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We analysed the problem of approximation of the potential function of a diatomic molecule by a Morse model

function with constant anharmonicity νx using the Birge−Sponer extrapolation. The analysis of the approximations

used in the derivation of the Morse equation shows that the solution of this problem is ambiguous. A scheme for

optimizing the selection of initial parameters is proposed, which is illustrated by examples taken from the literature.

The advantages of delineation of anharmonicity in the excitation of vibrational levels by deviations of the value

νx from the constant value according to Morse are demonstrated. An attempt is made to use the dimensionless

anharmonicity parameter x∗ as a universal characteristic of the shape features of the electronic term of the molecule.
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In the courses of molecular spectroscopy, the Morse

model potential is traditionally mentioned always in the

presentation of the principles of the formation of the

vibrational structure of the spectra of simple molecules and

methods for the approximate estimation of the chemical

bond energy. Despite a very rough approximation and

often only semi-quantitative agreement with experiment,

this function is preserved in curricula and textbooks until

recently [1–7], and its diverse applications and modifications

are developed in the scientific literature [ 8–12]. The main

reason for the continued popularity of the Morse function

is the integrability of the Schrödinger equation with such

a potential and the abundance of objectives, in which there

is a high need for an approximate estimating solution that

allows further targeted elaboration. Due to its simplicity and

clarity, the Morse function is easily caught on to students,

but at the same time patterns are formed in the educational

system that cramp evolutionary development. Let’s discuss

an important detail that has not been fully realized in the

literature for almost a hundred years of using this poten-

tial — the possibility of varying the parameters of function

when approximating real terms and on the development of

the methodology for describing anharmonicity.

Alternative approximations of the real
electronic term

To approximate the real electronic term by the Morse

equation [13]

U(r ) = De
[

1− e−a(r−r e)
]2

(1)

it is necessary to specify three values of the parameters

De, r e and
”
a“. The meaning of De (the depth of the

potential well) and r e (the position of the minimum of the

potential curve minimum) is clear, and the constant
”
a“,

which determines the width of the potential energy well and

the very existence of the dissociation limit, is included in the

coefficients of the solution of the Schrödinger equation with

this potential:

G(v) = νe

(

v +
1

2

)

− νexe

(

v +
1

2

)2

, (2)

where

νe = a(2De/M~)1/2, νexe = ~a2/2M, (3)

νe is harmonic frequency, M is reduced molecu-

lar mass, νexe is anharmonicity coefficient. Hence

a = 2πνe(M/2De)
1/2 . It follows approximately from (3)

that

De = ν2
e/4νexe. (4)

This last relation allows use of the anharmonicity νexe or

only xe instead of De to determine
”
a“ and just this

option is suggested by Morse as the final result of his

work (article [13] is named
”
Diatomic molecules according

to the wave mechanics. II. Vibrational levels.“) and

uses it to determine the dissociation energy of diatomic

molecules series by the extrapolation method. In the future,

when using the Morse equation (1), the authors most

often indicate the first option. It is also often given in

textbooks and monographs [2–7]. Sometimes the authors

give both options, mentioning their equivalence, for example

in [14,15], although the expression (4) is laden with a

systematic error, the nature of which requires mentioning,

since it inevitably leads to two possible values of the

parameter
”
a“.
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The first systematic error lies in the definition of the depth

of the potential energy well De, which Morse takes equal to

the position of the last vibrational level vmax, and thus the

value De turns out to be underestimated by a value slightly

less than the last vibrational quantum. From (2) it formally

follows

vmax = νe/2νexe − 1/2, (5)

but the integer part use introduces the second systematic

error. These considerations are not explicitly mentioned in

the literature, although it follows that the parameter
”
a“,

expressed in terms of the anharmonicity νexe in (4), is

underestimated due to the systematic error (5). This leads to
an overestimation of De and, possibly, to an overestimation

of the number of vibrational levels.

As a specific example, we approximated the potential

curve with a vibrational structure for a hydrogen molecule

in the ground electronic state, using two sets of parameters,

including either De or xe, using literature data. In the first

case, a picture was obtained similar to the scheme of Fig. 48

in the book [7], with the difference that the real vibrational

levels in the upper part of the potential energy well

converge much faster than it follows from the anharmonicity

constancy condition, the number of levels increased from 14

to 16. This is natural, since in both cases the approximation

is not very effective in the upper part of the potential, above

30 000 cm−1 (approximately 20% of De), due to different

asymptotics of the real and Morse curves. In the second

case, the initial value of anharmonicity xe, calculated from

the experimental values of the first vibrational frequencies,

decreased, and as a result, the position of the vibrational

levels was better reproduced in the lower part of the well

to almost 30 000 cm−1. But the position of the asymptote

increased by more than 3000 cm−1, and the number of

vibrational levels increased to 18. It follows that the initial

set of levels, including anharmonicity, is preferable in cases

where reproducibility in the lower part of the potential

energy well is important, but the dissociation energy is

then extrapolated very roughly. If the dissociation energy

is known, the first-type approximation makes it possible

to obtain the frequency values and wave functions of the

states in a wider range, but with somewhat less accuracy.

Add that just this approach was long before and widely

used in the theoretical study of the dynamic interaction of

strong laser radiation with matter, when pumping over the

vibrational degrees of freedom of the molecule occurs up to

dissociation and transition to a continuous spectrum [16–
18]. In these cases, it is more important to know the

dissociation energy more accurately than the ordering law

of the eigenfrequencies of the anharmonic oscillator.

To calculate the anharmonicity coefficient xe it is suf-

ficient to know the position of the first three vibrational

levels of real molecule, but if a larger number of them is

known, new possibilities appear. The system of equations

used to select xe value (and value νe simultaneously

associated with it) becomes redundant, and the solution

optimization may be due to the specifics of the problem.

First, by averaging the data over the frequencies of all

known states, one can obtain a Morse approximation of

the actual potential curve over a wide possible energy

range, although with an inevitable loss of accuracy for

high levels. Secondly, for some problems, there may be

a need for an optimal description of a certain group of

excited vibrational states that does not include one or more

of the lowest states, and then it is advisable to determine

the anharmonicity coefficient by averaging the data over the

frequencies of precisely these states. Thirdly, experience

shows that the lower levels often behave abnormally, i.e.

go away more slowly than the higher ones, and this leads

to an implausible description of both the entire subsequent

vibrational structure and the value of the bond energy. We

carried out such construction for the ground state of the

oxygen molecule, the vibrational frequencies of which were

calculated with high accuracy. The constants νexe were

averaged over the intervals v = 0−3 and v = 0−20. The

second option well reproduces the position of the levels i.e.

frequency deviations in the section of about 3/4 of the depth

of the potential energy well lie within 1−2 cm−1. In the

first option the deviations are much larger, mainly due to

the mentioned anomaly in the lower part of the well. Thus,

we can assume that the Morse problem has a much larger

number of solutions than two. Additionally, choosing the

anharmonicity value xe such that to find De from (4), we
assume by default that the value νe in (4) is the harmonic

frequency characteristic of the parabolic potential (Hooke’s
law [1], formula (20.100)). But for a real oscillator the

position of all vibrational levels, including the zero one,

depends on the anharmonicity, and considering (2) as an

approximation equation, we give the values νe and νexe

the meaning of adjustable coefficients only. In this case,

of course, the relation (20.84) in [1] is satisfied. Hence,

it follows that νexe can be varied both due to xe and νe,

or both, if, according to the conditions of the problem, the

coefficient xe must satisfy some additional requirements.

Empirical characteristic of anharmonicity

When processing experimental data, the Burge−Shponer

extrapolation is of great virtue, based on an approximately

linear empirical dependence of the differences between

neighboring levels on the vibrational quantum number for

the lower levels of series of diatomic molecules [19,20]:

1G(v + 1/2) ≡ G(v) − G(v − 1). (6)

In the coordinates 1G, v + 1/2, the points are approximated

by a straight line, whose extrapolation to the intersection

with the abscissa axis allows one to obtain an approximate

estimate of the molecular dissociation energy ([1], Fig. 20.9).
A more detailed discussion is given in the useful paper [21].
In these coordinates, equation (6) for the Morse oscillator

is strictly satisfied, the points in the Burge−Shponer

coordinates lie on a straight line, the slope of which is

determined by the anharmonicity value. The sign and
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Figure 1. Second differences of the vibrational level energies vs.

vibrational quantum number F(v) = 2νex∗ (equation (2), (7)) for

hydrogen molecules H2 (crosses) according to [23], and hydrogen

fluoride HF (triangles) [24] (lower abscissa), as well as oxygen O2

(circles) [25] (upper abscissa). Horizontal lines are drawn for

each molecule at a level corresponding to the values of the

anharmonicity constant, which follow from the Morse equation:

−234.5, −157.6, −23.31 cm−1 (see text).

absolute value of deviations from this straight line reflect the

specifics of a real molecule, its individuality, and it makes

sense to use the second differences, i.e., function

12 G(v) ≡ 1G(v) − 1G(v − 1) = F(v) (7)

for the empirical systematics of the vibrational levels of the

diatomic molecule. We plotted such dependences for several

molecules, for which there are reliable values for a set of

vibrational frequencies, experimental or calculated. Among

other things, we chose
”
abnormal“ terms that experience

breaks due to non-intersections, which are analyzed in

the paper of McCoy [22], who proposed the original

quantum-mechanical approach to the Morse analysis of

vibrational structure (see below). In coordinates (7) the

Morse oscillator is represented by a set of points lying on a

horizontal line in the negative half-plane. For ordinary terms

the points are located near this straight line and (almost)
monotonously move down, at first slowly, and then with

acceleration approaching the asymptote, which indicates the

increasing of anharmonicity. Fig. 1 shows examples of

dependence (7) for the main electronic term of H2, HF,

and O2 molecules. The anharmonicity values νexe were

calculated so that the Morse condition was satisfactorily

satisfied in the central part of the term. For oxygen,

for example, as mentioned above, the real values were

averaged over the interval v = 0−20. The horizontal straight

lines show 2νex value, which describes the position of

the vibrational levels of the approximated Morse oscillator;

points are not shown.

In a certain region near the asymptote, the concept of

anharmonicity loses its meaning due to the dominance of

the Van der Waals interaction between atoms, and we

will not discuss it, and the first levels sometimes behave

unexpectedly. For the ground term of hydrogen the points

in the interval v = 1−5 move upward, i.e. the anharmonicity

decreases, and then the anharmonicity increases rapidly up

to the asymptote. This anomaly is almost invisible in the

Burge−Shponer coordinates, but Gaydon briefly mentioned

it in the book [20] (p. 108), and perhaps this is how the real

potential curve deviates from the Morse potential, marked

with a dotted line at the bottom of the curve in Fig. 48

in Herzberg book [7] on p. 76. The dependence F(v) for

the oxygen molecule is almost normal, although a weakly

shown anomaly of this type in the region v = 1−15 is

beyond dispute. Finally, for HF and DF molecules this

anomaly is significant, but located in the middle part of

the potential. We will discuss these molecules in more

detail below. In general, for normal electronic terms

the dependence F(v) quantitatively reflects the deviation

of the vibrational levels of the real term from its Morse

approximation, which is shown in the diagram by horizontal

line. Also Fig. 1 shows the interval 1v , in which the

averaging was carried out to determine the initial value

of 2νex. Besides, for terms with a break in Fig. 1

it is possible to see a section, where ramp change in

anharmonicity occurs. In more complicated cases described

by McCoy in [22] (the terms E16+
g Li2 and X16+

g Be2 ),
strong interaction in the region of intersection of diabatic

terms manifests itself in a sharp jump in the anharmonicity

constant of the resonant type, and in this case one can see

some parallelism with its data. We believe that the analysis

of the second differences F(v), may be in combination with

McCoy’s approach, could make it possible to formulate

useful diagnostic criteria for the shape of the electronic

terms of simple molecules.

Universal dimensionless anharmonicity
scale

With the accumulation of such data, there is a need for

their generalization, when the anharmonicity value would

be universal, independent of the oscillation frequency. That

is, there is a need to analyze the possibility of using the

dimensionless parameter x∗ as a descriptor of the potential

form. If we introduce the energy of vibrational levels E
in the form E = G(v) − De, taking the asymptote as zero,

then the dependence x∗(E) (its experimental realization is

reflected by the function F(v)), which characterizes the

anharmonicity deviations from the constant Morse value,

could possibly serve as the next approximation for a
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Figure 2. Comparison of the second differences F(v) (a) and the reduced anharmonicity x∗(E) (b) vs. the energy of vibrational

levels E for vibrational frequencies of molecules H2 (crosses), D2 (triangles), T2 (circles) according to [23]. The quantities

12 G(v) ≡ G(v)−1G(v − 1) = 2νex∗(ν) and x∗(ν) = 2νex∗(ν)/2νe are calculated by the formula (7).
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Figure 3. Comparison of the second differences F(v) (a) and the reduced anharmonicity x∗(E) (b) vs. the energy of vibrational levels E
for vibrational frequencies of molecules HF (crosses), DF (triangles), TF (circles) according to [24]. The calculations were carried out

using the same formulas as in Fig. 2.

qualitative, and in favorable circumstances, semiquantitative

characterization of the features of the potential type. At the

first stage, it is important to compare the functions x∗(E), if

possible, for several isotopic forms of the same molecule

in order to find out how well the adiabaticity condition

manifests itself in the behavior of this function, i.e., the
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Figure 4. The second differences for isotopically substituted molecules are proportional to the reduced masses: (a) the second differences

for D2 and T2 (as in Fig. 2) and superimposed second differences for H2 (crosses) divided by the ratio of the reduced masses of deuterium

and hydrogen (MD2/MH2 = 2), and tritium and hydrogen (MT2/MH2 = 3); (b) the second differences for DF and TF (as in Fig. 3)
and the second differences for HF superimposed on them, divided by the ratio of the reduced masses of the DF and HF molecules

(MDF/MHF = 1.905), and TF and HF (MTF/MHF = 2.727).

independence of the potential form from the reduced mass

of the molecule. The hydrides are most useful in this regard

because of the significant difference in the vibrational quanta

of the three isotopes, hydrogen, deuterium, and tritium.

The energy use as abscissa ensures the universality of the

conditions for results comparison.

The availability of accurate data in the literature makes

it possible to make such dependences for three isotopes of

the hydrogen molecule (H2, D2, T2) and hydrogen fluoride

(HF, DF, TF), the data obtained are shown in Fig. 2

and 3. Fig. 2, a shows the dependence F(v) on the

energy scale E = G(v) − De. The values of depth of the

potential energy well for all isotopic forms of hydrogen

practically coincide in the adiabatic approximation, but the

value of the harmonic frequency for them in this series

decreases from 4401.21 cm−1 (H2) to 3115.5 cm−1 (D2)
and 2546.4 cm−1 (T2) [23], so the curves are at different

heights. In these coordinates the value of the Herzberg

anomaly (decrease in anharmonicity for the levels in the

lower part of the potential energy well) decreases with

increasing of the isotope mass. For three isotopes, we

plotted the Morse term by the method described above,

averaging x∗ value over the first seven levels for hydrogen

and in the same energy range for two heavy isotopes.

In Fig. 2, a the horizontal lines show the level at which

the points of the Morse oscillator are located, the points

themselves are not shown.

Fig. 2, b shows the energy dependence of the universal

anharmonicity x∗(E). The dependence on frequency disap-

peared, but the distance between the curves unexpectedly

decreased slightly. Formally, this should mean that the

anharmonicity decreases when the isotope mass increases.

At that, at first thought, it seems that the shape of the curves

did not change in the same way. This analysis requires a

special study. The dimensionless universal anharmonicity x∗

in the main part of the potential energy well, where it still

makes sense, takes values from 0.015 to 0.035, and varies

for each isotope in interval approximately 0.015 units wide.

The highest anharmonicity is observed for the hydrogen

term H2.

Literature data on the vibrational structure of the ground

electronic state of HF, DF, TF molecules are processed

according to the same scheme. The results are presented

in Fig. 3, a, b. The picture is very similar to the hydrogen

isotopes described above — a small Herzberg anomaly is

noticeable on the second differences, which is reproduced

in scale x∗(E), but the intervals x∗ differ more strongly, and

the mismatch of the curves is visible for different isotopes. It

makes sense to carry out a detailed analysis of the practical

possibilities of this approach after the accumulation of

experimental data, including
”
abnormal“ electronic adiabatic

terms — they will show how sensitive the parameter x∗ is

to the
”
features“ of such terms.

Optics and Spectroscopy, 2022, Vol. 130, No. 14



Implementation of Morse potential for approximation of vibrational terms of diatomic molecules 2101

As a conclusion, let’s compare the second differences

F(v) vs. the isotope mass. It follows from (7) that they

must be proportional to the reduced molecule masses (both
factors in νex∗ depend on the root of the reduced masses).
Fig. 4, a shows the second differences for D2 and T2 (as
in Fig. 2, circles and triangles) and the second differences

for hydrogen superimposed on them, divided by the ratio of

the reduced masses of deuterium and hydrogen (i.e. by 2),
and tritium and hydrogen (i.e. by 3) (crosses). The same

operation was carried out with the data for HF isotopes

(Fig. 4, b). The agreement is excellent over the entire

energy interval, so that the isotope effect does not introduce

noticeable distortions into x∗(E) dependence.

In particular, it becomes obvious that the second differ-

ences in the wavenumber scale look more natural than in

the vibrational quantum number scale and are preferred in

the analysis. This is especially important to keep in mind

when considering
”
abnormal“ electronic terms, in which the

specific details of the arrangement of perturbed vibrational

levels can be noticeably distorted.

Conclusion

A comparison of the behavior of vibrational progres-

sions for several molecules with an estimate of their

parameters obtained using the Morse potential shows how

accurately (or inaccurately) this potential describes the

properties of diatomic molecules, for which experimental

or calculated data are available in a wide frequency range.

There are examples when, with a successful choice of

the initial value of the anharmonicity parameter, it is

possible to describe the vibrational structure with good

accuracy. This means that for a number of molecules

the arrangement of vibrational levels in the middle part

of the electronic term and, less confidently, in its lower

part satisfies the Morse conditions with practical accept-

ability. Deviations from constant anharmonicity in rela-

tive units practically coincide for isotopically substituted

molecules, which confirms the physicality of the second

differences F(v) representation as a function of energy,

but not vibrational quantum number. The dimensionless

anharmonicity characteristic x∗(ν) makes it possible to

compare, at least qualitatively, the degree of anharmonicity

for different molecules. For example, for hydrogen H2

the anharmonicity is more pronounced than for HF both

on the average (averaged constant anharmonicity according

to Morse) and in the amplitude of deviations from the aver-

age.

Note by G.S. Denisov. This topic occurs during our

talk with M.O. Bulanin about 15 years ago, when we

discussed the need that occurred for both of us to find

for lectures to students the convincing examples of the

practical application of the Morse function with an estimate

of systematic errors, embedded by the founder. Separate

fragments gradually accumulated, and this is what happened

finally. In this aspect, the situation changed little since then,

although we provide references mainly to publications of the

current century. We are convinced that Mikhail Olegovich

would appreciate the result. A detailed presentation of

the first part of this material is accepted for publication

in Spectr. ActaA. 2021.
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