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Characteristic function of a self−similar random process
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A stochastic differential equation is proposed for a characteristic function whose inverse function describes a

self−similar random process with a power−law behavior of power spectra in a wide frequency range and a

power−law amplitude distribution function. Gaussian
”
tails“ for the characteristic distribution make it possible to

evaluate its stability according to the formulas of classical statistics using the maximum of the Gibbs−Shannon

entropy and, therefore, the stability of a random process given by an inverse function.
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Random processes with large fluctuations are self−similar

and are characterized by power−law dependences of

spectral density and amplitude distributions. Most of

papers describe the self−similar random processes based

on fractional integration of white noise: fractional diffusion

equation, diffusion on fractional structures [1–4]. As a rule,

random processes being obtained in such a simulation are

non−stationary. Analysis of stability of complex physical

systems with power−law distributions show that the statis-

tical Gibbs−Shannon entropy does not ensure agreement

with the principle of entropy maximum [5–7]. This

paper proposes another approach to describing self−similar

random processes with large fluctuations which is based

on a set of nonlinear stochastic equations as in [8,9]; this
approach makes the calculation procedure essentially shorter

and simpler than that involving fractional integration. The

set of stochastic equations looks as follows:

dϕ
dt

= −ϕψ2 + ψ + ξ1(t),

dψ
dt

= −ψϕ2 + 2ϕ + ξ2(t), (1)

where ϕ and ψ are the dynamic variables, ξ1 and ξ2 are

the Gaussian δ-correlated noises with a zero mean and

amplitudes σ1 and σ2, respectively. Equation set (1)
describes interaction of large and small fluctuations in the

critical region in the event of arising of wideband noise

with low−frequency energy bursts. The second equation

of set (1) is the master one, the first equation is the

auxiliary one. Solution of the second equation of this set de-

scribes evolution of fluctuations obeying classical statistics,

Gaussian distribution and exponential relaxation (variable
ψ). Solution of the first equation gives a random function

of large fluctuations with the power−law distribution and

delayed relaxation (variable ϕ). Gaussian behavior of the

master variable
”
tails“ makes it possible to evaluate the

random process stability via the classical statistics formulas

with the use of the principle of Gibbs−Shannon entropy

maximum.

In case of the critical value of noise intensity

(σ1 = σ2 ≈ 1), power spectrum of variable ϕ in equation

set (1) takes the form Sϕ ∼ 1/ f . At high frequencies, the

variable ψ spectrum has the form Sψ = 1/ f 2. In numerical

calculations with infinitely small time step 1t, the random

process with the 1/ f -spectrum is nonstationary [9]. With

increasing step 1t, the process becomes stationary, and

power spectra begin exhibit a horizontal plateau at low

frequencies. The less is the integration step, the wider is

the stationary behavior frequency range [9]. Therefore, set

(1) presented in the form of finite differences is applicable

to stationary random processes with a finite high frequency.

Numerical calculations show that the spectrum of a

random function 1/ψ(t) inverse to ψ(t) is inversely pro-

portional to the first degree of frequency S1/ψ ∼ 1/ f and

coincides with spectrum Sϕ of variable ϕ. Knowing

properties of the set (1) numerical solutions, it is possible to

obtaine based on it a master stochastic equation in classical

variable ψ and to define variable ϕ as a quantity inverse to

ψ [10]:

ϕ(t) =
1

ψ(t)
+ θ(t), (2)

where θ(t) is a certain random function with dispersion σ 2
θ .

Substituting equation (2) into the second expression of set

(1), it is possible to rewrite the equation for ψ(t):

dψ
dt

=
1

ψ
− θ2ψ + ξ(t). (3)

Numerical calculations show that random function θ(t)
is close to white noise; hence, it is possible to accept

approximation in which standard deviation is expressed as

〈θ2〉 = σ 2
θ . Replacing squared function θ2 in (3) whith σ 2

θ ,

obtain stochastic equation

dψ
dt

=
1

ψ
− σ 2

θ ψ + ξ(t). (4)
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Figure 1. Power spectra of characteristic function

Sψ ∼ 1/ f 2 (1) and self−similar random processes Sϕ ∼ 1/ f (2)
and Sϕ ∼ 1/ f 5/3 (3).

Equation (4) describes random walk in a force field with

potential

U = − ln |ψ| + σ 2
θ ψ

2, (5)

that is logarithmic at low ψ and parabolic at high ψ. The

ψ function spectrum has the form Sψ = 1/ f 2. White noise

was simulated by a sequence of Gaussian random numbers.

Standard deviation σ 2
θ = 〈θ2〉 = σ 21t depends on the 1t

subdivision [11]. Define function ϕ(t) as ϕ = ψ/(ε + ψ2)
where ε is a small constant preventing divergence of inverse

function 1/ψ when ψ(t) approaches zero in numerical

calculations of random processes. Thus, it is possible to

write the following set of equations:

ϕ =
ψ

ε + ψ2
+ ξ(t),

dψ
dt

=
1

ψ
− σ 21tψ + ξ(t). (6)

The first equation describes a function inverse to the

characteristic one to which white noise ξ(t) is added. The

function ϕ(t) power spectrum is defined as Sϕ ∼ 1/ f . If

the slope of spectrum Sϕ ∼ 1/ f α frequency dependence is

different, the inverse function power index will be different,

and white noise intensity will be also different. For instance,

for the Kolmogorov turbulence Sϕ ∼ 1/ f 5/3 [12,13] it

should be assumed that ϕ = ψ/(ε + ψ2)0.7 and ξ(t) = 0.

Equations (6) are independent; as the master equation, the

second one is regarded. The master equation of set (6) is

in line with the Fokker−Planck equation whose stationary

solution is as follows:

P(ψ) ∼ exp

(

−U(ψ)

σ 2

)

= exp

(

− ln |ψ|
σ 2

)

exp

(

−σ 2
θ ψ

2

σ 2

)

= ψσ
−2

exp(−ψ21t). (7)

Distribution function of inverse quantity ϕ = 1/ψ will be

defined as

P(ϕ) ∼ 1

ϕσ
−2+2

exp

(

−1t
ϕ2

)

. (8)

Equations (7) and (8) show that the variable ψ distribution

function decreases exponentially at large arguments, while

the decrease of P(ϕ) distribution function obeys at high

ϕ the power law. Fig. 1 presents spectrum Sψ ∼ 1/ f 2

and spectra Sϕ ∼ 1/ f , Sϕ ∼ 1/ f 5/3 obtained from the set

(6) numerical solutions. The lower is 1t in numerical

calculations, the more accurate is the white noise approx-

imation with a sequence of Gaussian random numbers;

this allows extending the frequency range of the 1/ f and

1/ f 2 dependences in spectra Sϕ and Sψ . Fig. 2 presents

in logarithmic coordinates the P(ψ) and P(ϕ) distribution

functions obtained from the set (6) numerical solutions. At

large ϕ, the P(ϕ) distribution function obeys the power law.

The behavior of power spectra and distribution functions

obtained from the set (6) solutions almost fully coincides

with that of the solution obtained from the stochastic

equation set (1) [14].

The exponential decrease of function P(ψ) makes it pos-

sible to use the Gibbs−Shannon entropy expression [7,15]
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Figure 2. Distribution functions P(ψ) (1) and P(ϕ) (2) obtained

from the set (6) numerical solutions. The dashed line represents

the P ∼ ϕ−3 dependence.
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Figure 3. Gibbs−Shannon entropy H for squared characteristic

function ψ2(t) versus the noise amplitude.

in evaluating the system (6) stability

H = −
∑

n

Pn lgPn. (9)

Fig. 3 presents the calculated dependence of entropy H
for squared variable ψ2(t) on the noise amplitude. The

entropy maximum corresponds to the critical noise ampli-

tude (σc ≈ 1.4) at which random process ϕ(t) becomes

maximally stable. The critical noise amplitude derived from

the set (6) second equation is
√
2 times higher than in the

case of modeling the self−similar process by two stochastic

equations of set (1) and, respectively, than 2D white noise.

The paper proposes a stochastic differential equation

whose solution is a characteristic function with the Gaussian

distribution; its inverse quantity describes a self−similar

random process with a power−law distribution. Gaussian

”
tail“ of the characteristic function allows applying it in

analyzing the self−similar process stability via the formulas

of classical statistics.
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