
Technical Physics Letters, 2022, Vol. 48, No. 7

06.5;15.1

Studying LiFePO4 powder samples via X−ray diffraction techniques using

artificial neural networks

© M.E. Boiko, M.D. Sharko, A.M. Boiko, A.V. Bobyl, V.I. Nikolaev

Ioffe Institute, St. Petersburg, Russia

E-mail: mischar@mail.ru, boikomix@gmail.com

Received April 5, 2022

Revised May 17, 2022

Accepted May 30, 2022

A set of LiFePO4 samples has been studied by small−angle X−ray scattering (SAXS). Using the technique

of artificial neural networks, the shape of SAXS curves has been reconstructed taking into account the hardware
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One of the up−to−date research fields of a great topical-

ity and practical importance is studying lithium−iron bat-

tery materials, including lithium−iron phosphate (LiFePO4)
used as cathodic material; LiFePO4 is a Pnma (� 62) or-

thorhombic crystal [1] with lattice parameters a = 10.328 Å,

b = 6.007 Å, c = 4.694 Å.

In this work, dimensions and geometric features of homo-

geneous LiFePO4 phases were investigated by small−angle

X−ray scattering (SAXS) using a set of five samples (here-
inafter, samples� 1−5) obtained by chemical methods [2].

The SAXS technique is known [3] to ensure estimation

of a homogeneity size (Guinier gyration radius) and curveś

intensity attenuation coefficient (Porod index) dependent

on the particle geometry. The Porod index for low−size

particles roughly matches with their dimension; in 3D

powders, it is about 4 [3,4].

The set of LiFePO4 powders to be studied consists

of four commercial samples and one test sample [2,5]
synthesized by the liquid−phase method accompanied by

thermal treatment [2]. As in [2,5], commercial samples are

designated as � 1−3, 5, while the test one is designated

as� 4. Powder samples LiFePO4 were shaped as pellets

no more than 1mm in thickness. Earlier the same set of

samples was studied by transmission electron microscopy

(TEM) and X−ray diffraction (XD), and data obtained were

analyzed.

Fig. 1, a presents a TEM photo obtained at the Ioffe

Institute by using electron microscope JEM-2100F Jeol

(the figure was furnished by V.N. Nevedomsky). Fig. 1, b

demonstrates a histogram of the particle projection areas

(in nm2) visible in Fig. 1, a. The histogram shows that the

characteristic size of homogeneous particles of the LiFePO4

sample � 1 is 80−160 nm; the size of the major part of

particle projections visible in the photo is about 150 nm.

However, it turns out that the sample grain size dispersion is

very high, and sizes of particles observed in the TEM photo

may differ by several orders of magnitude.

XD data for all the studied samples were obtained at

X−ray diffractometer Bruker Discover D8 (Saint Petersburg
State University (SPSU)) [6] in the transmission mode

with doublet CoKα1,2 radiation. The obtained curves were

processed based on the Williamson−Hall approach [7].
Analysis performed for a set of reflexes in the [100],
[101], [210], [011] crystallographic directions in the LiFePO4

matrix provided the following size estimates: 7−10 nm

(for sample � 1), 8−23 nm (� 2), 5−12 nm (� 3),
10−30 nm (� 4), 5−7 nm (� 5). Since the analysis

did not considered other broadening factors (e. g. the

hardware function or thermal fluctuations enhancing the

signal background components), the given values are the

lower estimates of the real sizes of the LiFePO4 grains.

SAXS data for the studied samples were obtained at

X−ray diffractometer Bruker Discover D8 (SPSU) in the

transmission mode with CuKα1 radiation. To account for

the instrument error, a scattering curve was measured along

with the SAXS curves in the absence of the sample (direct
beam signal) under the same conditions and with CuKα1

radiation. The sample � 1 SAXS curve and direct beam

curve are presented in Fig. 2.

The SAXS curves are susceptible to distortions caused by

peculiar features of both the studied material and analyzing

beam, i. e. they depend on the hardware function. Due to

this, calculations obtained in processing the SAXS curves

may appear to be significantly corrupted (for instance, the
Guinier radius may be strongly underestimated because

of the beam broadening). To reliably determine shapes

and sizes of scattering objects, it may become necessary

to reconstruct such a SAXS curve shape that the beam

spatial form and energy spectrum could be described by

the delta−function. This paper proposes to reconstruct

the SAXS curve by the artificial neuron network (ANN)
method [8,9].

The SAXS curve may be regarded as a convolution of the

direct beam scattering function with respect to the wave
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Figure 1. a — TEM data for the LiFePO4 sample � 1 (the
figure was furnished by V.N. Nevedomsky, Ioffe Institute); b — a

histogram of particle sizes of the LiFePO4 sample � 1.

vector with a hypothetical SAXS curve which could be

obtained for an ideal beam (non−divergent and absolutely

monochromatic). The convolution is formally reversible

via Fourier transforms of the input and output functions;

however, such a solution is unstable because noisy signals

can create zeroes in the Fourier−transform image thus

causing the
”
division-by-zero“error [10]. This difficulty may

be overcome through analytical regularization providing

stable solutions for high−power signals [10]. When the

noise is relatively high, regularization suppresses the desired

signal jointly with the noise. Fig. 3, a presents a curve

obtained by using the Tikhonov regularization [10] of the

deconvolution of the sample SAXS curve and direct beam

scattering function. The curve contains a great number of

singularities.

The direct reconstruction method consists in searching

for such a model scattering curve that could minimize the

deviation between the measured curve and curve obtained

by convolution of the primary beam with the desired model

curve. This method is in essence equivalent to the procedure

for training a single−layer 320− point ANN [8]; in this

case, the transmission curve calculation may be reduced to

the problem of training a single−layer ANN with a linear

activation function, where a set of initial data consists of

a range of the primary beam values and one output signal

value corresponding to this range.

To initiate the ANN training, it is necessary to choose

a specific form of a normalizing functional characterizing

the discrepancy of results, and also the general optimization

method. Since initial data are characterized by a significant

dispersion (most of values are lower than the maximum

by a few orders of magnitude), the mean−square error did

not provide a satisfactory estimation of the model; for this

purpose, the relative error modulus was used. Nevertheless,

in this case application of the gradient descent method and

its analogs resulted in that the more the transmitted signal

function is delta−like, the oftener are singularities in the

desired function. The sample � 1 transmission function

appeared to be sufficiently wide to make at least one of

the involved ANN training methods ensure the absence of

singularities.

In addition to the optimizer based on the gradient−des-

cent method, the coordinate−descent method was applied,

which, contrary to the first one, gave rise not to singularities

but to oscillations near the minimum error. This approach

allowed obtaining several hundreds of sets of weights with

equal errors; further those values were averaged (taking
into account the problem linearity). The total error of the

averaged model did not exceed an error of each calculation

model obtained by the coordinate−descent method; along

with this, the processed diffraction curve was free of

singularities.

Fig. 3, b demonstrates the results of reconstructing the

sample � 1 SAXS curve by three different ANN−based

techniques. Curve 1 was obtained using the gradient

descent and mean−square error methods; this curve exhibits
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Figure 2. SAXS curves for the LiFePO4 sample � 1 and direct

beam.

Technical Physics Letters, 2022, Vol. 48, No. 7



56 M.E. Boiko, M.D. Sharko, A.M. Boiko, A.V. Bobyl, V.I. Nikolaev

Wavevector, Å–1

0

6

3

–0.05 0.100.05–0.10 0

–3

9

ln
(

, 
a.

 u
.)

I

Wavevector, Å–1
–0.1 0.1–0.2 0.20

10–5

I,
 a

. 
u

1

2
310–4

10–3

10–2

10–1 Model 1

Model 2

1 –
2 –

Model 33 –

a

b

Figure 3. a — SAXS curve obtained by regularizing the

inverse problem for sample � 1 after extracting from it the

signal of the direct beam intensity by deconvolution with using

the regularization method as per [10]; b — three models for

reconstructing the shape of the sample � 1 SAXS curve based on

the ANN technique: 1 — with gradient descent and mean−square

error, 2 — with the Hadamard optimizer and relative error

modulus, 3 — with coordinate descent, relative error modulus

and averaging over 50 calculation variants.

singularities already in the vicinity of the zero peak, while

in the Porod region the reconstructed curve gets destroyed

becoming visually similar to noisy signals. Curve 2 was

calculated based on the Hadamard optimizer and relative

error modulus. In this case, the singularities shift away

from the Guinier region towards the Porod regions where,

however, the reconstructed curve gets destroyed similarly

to curve 1. Lastly, curve 3 is a result of calculation via

the methods of coordinate descent, relative error modulus,

and averaging over 50 variants of the calculation procedure.

In this case, the reconstructed SAXS curve becomes

smoothed and may be analyzed via both models, the

Guinier and Porod ones. As Fig. 3, b shows, all the three

calculation procedures coincide because in this region the

problem is sufficiently well posed and singularities arise with

decreasing weights (transmission coefficients).

Thus, two ways of solving the task of the SAXS curve

shape reconstruction are proposed: by using the procedure

of deconvolution regularization and by using the ANN

mathematics.

In analyzing the SAXS curves reconstructed with the aid

of regularized deconvolution, diameters of homogeneities

(double Guinier radii) were obtained for all the samples

(samples � 1−5) and appeared to range from 85 to

90 nm. Analysis of the Fig. 3, a singularities with the

inverse regularization showed that they are caused by a too

large scanning step and experimental noise, and their dips

coincide with local derivative jumps on the noise peaks.

In its turn, the SAXS curve reconstructed by the ANN

method with coordinate descent, relative error modulus

and averaging over 50 variants of calculation (curve 3 in

Fig. 3, b), i. e. the reconstructed curve free of singularities,

provided after processing the following results. The double

gyration radius proved to be about 55 nm, i. e. lower than in

the case of using the regularized deconvolution. The Porod

index on both sides of the direct beam peak was about 3.

There exists a theoretical study [11,12] suggesting that Porod
index 3 is associated with logarithmic fractals. The latter

are structures where homogeneous fragments strongly (by
orders of magnitude) differ in sizes; large grains are directly

adjoined by smaller and more multiple homogeneities which

in their turn may be surrounded by even smaller and more

multiple neighbors.

The concept of dimensional hierarchy eliminates the

contradiction between TEM photos exhibiting the predomi-

nance in the sample of particles more than 100 nm in size,

SAXS data providing averaged sizes below 100 nm, and XD

results demonstrating the phase dimensions of about 10 nm.

TEM photos demonstrate projections of grain agglomerates

which can overlap each other. The SAXS data are generated

by regions homogeneous with respect to electron density,

i. e. they are influenced by the agglomerate size (gyration
radius) averaged in different directions. Lastly, XD provides

the sizes of individual crystallites contained in agglomerates.

Thus, the paper shows that the ANN technique can

ensure reconstruction of the SAXS curve shape free of

singularities. Application of the ANN technique resulted

in refining the basic characteristics of SAXS curves (attenu-
ation coefficient, particle gyration radius) measured for the

LiFePO4 sample � 1. The developed approach is universal

and applicable for investigating a wide range of solid−state

materials.
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