less frequency of the electromagnetic wave y0 at the values x0 = 1,

xλ = 8, θ = 66◦, ρ = 0.005, s = 200. 1, 4 — g1 = g2 = 0; 2, 5 —
g1 = 0, g2 = 0.25; 3, 6 — g1 = g2 = 0.25. Solid curves 1−3 are

built for the case of the degenerate electron gas, so are the dashed

curves 4−6 — for the non-degenerate electron gas.
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Figure 6. Dependences of the coefficient of absorp-

tion A on the dimensionless frequency of the electromagnetic

wave y0 at the values x0 = 1, xλ = 8, θ = 66◦, ρ = 0.005,

s = 200. 1, 4 — g1 = g2 = 0; 2, 5 — g1 = 0, g2 = 0.25;

3, 6 — g1 = g2 = 0.25. Solid curves 1−3 are built for the case

of the degenerate electron gas, so are the dashed curves 4−6 —
for the non-degenerate electron gas.

case of one mirror surface and another rough surface (the
curves 2 and 5), the period of the oscillations is in two times

less than in the case when both the surfaces are rough (the
curves 3 and 6).

5. Conclusion

The present study has obtained the analytical expressions

for the optical coefficients of the semiconductor nanolayer

taking into account the quantum theory of the transfer

phenomena. It is established that the dependences of

the optical coefficients on the thickness of the nanolayer

and the frequency of the electromagnetic wave are of an

oscillating nature. The most significant oscillations are

for the coefficient of absorption, while for the degenerate

electron gas the maximum value of the coefficient of

absorption exceeds in 4 times the minimum value at the

dimensionless frequency y0 = 30. It is established that the

frequency of the electromagnetic wave affects the oscillation

period: with the increase in the frequency, the period is

decreasing. For the degenerate electron gas the dependences

of the optical coefficients on the thickness and the frequency

have a more pronounced nature in comparison with the case

of the non-degenerate gas.
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