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The mechanism of elastic calorific effect in crystals of alloys with SME is theoretically discussed within the

framework of the theory of diffuse thermoelastic martensitic transitions, that the structural transitions in alloys with

shape memory effect (SME) are. The theory provides an adequate description of the elastic calorific effect under

adiabatic unloading of the crystal and stable behavior of the martensitic transition. Flexibility of the theory is also

applicable to kinetically unstable (with a burst) martensitic transitions caused by structural features of the crystal,

as is the case, according to literature, of Ni50Fe19Ga27Co4 alloy crystal compression along the direction of [011].
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1. Introduction

Alloys with shape memory effect (SME) are sensitive

to magnetic, electrical, and mechanical impacts. Cur-

rently these alloys are used as working elements in various

devices of micro- and nano-electronics, robotics, medicine,

and industry. In the recent decade the attention of

researchers is attracted to the effect of adiabatic heating and

cooling of crystals of these alloys near the critical tempera-

ture of martensitic transition in them. The effect emerges

in case of quick switching on (off) of magnetic [1–3] or

electric [4] fields, or as a result of mechanical stress applied

to or released from a crystal [5–8]. The achieved magnetic

calorific, electric calorific, and elastic calorific (EC) effects

1Tad can be as high as 5−20K [1–8]. The adiabatic heating

or cooling of the alloy is sourced from isothermal change in

its entropy 1S at the direct and reverse martensitic transition

as phase transitions of the first kind. As compared with the

adiabatic compression and expansion of steam or gas, the

above-mentioned calorific effects in crystals with SME has

a technological benefit, especially as related to building up

solid state low-volume refrigerator devices.

The research activities conducted at present time have

shown that the magnetic calorific effects in ferromagnetic

alloys with SME, despite their sufficiently large value at

the first change in magnetic field strength, demonstrate

lower and unstable values under further changes in the field

strength [1–3]. The cause of this instability is related to

unstable magnetization of the alloy under adiabatic changes

in magnetic field. In addition, the magnetic calorific

effect is observed in a relatively narrow temperature range:

(10−20K) [1]. The EC-effect is observed in a considerably

wider temperature range. For example, in crystals of

Cu68Zn16Al16 [6] and Ni50Fe19Ga27Co4 [7,8] alloys it is

150K (Fig. 1). Experiments with Ni50Mn34.8In15.2 alloy [9]
on the basis of 4 · 103 adiabatic cycles have shown good

cyclic stability of the elastic calorific effect. In [10], it is

demonstrated on Ni50.4Ti49.6 alloy films with a thickness

of 20µm that the adiabatic EC-effect is really achieved at

strain rates higher than 0.1 s−1 and is nearly absent at a

strain rate less than 10−3 s−1.

One more thing was found recently while investigating

the elastic calorific effects in crystals of the Ni50Fe19Ga27Co4
alloy [7,8]. It is the sensitivity of this effect to the crystal-

lographic direction of applying the mechanic compression

load to the crystal [7]. Applying the compression stress

along the [111] axis of the crystal is not accompanied with

a considerable effect of its adiabatic heating or cooling.

However, the elastic calorific effect is fully observed, if the

crystal is adiabatically loaded and unloaded along the [001]
axis of the crystal [7] (Fig. 1). Stress-strain diagrams

of crystal compression along the [001] direction have

traditional behavior of one-stage curves of pseudoelastic

strain. What is unusual is the temperature dependence of

the elastic calorific effect in crystals of the Ni50Fe19Ga27Co4
alloy, if the crystal deformed by a compression along

the [011] axis is adiabatically unloaded [8] (Fig. 2, triangles).
It can be seen that above the temperature of 388K the effect

of adiabatic cooling of the crystal is developed in a way that

is qualitatively similar to that in crystals of this alloy under

its compression along the [001] axis (Fig. 2, circles). Also,
it can be seen that in a considerable temperature range

below 388K the effect of adiabatic cooling is nearly absent

in the crystal deformed by compression along the [011]
direction. It means that, as shown below in this article

(section 4), the temperature of 388K is critical for the sharp
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Figure 1. Temperature dependencies of the elastic calorific effect

in 1Tad/1T R
ad−T coordinates, where 1T R

ad = 9.5K, in a crystal of

Ni49Fe18Ga27Co4 alloy under its unloading from different stresses

in a range of 50−300MPa in the stress-strain diagram of crystal

compression along the [001] direction. Experimental points — [7],
curves 1−4 and dashed line — according to equations (5)−(6).
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Figure 2. Temperature dependencies of the elastic calorific effect

in 1Tad/1T R
ad−T coordinates in crystals of Ni49Fe18Ga27Co4 allot

under unloading from 300MPa stress in the stress-strain diagram

of crystal compression along [011] (1T R
ad = 6.1K) and [001]

(1T R
ad = 9.5K) axes, respectively. Experimental points [8]: cir-

cles — along the [001] axis, triangles — along the [011] axis.

Curves 1 and 2 — according to equations (5) and (8).

drop of martensite volume fraction in the crystal under its

unloading. Another peculiarity of stress-strain diagrams of

this alloy crystal compression along the [011] direction is

the presence of a sharp stress drop accompanied of intense

acoustic emission [8]. Similar stress drops were observed

before in two-stage diagrams of Ni49Fe18Ga27Co6 alloy

crystal compression along the [011] direction and no such

drops were observed under its compression along the [001]
axis [11]. According to [11,12], the emergence of abnormal

stress drops in this alloy deformed in the [011] direction

is related to the emergence of interphase elastic stresses in

the crystal with their burst-like martensite relaxation [12].
The interphase stresses are resulted from the change in

habit plane orientation in the martensite under crystal

compression along the [011] axis as compared with its

compression along the [001] axis when there is no such

orientation mismatch .

The purpose of this work is to develop thermodynam-

ically and kinetically proved theory of the elastic calorific

effect in alloys with SME. It is analyzed and simulated using

the theory of diffuse thermoelastic martensitic transitions

(DTMT) [13,14], which is based on thermodynamic and

kinetic relationships and sensitive to the crystal structure

at the meso level. Section 2 includes main relationships

of this theory that define isothermal changes in crystal

entropy 1S < 0 and quantity of the elastic calorific effect

1Tad < 0 under adiabatic unloading of the crystal. In the

third section these relationships are used to analyze the

elastic calorific effect in crystals oriented under compression

in the direction of [001] axis, i. e. at absence of interphase

stresses in the crystal, section 4 covers the case of these

stresses present in the crystal deformed by compression

along the [011] direction. The technical results are compared

with experimental results obtained during investigation of

the elastic calorific effect in crystals of the Ni50Fe19Ga27Co4
alloy with corresponding orientations [7,8].

2. Elastic calorific effect and theory
of DTMT

The isothermal change in entropy of the crystal 1S< 0

that define the quantity of EC-effect 1Tad < 0 depends on

the set martensitic strain of the crystal ε according to the

thermodynamic relationship [5]:

1S(ε) = −

ε
∫

0

(

∂σ

∂T

)

dε, (1)

where T — temperature, σ —mechanical stress applied to

the crystal. According to the theory of DMT, the martensitic

strain ε changes proportionally to the relative volume of

the crystal ϕM occupied by the martensite. With one-stage

behavior of the martensitic transition, this volume is defined

by kinetic and thermodynamic relationships [14]:

ε = εmϕM , ϕM =
1

1 + exp(1U/kBT )
, (2a)
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where εm — strain of the lattice at its structural reconstruc-

tion, 1U = ω1u — change in free energy of the alloy under

the emergence of a new phase seed in it with a volume of ω,

1u — bulk density of the phase transition free energy,

1u = q
T − Tc

Tc
− εmσ −Wel, (2b)

q = 1STc — heat of transition, 1S — change in entropy

under martensitic transition, Tc = (Ms + A f )/2 — charac-

teristic temperature of the martensitic transformation with

absence of external and internal stresses, kB — Boltzmann

constant, Wel = σeεel(ϕM) — internal elastic energy related

to the transition [12]:

Wel(ϕM) = σeεmϕM(1− ϕM), (2c)

where σe — interphase stresses at the martensite and

austenite phase interface (lamellae). Equations (2a)−(2c)
describe the equilibrium of martensitic ϕM and austenitic

ϕA = 1−ϕM phases in a crystal. The presence of struc-

turally sensitive elementary volume of transformation ω in

equation (2a) means that the displacement of martensitic

transformation (MT) dislocations over the habit plane

is spatially limited. For example, it is limited by the

size of homogenous [15] or heterogenous sources of MT

dislocations or by the size of cross-section of nano- or micro-

crystal [16].

By plugging equations (2b) and (2c) into (2a) and solving

this equation for stress σ , we get its dependence on

temperature, interphase stresses σe , and martensitic strain

of the crystal ε = εmϕM ,

σ = σm

[

T − Tc

Tc
− ae

ε

εe

(

1−
ε

εe

)

+
1

ω̄
ln

(

ε/εm

1− ε/εm

)]

,

(3)
where σm =q/εm = (dσ/dT)KTc , (dσ/dT)K — Clapey-

ron–Clausius coefficient, ae = σe/σm, ω̄ ≈ ωq/kBTc . By

partially differentiating (3) with respect to T , we get

(∂σ/∂T )e = (dσ/dT)K and hence the change in crystal

entropy according to thermodynamic relationship (1) is

1S(ε) = −

(

dσ
dT

)

K

(ε − ε0)

= −εm

(

dσ
dT

)

K

[ϕM(T, σ, σe) − ϕ0]. (4a)

It is defined by the martensitic strain ε that depends

on martensite concentration in the crystal (2a). The

condition of 1S(ε0) = 0 defines the integrating constant of

equation (1)

ε0(T, σe) = −εm

(

dσ
dT

)

K

[−ϕ0]

= −εm

(

dσ
dT

)

K

[−ϕM(T, 0, σe)]. (4b)

As a result, we get the following relationship for the quantity

of the elastic calorific effect (decrease in crystal temperature

under its adiabatic unloading):

1Tad =
Tc

C p
1S = −εm

(

dσ
dT

)

K

Tc

C p
1ϕM(T, σ, σe)

= −
q

C p
1ϕM(T, σ, σe), (5a)

1ϕM(T, σ, σe) = ϕM(T, σ, σe) − ϕM(T, σ = 0, σe), (5b)

where C p — heat capacity of the crystal, 1S and q —

change in entropy and heat of the reverse martensitic

transition, respectively 1ϕM(T, σ, σe) — volume fraction

of martensite, that defines the quantity of elastic calorific

effect as a function of temperature T , stress σ applied to

the crystal, and presence of internal elastic stresses σe in it.

3. Elastic calorific effect under absence
of interphase stresses

Figure 3 illustrates temperature dependencies of marten-

site volume fractions ϕ1M(T, 0, σ ) (curve 1) and ϕ2M

(curve 2) according to equations (2), as well as their

difference 1ϕM = ϕ2M−ϕ1M (curve 3) under absence of
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Figure 3. The temperature dependencies according to equa-

tions (5b) and (6) for volume fractions of martensite ϕ without

(curve 1) and with stress 20MPa (curve 2) applied to the crystal,

as well as the difference between these fractions (curve 3), that
defines the change in entropy 1SR and temperature of the crystal

1Tad at its unloading from the aforementioned stress.
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internal elastic stresses in the crystal (σe = 0), where

ϕ1M(T, 0, 0) =

[

1 + exp

(

ω̄

(

T − Tc

Tc

))]

−1

,

ϕ2M(T, σ, 0) =

[

1 + exp

(

ω̄

(

T − Tc

Tc
−

σ − 1σh

σm

))]

−1

,

(6)
1σh = (dσ/dT)K1Th — hysteresis of stresses at

the direct and reverse martensitic transformation,

1Th = (As + A f − Ms − M f )/2 — equivalent 1σh

temperature hysteresis. When estimating in (6) the

values of parameters Tc = 312K, σm = 780MPa, ω̄ = 60,

1Th = 14.6K and 1σh = 35MPa, the notation of (3) and

data of [7] for crystals of NiFeGaCo alloy were used:

Ms = 304K, M f = 296K, As = 310K, A f = 320K,

(dσ/dT)K = 2.5MPa/K. In Fig. 3 curve 1 shows

temperature dependence of concentration ϕ of thermal

elastic martensite in the crystal, and curve 2 shows growth

of this concentration as a result of stress σ = 20MPa

applied to the crystal. Curve 3 demonstrates temperature

dependence of the martensite volume fraction 1ϕM , which,

according to equation (5), defines the isothermal change

in entropy 1S and the quantity of elastic calorific effect

at crystal unloading down to σ = 0. It can be seen, that

the martensite volume fraction 1ϕ first increases with

increase in temperature due to the strain martensite. Then

it achieves its maximum and decreases down to zero due

to transition of the strain martensite to austenite under the

impact of high temperature.

This bell-shaped behavior is exactly the behavior of

temperature dependencies of elastic calorific effect 1Tad in

crystals of the Ni49Fe18Ga27Co4 alloy (Fig. 1) under their

unloading from different stresses on the diagram of crystal

compression (curves 1–4). In Fig. 1, these dependencies are

represented in reduced coordinates 1Tad/1T R
ad−T according

to equations (5) and values of the parameters specified

in (6), where 1T R
ad = q/C p . According to calorimetric

data [7] (q = 280 J/mol, C p = 26 J/mol · K), maximum adi-

abatic decrease in temperature 1T R
ad should be ≈ 11K

(Fig. 1, dashed line). However, the experiment shows

a lower value: 1T R
ad ≈ 9.5K. Discussing this mismatch,

authors of [7] have made a guess that it may be caused

by adiabatic nature of the alloy crystal unloading procedure

(0.3 s−1). Also worth noting are the results obtained in [8]
for the diffraction analysis of structures of thermal elastic

martensite and strain martensite in the alloy under research.

It is found that in the first case it is 14M modulated marten-

site, and in the second case it is non-modulated tetragonal

L10 martensite. It means that at temperatures before the

maximum of curves 1−4 (Fig. 1) L21 austenite transforms

into L10 martensite in two stages L21 → 14M → L10.

One final comment on this section is that the ω̄ = 60 pa-

rameter in relationships (6) corresponds (at q = 280 J/mol,

Tc = 312K and mol= 7.84 cm3) to the elementary volume

of martensite ω = ω̄(kBTc/q) = 6.6 nm3. If a homogenous

source forms one MT dislocation loop with a diameter

of d, the elementary volume of the phase transformation

is ω = (πd2/4)a0, where a0 = 0.4 nm [7] is the distance

between adjacent habit planes in the martensite. The above

estimate of elementary volume of the transformation has a

correspondent diameter of dislocation loop of the martensite

transformation d = (4ω/πa0) ≈ 4.6 nm, which is close the

the size of the homogenous source of MT dislocations [15].

4. Impact of interphase stresses
on the elastic calorific effect

As previously stated, in the case of Ni49Fe18Ga27Co4
alloy crystals compression along the [011] axis, compression

diagrams contain an elongated interval of strain where stress

drop is observed, which is an indication of unstable (burst-
like [11,12]) behavior of the martensitic transition in this

alloy [8]. To make clear this thing, Fig. 4, a and b shows

results of compression diagrams simulation for crystals of
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Figure 4. Crystal compression diagrams of the NiFeGaCo

alloy without (a) and with (b) interphase stresses in the crystals

according to equation (7) (see detail in the text).
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this alloy within the framework of DTMT theory without

interphase stresses in the crystal (σe = 0) (Fig. 4, a) and

with interphase stresses (σe 6= 0) (Fig. 4, b), respectively.

Taking into account the elastic strain of the crystal under

compression εE(σ ) = σ/E , the equation to calculate de-

pendence of the stress σ on the sum compression strain

ε = εE + εM has the following form

ε = εE + εm

[

1 + exp

(

ω̄

(

T − Tc

Tc
−

σe

σm
(ε − εE)

×
(

1− (ε − εE)
)

−
σ ∓ 1σh

σm

))]

−1

, (7)

where εM = εmϕM is martensitic strain (2a),

E = (EM + EA)/2 — mean modulus of elasticity, σh —

stress hysteresis under loading (−) and unloading (+)

of the crystal by the compression stress. The σ (ε)

dependence is implicitly contained in equation (7),

therefore the equation was solved numerically with the

following values of variables and parameters: T = 388K,

εm = 7%, E = 2.5GPa, without interphase stresses (σe = 0,

σh = 17MPa) and with interphase stresses (σe = 280MPa,

σh = 17MPa); other parameters had the same values

as were previously used to build the curves in Fig. 1.

As can be seen from comparison of curves in Fig. 4, a

and b, the existence of interphase stresses in the crystal

promotes the unstable behavior of martensitic transition.

As a result, instead of plateau (Fig. 4, a) an interval

of deforming stress drop emerges in the compression

diagram. In the real diagram of the Ni50Fe19Ga27Co4
crystal compression in the direction of [011] axis, as well as

in the case of Ni49Fe18Ga27Co6 alloy crystals [12], this drop

is composed of two stages: at the first stage twinned L10
martensite (14M) is formed, and at the second stage the

14M martensite is detwinned. Fig. 4, b illustrates only one

of these stages (in [12] both these stages are simulated

within the framework of DTMT theory). Results of the

simulation [12] in line with experiments have shown that

with increase in temperature the two-stage drop of stress

in compression diagrams of Ni49Fe18Ga27Co6 alloy crystals

changes to one-stage drop, i. e. the L21 austenite transforms

directly into the tetragonal L10 martensite, which also takes

place in the case of Ni50Fe19Ga27Co4 alloy crystals [8].

In Fig. 4, b σMs and σM f stresses in the compression

diagram mark the start and the end of the direct martensitic

transformation, while σ As and σ A f mark the reverse

martensitic transformation in the crystal. At a stress of

σ A f , martensite in the crystal is completely transformed

to austenite. Hence the volume fraction of martensite 1ϕM

that defines the isothermal change in entropy 1S and the

elastic calorific effect 1Tad, is equal to:

1ϕM(T, σ, σe) = ϕM2(T, σ, σe) − ϕM1(T, σ A f , σe), (8a)

where

ϕ1M =

[

1 + exp

(

ω̄

(

T − Tc

Tc
−

σ A f + σh

σm

))]

−1

,

ϕ2M =

[

1 + exp

(

ω̄

(

T − Tc

Tc
−

σ + σh

σm

))]

−1

. (8b)

In Fig. 2, curve 2 demonstrates the 1Tad(T ) ∼ 1ϕ(T )
dependence according to equations (8) in 1Tad/1T R

ad−T
coordinates, where 1T R

ad = 6.1K. It can be seen that at

a temperature of ≈ 388K this fraction starts decreasing

dramatically and becomes zero. Also, it can be seen that

there is a good agreement between theory and experiment.

The existence of non-zero values of 1Tad ≈ 1K below

the temperature of 388K is related to the hysteresis

loss [8]. The dramatic drop of the elastic calorific effect

at temperatures below 388K is caused by the fact that

with interphase stresses the concentration of martensite in

the crystal becomes zero at σ A f = 150MPa [8], and not at

σ A f = 0 as is the case without these stresses. As a result

the elastic calorific effect decreases by

1T A f
ad = −1T R

ad

[

ϕM(T, σ A f ) − ϕM(T, 0)
]

. (8c)

The maximum value of elastic calorific effect is 6.1K in

the temperature range above 388K, i. e. in the temperature

range of stable martensitic transition, which is 36% less than

at the crystal compression in the [001] direction.
This decrease becomes even bigger and is equal to 44%

when comparing the effect value of 6.1 K with the the-

oretical estimate 1T R
ad = 11K. As 1T R

ad ∼ q, there is a
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Figure 5. The dependence of martensitic transition heat q(σin)
in a crystal of Cu−Al−Ni alloy on the energy of internal elastic

stresses σin (curve 1) [17] and on the work A(σex ) under the action
of externally applied stress σex on the crystal (curve 2) [18].
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reason to consider that the above-mentioned decrease is

related to the decrease in martensitic transition heat q.
There is calorimetric data in the literature (Fig. 5, curve 1)
for crystals of the Cu−Al−Ni alloy [17] showing that

the heat of martensitic transition depends on the energy

U = σinεin of internal elastic stresses σin according to the

following law: q = q0(1−U/q0), where q0 is the heat of

transition without internal stresses, εin — correspondent

elastic strains. On the contrary, the heat of transition

increases, q = q0(1 + A/q0), where A = σextεm (Fig. 5,

curve 2), if the alloy crystal is under a constant stress (free-
hanging weight). It is evident that in the first case in an

isolated thermodynamic system a part of heat q0 is spent

for relaxation of internal elastic stresses, in the second case

heat q0 increases due to the work A when the weight is

lowered. In our case q0 = 280 J/mol, σin = σe = 280MPa,

εin = εm = 7 · 10−2, U(σin) = 153.7 J/mol and, as a con-

sequence, U(σin)/q0 = 0.55, q(σin)/q0 = 6.1/11 = 0.56.

In Fig. 5, 1 shows the relationship between the heat q(σin)
and the energy of internal elastic stresses U(σin) in a crystal

of the Ni50Fe19Ga27Co4 alloy [8]. It can be seen that the

relationship is close to curve 1 describing this relationship

in crystals of the Cu−Al−Ni alloy [17].

5. Conclusion

Thus, within the framework of thermodynamically and

kinetically proved theory of phase transition of the first kind

(DTMT theory), which is the case of structural martensite

transitions in alloys with shape memory effect, the elastic

calorific effect in crystals of alloy with SME is theoretically

analyzed. Flexibility and adequacy of the theory is demon-

strated not only on kinetically stable martensitic transitions,

but also applicable to kinetically unstable (with a burst)
martensitic transitions caused by structural features of the

crystal, as is the case of compression of Ni50Fe19Ga27Co4
alloy crystals [8] along the [011] direction.
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