01

Влияние поляризации лазерного излучения на эффективность фотоионизации лютеция

© А.Б. Дьячков, А.А. Горкунов, А.В. Лабозин, С.М. Миронов, В.А. Фирсов, Г.О. Цветков[¶], В.Я. Панченко

Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

[¶] e-mail: Tsvetkov_GO@nrcki.ru

Поступила в редакцию 14.12.2021 г. В окончательной редакции 28.10.2022 г. Принята к публикации 31.10.2022 г.

Исследовано влияние поляризации лазерного излучения на фотоионизацию лютеция с использованием трехступенчатой схемы $5d6s^{2\ 2}D_{3/2} - 5d6s6p\ ^4F^o_{5/2} - 5d6s7s\ ^4D_{3/2} - (53375\ {\rm cm}^{-1})^o_{1/2}$. Показано, что в ряде случаев имеет место ограничение фотоионизации, связанное с особенностями когерентного фотовозбуждения.

Ключевые слова: лазерная селективная фотоионизация, лютеций-177.

DOI: 10.21883/OS.2022.12.54083.3034-22

Введение

Трехступенчатая схема фотоионизации лютеция $5d6s^{22}D_{3/2} - 5d6s6p^4F_{5/2}^o - 5d6s7s^4D_{3/2} - (53375 \text{ cm}^{-1})_{1/2}^o$ позволяет осуществлять фотоионизацию ¹⁷⁷Lu и ¹⁷⁷*m*Lu с высокой селективностью и эффективностью, что может быть использовано для промышленного получения данных радионуклидов для их медицинского применения [1]. Изотопы лютеция (кроме ¹⁷⁰Lu) имеют ненулевой спин ядра, поэтому все уровни энергии расщеплены в мультиплеты (рис. 1). Подуровни в мультиплетах определяются полным атомным моментом $F = J + I, J + I - 1, \dots, |J - 1|$, где J — полный электронный момент атома, I — спин ядра. Разность частот возбуждения переходов между различными компонентами сверхтонкой структуры (CTC) $(\Delta F = 0, \pm 1)$ оказывается, как правило, существенно больше спектральной ширины лазерного излучения. Поэтому при определенной настройке длин волн лазеров фотоионизация осуществляется только по одному каналу — сочетанию компонент СТС (F) основного, первого, второго возбужденных и автоионизационного состояний. Эффективность фотоионизации каждого формально ограничивается канала заселенностью стартовой компоненты основного состояния.

Например, при фотоионизации по каналу 5-6-5-4 стартовой компонентой является компонента с полным моментом атома F = 5. Заселенность этого состояния, пропорциональная статистическому весу 2F + 1, составляет 0.34, что в сочетании с температурной заселенностью основного состояния 0.7 (при температуре испарения лютеция 1700°С) дает ограничение на эффективность фотоионизации по данному каналу 0.24. Такое же ограничение имеет место для любого канала, стартовым состояния, с F = 5 (5-5-4-4, 5-5-5-4, 5-4-4-4 и т.д.). Это не означает, однако, что все эти каналы эквивалентны с точки зрения эффективности

фотоионизации. Разности частот поглощения различных изотопов лютеция составляют порядка 1 GHz, и для достижения высокой селективности фотоионизации требуется применение спектрально узких лазеров. В этом случае, например, при использовании импульсных одномодовых лазеров на красителях со спектральной шириной генерации 100-150 MHz наблюдаются явления, присущие когерентному процессу фотовозбуждения, когда формируются выраженные колебания населенностей с частотой Раби, превышающей естественные ширины исследуемых переходов. В частности, в работе [2] экспериментально изучается эффект Аутлера-Таунса, приводящий к расщеплению линий переходов. Исследование зависимости расщепления от интенсивности лазерного излучения позволяет уточнить характеристики распада уровней исследуемой схемы фотоионизации лютеция. Когерентные эффекты в ряде случаев могут приводить к дополнительному ограничению эффективности фотоионизации некоторых каналов.

Расчет

Теоретический анализ когерентной фотоионизации по трехступенчатой схеме существенно упрощается при рассмотрении третьей ступени (автоионизации) как релаксации второго возбужденного состояния $5d6s7s^4D_{3/2}$. Такой подход с успехом применялся в работе [3], в нашем случае он позволяет получить необходимые результаты, не прибегая к сложным вычислениям. При таком подходе вероятность фотоионизации оказывается пропорциональной квазистационарной заселенности второго возбужденного состояния, которая формируется в результате одновременного воздействия на атом лазерного излучения первой и второй ступеней. Такие задачи теоретически рассматривались в работах [4–7]. Усредненная по осцилляциям Раби вероятность обнаружить атом во втором возбужденном

Рис. 1. Схема фотоионизации лютеция ¹⁷⁵Lu.

состоянии описывается [5] формулой

$$W_2 = \frac{3}{2} \frac{\Omega_1^2 \Omega_2^2}{(\Omega_1^2 + \Omega_2^2)^2},\tag{1}$$

где Ω_1 и Ω_2 — частоты Раби на первом и втором переходах. Для того, чтобы определить частоту Раби с учетом СТС, использовалась [8] формула

$$\hbar\Omega = |\mathbf{d}_{F\acute{F}}\mathbf{E}_0|,\tag{2}$$

где $\mathbf{d}_{F\dot{F}}$ — оператор вектора дипольного момента перехода из состояния с квантовым числом полного механического момента \dot{F} в состояние F, а \mathbf{E}_0 — вектор амплитуды электрического поля электромагнитной волны лазерного излучения. Матричный элемент дипольного момента перехода $d_{F\dot{F}}$ между состояниями сверхтонкой структуры с квантовыми числами $I, J, F, M \rightarrow I, J, \dot{F}, \dot{M}$ выражается [7] через приведенный матричный элемент $\langle J \parallel D \parallel J \rangle$ по формуле

$$d_{F\dot{F}} = (-1)^{F-M} \begin{pmatrix} F & 1 & \dot{F} \\ -M & q & \dot{M} \end{pmatrix} (-1)^{I+J+F+1} \\ \times \sqrt{(2F+1)(2\dot{F}+1)} \begin{cases} J & 1 & \dot{f} \\ \dot{F} & I & F \end{cases} \langle J \parallel D \parallel \dot{J} \rangle, \quad (3)$$

где F и \acute{F} — квантовые числа полного механического момента атома (ядра и электронов), \acute{M} и M их проекции, \acute{J} и J — квантовые числа суммарного орбитального и спинового момента электронов, I — спин ядра, q — параметр поляризации лазерного излучения (q = 0 для линейной поляризации и $q = \pm 1$ для круговой поляризации). Элементы $\begin{pmatrix} F & 1 & f \\ -M & q & M \end{pmatrix}$ и $\begin{cases} J & 1 & J \\ f & I & F \end{cases}$ представляют собой 3*j*- и 6*j*-символы Вигнера соответственно [9,10]. В свою очередь, приведенный дипольный момент $\langle J \parallel D \parallel J \rangle$ выражается [7,11] через характеристики перехода:

$$\langle J \parallel D \parallel J \rangle |^2 = \frac{3\hbar\lambda^3(2J+1)}{4\cdot 8\pi^3} A(J \to J), \qquad (4)$$

где $A(f \to J)$ — коэффициент Эйнштейна соответствующего перехода.

Таким образом, для канала 5-6-5-4 частоты Раби выражаются следующим образом:

$$\Omega_{1} = \begin{pmatrix} F & 1 & F \\ -M & q & M \end{pmatrix} \sqrt{143} \sqrt{\frac{1}{66}} \sqrt{\frac{3\lambda^{3}IA_{1}(5/2 \to 3/2)}{\hbar\pi^{2}c}},$$

$$\Omega_{2} = \begin{pmatrix} F & 1 & F \\ -M & q & M \end{pmatrix} \sqrt{143} \sqrt{\frac{1}{66}} \sqrt{\frac{3\lambda^{3}IA_{2}(3/2 \to 5/2)}{\hbar\pi^{2}c}}.$$
(6)

Аналогично для канала 5-5-5-4

$$\Omega_{1} = \begin{pmatrix} F & 1 & \acute{F} \\ -M & q & \acute{M} \end{pmatrix} \frac{11}{5} \sqrt{\frac{7}{66}} \sqrt{\frac{3\lambda^{3}IA_{1}(5/2 \to 3/2)}{\hbar\pi^{2}c}},$$

$$\Omega_{2} = \begin{pmatrix} F & 1 & \acute{F} \\ -M & q & \acute{M} \end{pmatrix} \frac{11}{5} \sqrt{\frac{7}{66}} \sqrt{\frac{3\lambda^{3}IA_{2}(3/2 \to 5/2)}{\hbar\pi^{2}c}}.$$
(8)

Рис. 2. Схемы проекций переходов и абсолютные значения 3*j*-символов для каналов 5–6–5–4 (вверху) и 5–5–5–4 (внизу). Линейная поляризация.

Для линейной поляризации лазерного излучения $(\Delta M = 0)$ абсолютные значения 3*j*-символов представлены на схеме (рис. 2) для каналов 5–6–5–4 и 5–5–5–4.

Из формулы (1) следует, что максимальное значение $W_2 = 3/8$ достигается при равных частотах Раби:

$$\Omega_1 = \Omega_2. \tag{9}$$

Зависимости W₂ от интенсивности лазерного излучения на второй ступени для каналов 5–6–5–4 и 5–5–5–4 представлены на рис. 3.

В отличие от некогерентной фотоионицации когерентная заселенность с увеличением интенсивности сначала растет, достигая максимума при равенстве частот Раби. При дальнейшем увеличении интенсивности когерентная заселенность уменьшается и стремится к нулю,

Рис. 3. Линейная поляризация. Зависимость населенности второго возбужденного состояния от интенсивности лазерного излучения второй ступени (сплошная кривая). Усредненная населенность второго возбужденного состояния в каналах 5–6–5–4 (штриховая кривая) и 5–5–5–4 (пунктир). Интенсивность первой ступени 150 W/cm².

в то время как некогерентная остается постоянной. Вследствие того, что отношения 3*j*-символов на первом и втором переходах одинаковы, зависимости от интенсивности, построенные по формуле (1) для различных проекций, совпадают. Для оценки эффективности фотоионизации на рисунке представлены также усредненные по 11 проекциям заселенности второго возбужденного состояния:

$$\bar{W}_2 = \left[W_2(M=0) + 2W_2(M=1) + 2W_2(M=2) + 2W_2(M=3) + 2W_2(M=4) \right] / 11.$$
(10)

Максимум усредненной заселенности для канала 5–5– 5–4 оказывается меньше, чем для канала 5–6–5–4, из-за того, что переход между проекциями М 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 для канала 5–5–5–4 запрещен.

Схемы проекций переходов и абсолютные значения 3j-символов для круговой поляризации (q = -1) представлены на схеме (рис. 4). На рис. 5 представлена зависимость заселенностей W₂ для круговой поляризации для различных проекций начального состояния на канале 5-6-5-4. Из рисунка видно, что при круговой поляризации отношения З*j*-символов на первом и втором переходах существенно отличаются для различных стартовых проекции. Соответственно с этим отличаются и положения максимумов населенностей для различных сочетаний проекции, связанных круговой поляризацией. В связи с этим невозможно подобрать интенсивности лазерного излучения первой и второй ступеней так, чтобы в одинаковой степени эффективно осуществлять фотоионизацию со всех стартовых проекции. Например, для комбинации проекций 5-4-3-2 интенсивность второй ступени 10 W/cm² оказывается слишком большой, и она почти не работает (населенность ниже 0.05), так же как и для комбинации $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ (населенность меньше 0.15). Комбинации проекций $3 \rightarrow 2 \rightarrow 1 \rightarrow 0$, $2 \rightarrow 1 \rightarrow 0 \rightarrow -1$, $1 \rightarrow 0 \rightarrow -1 \rightarrow -2$ и $0 \rightarrow -1 \rightarrow -2 \rightarrow -3$ оказываются близко к максимуму, а для комбинации $-1 \rightarrow -2 \rightarrow -3 \rightarrow -4$ интенсивность оказывается недостаточной (населенность ниже 0.15). В результате усредненная заселенность не поднимается выше 0.15.

Существенно лучше складывается ситуация с круговой поляризацией на канале 5–5–5–4 (рис. 4). Максимумы различных комбинаций проекции оказываются существенно ближе друг к другу, что и обусловливает более высокую (~ 0.235) усредненную населенность второго возбужденного состояния (рис. 6).

На рис. 7 для сравнения представлены усредненные населенности для линейной и круговой поляризаций на каналах 5–6–5–4 и 5–5–5–4. Наиболее эффективно идет фотоионизация с линейной поляризацией на канале 5–6–5–4, немного уступает ей линейная поляризация на канале 5–5–5–4 из-за запрещенной комбинации проекций $0 \rightarrow 0 \rightarrow 0$. Круговая поляризация заметно проигрывает линейной из-за неоднородности отношений сил переходов первой и второй ступени.

Эксперимент

Влияние поляризации на эффективность фотоионизации ¹⁷⁵Lu исследовалось на схеме $5d6s^{22}D_{3/2}$ - $5d6s6p^4F_{5/2}^o-5d6s7s^4D_{3/2}-(53375\,\mathrm{cm}^{-1})_{1/2}^o$ методом лазерной резонансной ионизационной массспектроскопии (LRIMS). Для резонансного возбуждения и ионизации атомов использовалось излучение трех импульсных лазеров на красителях (ЛК) (540, 535 и 618 nm), накачиваемых лазером на парах меди с частотой следования импульсов 10 kHz. Каждый ЛК состоял из задающего генератора, работающего на одной продольной моде в режиме активной стабилизации длины волны, и усилителя ЛК. Выходные средние мощности ЛК составляли 1-4 W, спектральная ширина линии генерации 100-150 MHz (FWHM), длительность импульсов 15 ns (FWHM).

Лучи трех ЛК телескопировались до размера Ø = 10 mm и коллимировались. Их пространственное сведение проводилось на полупрозрачном и дихроичном зеркалах. Система поворотных зеркал направляла единый трехцветный луч к камере масс-спектрометра (MC). Из-за особенностей конструкции лазерной системы излучение трех ЛК было линейно поляризованным в единой плоскости.

Для регистрации фотоионов использовался коммерческий квадрупольный масс-спектрометр MC-7302. Атомный пучок с углом расходимости $\sim 3^{\circ}$ формировался путем испарения металлического лютеция в высоком вакууме при температуре $\sim 2000^{\circ}$ С, доплеровское уширение атомов в пучке ~ 150 MHz. Средняя тепловая скорость атомов в пучке составляла около 550 m/s.

Рис. 4. Схема проекция переходов для круговой поляризации (q = -1) и абсолютные значения 3*j*-символов для каналов 5–6–5–4 (вверху) и 5–5–5–4 (внизу).

Поэтому в течение длительности лазерного импульса 15 ns область взаимодействия лазерного излучения с ансамблем атомов диаметром 2 mm можно считать изолированной системой, пренебрегая времяпролетным уширением. Плотность атомов в области взаимодействия составляла около 10^{10} cm⁻³ и давление остаточного газа $(1-2) \cdot 10^{-6}$ Torr, что практически исключает столкновения атомов пучка как между собой, так и с молекулами остаточного газа. Технические параметры и особенности экспериментальной установки детально описаны в работах [12,13].

Для смены поляризации лазерного излучения (линейная \leftrightarrow круговая) использовалась четвертьволновая пластинка, изготовленная из кварцевого стекла

Рис. 5. Круговая поляризация (q = -1), канал фотоионизации 5–6–5–4. Зависимость населенности второго возбужденного состояния от интенсивности лазерного излучения второй ступени для разных проекций. Широкая жирная линия — усредненная населенность. Интенсивность первой ступени 150 W/cm².

Рис. 6. Круговая поляризация (q = -1), канал фотоионизации 5–5–5–4. Зависимость населенности второго возбужденного состояния от интенсивности лазерного излучения второй ступени для разных проекций. Широкая жирная линия — усредненная населенность. Интенсивность первой ступени 150 W/cm².

толщиной 10 mm. Оптическая анизотропия создавалась путем одноосного сжатия поперек оси лазерного луча. Давление выставлялось до достижения на выходе пластины сдвига фазы $\pi/2$ на длине волны 540 nm (первая ступень). Из-за близости длин волн переход на круговую поляризацию выполнялся одновременно и для луча второй ступени 535 nm. Эллиптичность поляризации излучения 618 nm (третья ступень) составила 0.8.

Рис. 7. Зависимость усредненной населенности второго возбужденного состояния от интенсивности лазерного излучения на второй ступени для каналов 5–6–5–4 и 5–5–5–4 в случае линейной (L) и круговой (C) поляризаций. Интенсивность первой ступени 150 W/cm².

T	a	б	л	и	ц	a
-	-	-	• •		_	-

Канал фотоионизации	Поляризация	Фотоионный сигнал (эксперимент), отн. ед.	Населенность (расчет)
5-6-5-4	линейная	31 ± 3	0.31
	круговая	13 ± 1	0.14
5-5-5-4	линейная	29 ± 3	0.27
	круговая	23 ± 2	0.23

Результаты и обсуждение

На рис. 8 представлена запись сигнала фотоионов ¹⁷⁵Lu при смене поляризации лазерного излучения с линейной на круговую для каналов 5–6–5–4 и 5–5–5–4. Области, когда фотоионный сигнал снижается до нуля, соответствуют периодам перекрытия лазерных лучей в процессе изменения их поляризаций путем 45°-поворота четвертьволновой пластинки. Результаты сведены в таблице.

Из таблицы видно, что отношения экспериментально измеренных значений фотоионного тока находятся в хорошем соответствии с усредненной населенностью второго возбужденного состояния, рассчитанной по формулам (1)-(9). Следует отметить, что некогерентный подход, основывающийся на определении скорости каждого перехода в отдельности, не позволяет получить результаты, согласующиеся с экспериментом. Именно применение когерентного подхода, учитывающего интерференцию колебаний населенности уровней первого и второго переходов для каждого сочетания проекций с последующим суммированием результатов, позволило достичь согласия с экспериментальными данными.

Рис. 8. Запись фотоионного сигнала ¹⁷⁵Lu в каналах фотоионизации 5–6–5–4 (вверху) и 5–5–5–4 (внизу) при одновременной смене поляризации ЛК на всех ступенях $q = 0 \rightarrow -1 \rightarrow 0 \rightarrow -1$. Провалы сигнала до нуля соответствуют периодам перекрытия лазерных лучей для осуществления смены поляризации лучей путем 45°-разворота четвертьволновой пластинки. Интенсивность ЛК первой и второй ступени 150 и 20 W/cm² соответственно.

Заключение

При использовании импульсного узкополосного одномодового лазерного излучения возможно возникновение когерентной картины фотовозбуждения, которая в ряде случаев ограничивает эффективность многоступенчатой фотоионизации. К таким случаям следует отнести ситуацию, когда отношения сил переходов на соседних ступенях фотоионизации сильно отличаются для различных проекций начального состояния и никакой комбинацией интенсивностей не удается удовлетворить условие равенства частот Раби для всех комбинаций проекции состояний. Результаты исследования говорят в пользу того, что в течение лазерного импульса различные комбинации проекций ведут себя как изолированные системы, и чем точнее соблюдено условие равенства частот Раби для соседних ступеней для каждой проекции, тем эффективнее протекает фотоионизация по всему каналу.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-13-01180).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.B. D.yachkov, A.A. Gorkunov, A.V. Labozin, K.A. Makoveeva, S.M. Mironov, V.Y. Panchenko, V.A. Firsov, G.O. Tsvetkov. Opt. Spectrosc., 128, 6–11 (2020). DOI:10.1134/S0030400X20010087
- [2] А.Б. Дьячков, А.А. Горкунов, А.В. Лабозин, С.М. Миронов, В.А. Фирсов, Г.О. Цветков, В.Я. Панченко. Квант. электрон., 4, 367–370 (2022). http://www.mathnet.ru/php/archive.phtml?wshow=paper& jrnid=qe&paperid=18029&option_lang=rus.
- [3] M.V. Suryanarayana. JOSA B, 38, 353–370 (2021).
- B.W. Shore, J. Ackerhalt. Phys. Rev. A, 15, 1640–1647 (1977).
 DOI: 10.1103/PhysRevA.15.1640
- [5] Z. Białynicka-Birula, I. Białynicki-Birula, J.H. Eberly, B.W. Shore. Phys. Rev. A, 16, 2048–2054 (1977). DOI: 10.1103/PhysRevA.16.2048
- [6] B.W. Shore. Phys. Rev. A, 23, 1608–1610 (1981).
 DOI: 10.1103/PhysRevA.23.1608
- [7] B. Shore. Acta Phys. Slovaca. Rev. Tutorials, 58, 243–486 (2008).
- [8] J.H. Eberly, B.W. Shore, Z. Białynicka-Birula, I. Białynicki-Birula. Phys. Rev. A, 16, 2038 (1977).
- [9] I.I. Sobel'man. *Introduction to the Theory of Atomic Spectra* (International Series of Monographs in Natural Philosophy, Elsevier, 2016).
- [10] O. Axner, J.O. Gustafsson, N. Omenetto, J.D. Winefordner. Spectrochim. Acta B, 59, 1–39 (2004).
 DOI: 10.1016/j.sab.2003.10.002
- [11] В.Б. Берестецкий. Релятивистская квантовая теория (Наука, 1968).
- [12] A.B. D'yachkov, A.A. Gorkunov, A.V. Labozin, S.M. Mironov, V.Y. Panchenko, V.A. Firsov, G.O. Tsvetkov. Quant. Electron., 48, 75–81 (2018). DOI: 10.1070/qel16493
- A.B. D'yachkov, A.A. Gorkunov, A.V. Labozin, S.M. Mironov, V.Y. Panchenko, V.A. Firsov, G.O. Tsvetkov. Instruments Exp. Tech., 61, 548–555 (2018).
 DOI: 10.1134/S0020441218040048