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For superconducting nanowire with the pairing of extended s -type symmetry, Rashba spin-orbit interaction in

a magnetic field, the influence of strong intersite charge correlations on single-particle Majorana excitations is

analyzed. This problem is investigated on the basis of the density matrix renormalization group numerical method.

It is shown that with an increase in the repulsion intensity of electrons located at the neighboring sites, two subbands

emerge in the lower Hubbard band of the open system. Based on calculations of the Majorana polarization and

degeneracy of the entanglement spectrum, it was found that a topologically nontrivial phase with one edge state

survives at the edge of each of the subbands where the concentration of electrons or holes is minimal.
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1. Introduction

Modern experiments with hybrid superconducting

nanowires (SW), characterized by strong spin-orbit coupling

and high g-factor values, do not provide a definite answer

to the question of the implementation of Majorana modes

(MM) at the boundaries of this structure [1,2]. As a result,

there is a need for a more detailed study of the phenomenon

of topological superconductivity [3–5] and properties of Ma-

jorana states, for example, its nonlocality [6–8], spin polar-

ization [9–12], features of the magnetocaloric effect [13,14].

One important issue is the impact of the Coulomb interac-

tions on the Majorana bound states (MBS). Most theoretical

studies of these excitations consider quadratic Hamiltonians

for which classification of topological superconductivity has

been obtained [15,16]. However, the full screening of the

Coulomb interactions in a semiconductor nanowire by a

massive superconductor is not generally guaranteed [17].
As a result, a better description of the topological properties

of the hybrid nanostructure should include both proximity-

induced superconductivity and many-body scattering pro-

cesses.

It is worth noting that the action of the gate fields,

the number of which can be significant in modern MBS-

detection experiments, can considerably influence the in-

tensity of charge correlations in the semiconductor wire.

In particular, it was shown in the study [18] that the

dependence of current through InAs wires on bias voltage

and temperature demonstrates scaling behavior according

to the Tomonaga-Luttinger theory (despite the mixing

of spin and charge degrees of freedom by strong spin-

orbit coupling) [19–21]. The resulting electron-electron

interaction parameter indicates the implementation of a

strong electron correlation (SEC) regime at low carrier

concentrations in the wire.

One of the factors preventing the MBS detection in the

hybrid nanostructure is the suppression of the superconduc-

tivity, proximity-induced by the substrate or shell, due to the

magnetic field. This problem can be avoided, for example,

by assuming that the Cooper pairing in the SW is caused

by the coupling with an unconventional superconductor.

Then, at a zero magnetic field (preserving time-reversal

symmetry) a Majorana Kramers doublet, i.e. the MM pairs

at both ends of the wire, emerges [22]. In the case of

induced s -wave pairing, such excitations can be obtained by

considering two wires with spin-orbit interaction located on

opposite surfaces of a conventional superconductor. As a

result, the topologically nontrivial phase occurs if the main

contribution to the creation of Cooper’s instability comes

from the crossed Andreev reflection processes rather than

the tunneling of the whole pair into one of the wires.

This condition is met precisely in case of strong Hubbard

repulsion [23]. It was also noted that in the quasi-one-

dimensional SW the relatively high value of the Coulomb

repulsion can cause a change of the effective Cooper-pairing

potential sign and, consequently, lead to the formation

of Kramer’s pairs of MBS [24]. In the SEC regime the

occurence of parafermions in systems with the SW was also

demonstrated [25,26].

It is essential that taking into account strong electron

interactions encounters fundamental theoretical problems

associated with a significant renormalization of effective

interactions, a change in the topological classification, as

well as the correct definition and construction of the

MM operators [27]. The many-body MM operators were

obtained analytically and investigated in detail in the case of
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the Kitaev chain model [28–30]. It was shown that one

of the consequences of the existence of the many-body

MBS is the stability of the 4π-Josephson effect against to

the intersite Coulomb interactions if the Hamiltonian of the

whole system (i.e. two tunnel-coupled Kitaev chains) has

electron-hole symmetry [31]. In addition, in the study [32]

for the spin 1D XYZ-model, which can be reduced to

the interacting Kitaev chain, the Majorana-type excitation

operator was also constructed at a special point of the

system parameters.

The importance of the problem of many-body interactions

is also related to the implementation of topological quantum

computing. Despite the fundamental stability of the MBS

against to local perturbations [33], various processes of

phase failure destroying the state of topological qubit still

exist. For example, the hybridization of MM wave functions

in the short wires or the fluctuations of gate electrostatic

potential may be sources of decoherence [34,35]. In turn, in

a number of works, based on the mean-field description

or employing the density matrix renormalization group

method (DMRG), it was found that both single-site [36] and

intersite [37] charge correlations at a certain intensity can

increase the resistance of the MBS to different decoherence

processes. However, in contrast to these findings, the exact

diagonalization of the Hamiltonians of Kitaev short chains

shows that accounting of interactions in distant coordination

spheres can reduce the lifetime of MBS [38].

Using the DMRG method the influence of charge cor-

relations on topological phases is most often considered

in the Kitaev chain [39], as well as the SW model with

spin-orbit interaction, which reduces to the Kitaev model

in the strong magnetic fields [40]. The Hamiltonian of

such a SW belongs to the D symmetry class where only

two phases are possible: a trivial phase with the Majorana

number (topological invariant) M = + and a nontrivial one

with M = −. The studies [41,42] analyzed the problem

of electron-electron interactions in the SW of the BDI

symmetry class. The latter means that several topologically

nontrivial phases can be implemented: a phase with one

MM pair at the end of the structure (similar to the SW of

the D class) and a phase with two MBS.

The above-mentioned studies [41,42] focused on the Hub-

bard repulsion factor. In this article, the DMRG algorithm

examines the effect of strong intersite electron repulsion

on the topological properties of the superconducting wire

which Hamiltonian belongs to the BDI symmetry class.

2. Model and method

The SW model under consideration takes into account the

Rashba spin-orbit coupling, Coulomb repulsion of electrons,

proximity-induced superconductivity and Zeeman splitting.

In the tight-binding approximation, the SW Hamiltonian of

SW with N sites has the form [40,41]:

H =
∑

f =1;σ

[

ξσ a+
f σ a f σ +1a f ↑a f ↓+1∗a+

f ↓a+
f ↑+

U
2

n f σ n f σ

]

−
N−1
∑

f =1;σ

(

t
2

a+
f σ a f σ +

α

2
ησ a+

f σ a f +1σ

− 11a f σ a f +1,σ −
V
2

∑

σ ′

n f σ n f +1σ ′ + h.c.

)

. (1)

Here t/2 and α/2 are parameters describing the hopping

and Rashba spin-orbit interaction between the nearest neigh-

bors, respectively; ξσ = −µ + ησ h, where h = 1
2

gµBH —
the Zeeman energy, g — the Lande g-factor; µB — the

Bohr magneton; µ — a chemical potential; a f σ (a+
f σ ) —

an operator annihilating (creating) electron with a spin

projection σ =↑, ↓ on a site f ; η↑ = 1, η↓ = −1. The

quantities 1 and 11 are amplitudes of the proximity-induced

superconducting pairing of the extended s -type symmetry.

The terms describing on-site, U , and intersite, V , Coulomb

interaction of electrons are also taken into account. The

occupation number operator is n f σ = a+
f σ a f σ . Henceforth,

we consider all energy variables in units of t and t = 1.

Equilibrium properties of the model (1) in the SEC

regime (U , V ≫ 1) have been studied in the framework

of the DMRG approach [43–45]. Its main idea is similar to

the other renormalization-group techniques [46] and consists

in the partial exclusion of microscopic degrees of freedom.

On the one hand, the resulting effective model acts on some

reduced Hilbert space. On the other hand, it describes the

main physical properties of the initial one.

The first part of the used DMRG algorith contains the

following steps:

1. The left cluster L with N0 sites and ML eigenstates is

considered. The Hamiltonian of such a cluster is given by

the formula (1) as HL = H |N→N0=3. The eigenstates of the

Hamiltonian HL can be obtained exactly and form a Hilbert

space,
{

|mL〉
}

, consisting of ML = 64 states. Similarly, one

can get the Hamiltonian of the right cluster R and construct

the corresponding Hilbert space
{

|mR〉
}

of its eigen states:

[HR] {|9〉}∈{|mR〉} = [HL] {|9〉}∈{|mL〉}.

2. The enlarged cluster S/E (system/environment) is

formed by adding the single site to the right/left of the

cluster L/R. The Hilbert space dimension of the new blocks

are MS,E = ML,R · M1 = 64 · 4 = 256, where M1 — the

single-site Hilbert space dimension. The basis states of the

system and environment are acquired as the direct products:

|mS〉 = |mL〉 ⊗ |m1〉, |mE〉 = |m1〉 ⊗ |mR〉. The Hamiltonians

of the system and environment are given by

HS = HL ⊗ I1 + IN0
⊗ Hc + HS;int;

HE = Hc ⊗ IN0
+ I1 ⊗ HR + HE;int.

Here IN is the identity operator in the space of

cluster with N sites. The operator H1 (Hint)
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can be obtained from the first (second) row of

the Hamiltonian (1) for N = 1 (N = 2). The first

iteration assumes that HS, int = HS, int0 = IN0−1 ⊗ Hint ,

HE, int = HE, int0 = Hint ⊗ IN0−1. It is essential to note that

the adding of single sites in the center of the structure at

each iteration step allows to circumvent mock boundary

effects [47,48].
3. The supercluster (S + E) with length 2N0 + 2 and the

Hilbert-space size MS · ME is formed. Its Hamiltonian is

H = HS ⊗ IN0+1 + IN0+1 ⊗ HE + IN0
⊗ Hint ⊗ IN0

.

The eigenproblem for this Hamiltonian is solved employing

the Lanczos algorithm [49]. Here the supercluster Hilbert

space is divided into the subspaces with even and odd

number of fermions (indexes ≪+≫ and ≪−≫, respectively):

H = H+ ⊕ H−; H±|91,2;± 〉 = E1,2;±|91,2;± 〉.

The above expressions explicitly indicate that the Lanczos

algorithm is used to find two lowest-energy eigenstates (the
ground state and first excited one) for each parity sector.

Based on these four quantum states the many-body density

operator of the supercluster (S + E) is constructed:

ρ =
∑

j=1,2

(

p j+|9 j+ 〉〈9 j+ | + p j−|9 j− 〉〈9 j− |
)

(2)

where p1+ + p2+ + p1− + p2− = 1. In this work we

assume p j+ = p j− = 1/4.

4. Next, the reduced density matrices are calculated. The

corresponding operator of the cluster S, ρS = TrE |ψ〉〈ψ|,
can be found by taking the partial trace over the environ-

ment degrees of freedom (cluster E and indexes ≪e≫) [50].
A similar density operator is formed for the cluster E by

tracing over the ≪s≫ indexes. Splitting up these reduced

density matrices by fermion parities one can obtain

ρs ,s ′ = ρs+,s ′+ ⊕ ρs−,s ′−; ρe,e′ = ρe+,e′+ ⊕ ρe−,e′−, (3)

where the explicit form of ρs±,s ′± is

ρs±,s ′± =
∑

u=e+, e−

∑

j=1,2

〈 s±, u |9 j± 〉〈9 j± | s ′±, u 〉,

and similar for the other matrices. They have dimen-

sions MS(E)/2× MS(E)/2 = 128× 128 for the cluster S
(E). Considering further the cluster S, the solutions of

the eigenvalue problem for matrices ρS± ·Vl± = w l± ·Vl±

(l = 1, . . . ,MS/2) determine its effective low-energy de-

grees of freedom which must be used in the renormalization

group procedure. The eigenvalues w l± characterize the

occupancy of the quantum state l with the fermionic

parity ± and satisfy the condition
∑

l

(

w l+ + w l−
)

= 1.

Wherein the degeneracy of the eigenvalues means quantum

entalglement of the system and environment. Similar

remarks are valid for the environment density matrix ρE .

5. Thus, the quantum degrees of freedom of the sys-

tem S are determined by the eigenvectors Vl± with

the largest eigenvalues w l±. In order to renormilize

the Hamiltonians of the L and R clusters the tran-

sition matrices VL± = [V1±, V2±, . . . ,VML/2;±] are built,

where w1± ≥ w2± ≥ . . . ≥ wML/2;± . The similar matri-

ces are constructed for the cluster E . The matrices

VL(R) = [VL(R)+, VL(R)−] have dimensions MS(E) × ML(R). Fi-

nally, the renormilized Hamiltonians and other operators are

HL(R)± → V +
L(R)± · HS(E)± ·VL(R);

AL(R) → V +
S(E) · AS(E) ·VS(E);

HS,int± → (V +
L ⊗ I1)

+
± · (I1 ⊗ HS,int0)± · (V +

L ⊗ I1)±;

HE,int± → (I1 ⊗V +
R )+

± · (HE,int0 ⊗ I1)± · (I1 ⊗V +
R )±.

6. The procedure repeats starting from the step 2 until the

observables cease to depend on the number of iterations.

After the convergence the 1D structure corresponds to

the one with a vanishingly small influence of the boundary

conditions. This means that the described DMRG algo-

rithm is applicable for infinite systems (infinite DMRG —
iDMRG). Its precision is characterized by a truncation

error: err = 1−
∑ML

i=1 w i , where summation is carried out

over ML largest eigenvalues w i . In this study calculations

err ∼ 10−5.

Next, one has to additionally fix those choices of effective

degrees of freedom for the clusters S and E at each iteration

step as they are actually made for the superclusters of size

lesser than the final length N. To do it the finite version

of the DMRG procedure is used (finite-system DMRG-

fDMRG). In this case the iDMRG procedure continues until

the number of sites reaches the value of N. Thereafter, the

sequence of sweeps is performed in order to achieve the

convergence of the algorithm. The idea is to alternately

perform the iDMRG procedure only for the left (L) or

right (R) half of the system, keeping the structure length.

Simultaneously, the operators of the adjacent (R or L) part

have to be saved in computer memory and used during the

next sweep.

As a result of the DMRG algorithm, we recieve the

approximate many-body quantum states |9 j± 〉, energies

E j± and many-body density matrix (2) of the system. The

latter allows to study its equilibrium properties.

3. Results

In this section the impact of strong local interactions,

on-site (U) and intersite (V ) Coulomb repulsion, on the

equilibrium properties of the system (1) is analyzed. During
the DMRG numerics we supposed that either U = 5, V = 0

or U = 5, V = 3.5. It is well known that the strong Hubbard

repulsion, U ≫ 1, leads to the splitting of the initial electron

band into the lower and upper Hubbard ones [51].
The energy region between them, which is also called

the Mott-Hubbard gap, possesses the zero density of states

and increases with the U growth. The strong intersite

repulsion, V ≫ 1, causes the additional splitting of each
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Figure 1. The electron concentration vs. chemical potential dependences for strongly correlated superconducting nanowire (1) in case

of zero (V = 0, (a)) and strong (V = 3.5, (b)) intersite interaction. The parameters of the model: t = 1, α = 1.5, 1 = −0.5, 1 = 0.2,

h = 0.5, U = 5, N = 100.
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Figure 2. The chemical-potential dependence of the energies, average concentration (a), Majorana polarization of the first two excitations

of the superconducting wire and the degeneracy of its entanglement spectrum (b) at V = 0. The parameters are the same as in Fig. 1.

band into two subbands accompanied by the spectral weight

redistribution [52,53].

For the model (1) the similar effects, induced by the

Hubbard and intersite repulsion, occur. For example, one

can observe them in the chemical-potential dependence of

the average electron concentration, 〈n〉 = 1
N

∑N
f =1〈n f 〉. The

corresponding curves are displayed in Fig. 1 at V = 0 (a)

and V = 3.5 (b). If U = 5, V = 0 there is the interval

µ ∈ [1.5; 4] where the 〈n〉
(

µ
)

slope is virtually horizontal

caused by the Mott-Hubbard gap. The small nonzero

gradient can be attributed to the superconducting pairings

which result in the nonzero density of states. Taking into

account the intersite interaction leads to the shift of the

Mott-Hubbard gap (see the interval µ ∈ [7; 13] in Fig. 1, b)

and gives rise to the similar gaps inside both Hubbard bands.

Let us consider in more detail the lower Hubbard band

in the SEC regime, U = 5, V = 3.5. It emerges in the

energy interval µ ∈ [−2; 7]. The subbands induced by the

intersite repulsion of electrons are realized at µ ∈ [−2; 1]

and µ ∈ [3.5; 7].

The topological properties of the lower Hubbard band

were analized employing three characteristics: the excitation

spectrum, Majorana polarization and entanglement entropy.

The former two were found using the fDMRG algorithm.

In opposite, the last one were calculated with help of

the iDMRG scheme. The lowest excitation energies are

defined as: ε j = E j− − E0 if E0 = E1+, and ε j = E j+ − E0

Physics of the Solid State, 2022, Vol. 64, No. 13
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Figure 3. The influence of the strong intersite Coulomb correlations on (a) excitation energies and average concentration as well as (b)
Majorana polarization and entanglement entropy of the superconducting wire for the parameters of Fig. 2 and V = 3.5.

if E0 = E1−, where E0 = min{E1+, E1−} — the many-body

ground state energy ascribed to the positive and negative

fermion-parity sector of the Hilbert space. By the definition

ε j ≥ 0 and if ε j = 0 the quantum phase transition in the

system occurs. The Majorana polarization is

MP j =

∑′
f σ (w2

j f σ−z 2
j f σ )

∑′
f σ (w2

j f σ +z 2
j f σ )

;
w j f σ =〈9 j |(a f σ +a+

f σ )|90〉

z j f σ =〈9 j |(a f σ − a+
f σ )|90〉;

(4)

where |90〉 is the ground-state wave function; |9 j〉 = |9 j±〉
if E0 = E∓. Index

′ nearby the sums means the summation

over the half of the system sites. In this study the

entanglement entropy is determined in the following way:

D = [(Nit − Ns) · ln(2)]
−1 ·

N it
∑

l=Ns

Sρ(l), (5)

where Sρ(l) = ln (d(ρ, l)); d(ρ, l) — a degeneracy of the

eigenvalues of the reduced density matrix (3); Nit — a

number of the iDMRG iterations. We used Nit = 400,

Ns = 300.

The above-mentioned quatities allow to distinguish be-

tween the different phases. In particular, if the phase

is topologically trivial that ε1,2 > 0, MP1,2 → 0, D → 0.

The topologically nontrivial phase with single Majorana

bound state is characterized by ε1 → 0, ε2 > 0, MP1 → 1,

MP2 → 0, D → 1. Finally, if the nontrivial phase has

two Majorana bound states that ε1,2 → 0, MP1,2 → 1,

D → 2. Note that the iDMRG calculation converges well

and the D index can be found unambiguously in the

strongly interacting system with the moderately suppressed

superconducting pairing. Otherwise, the behaviour of D is

highly fluctuating (e.g. see Fig. 3, b).
The dependence of two lowest excitation energies on the

chemical potential, ε1,2
(

µ
)

, for the system in the absence

of intersite interaction, V = 0, is shown in Fig. 2, a (see
the left y axis). The chemical-potential window under

consideration comprises the whole lower Hubbard band,

i.e. 〈n〉 ≈ 0 at µ = −2 and 〈n〉 ≈ 1 at µ = 1.5 (see the

right panel in Fig. 2, a). For µ > 1 the Mott-Hubbard gap

takes place. Inside the lower Hubbard band three different

phases show up: 1) a trivial phase at µ ∈
[

−2;−1.7
]

;

2) a topological phase with two Majorana bound states

at µ ∈
[

−1.7;−1.2
]

; 3) a topological phase with single

Majorana state at µ ∈
[

−1.2; 1
]

. The emergence of the

mentioned nontrivial phases is indicated by the behavior

of the excitation spectrum, Majorana polarization and D
index. The last two quantities are plotted in Fig. 2, b.

Their µ-dependences point out the edge-like character of the

excitations at µ ∈
[

−1.7;−1.2
]

where MP1,2 = 1, D = 2

and the Majorana nonlocality of the first excitation only at

µ ∈
[

−1.2; 1
]

, i.e. MP1 = 1, MP2 ≪ 1, D = 1. Addition-

ally, a comparison of the ε1,2 (µ) and 〈n〉
(

µ
)

dependences

implies that the topological transitions are characterized

by the peculiarities of the ∂〈n〉/∂µ behavior. Similar

features were observed in the Kitaev chain model [54]
and in the model of an electron ensemble on a triangular

lattice in the phase of coexistence of superconductivity and

magnetism [55]. We also note that the analysis of the

∂〈n〉/∂µ singularities at V = 0 allows one to reconstruct the

topological phase diagram of the system obtained in [41].

The influence of the strong intersite repulsion on the

excitation energies and electron density in the lower Hub-

bard band is shown in Fig. 3, a. One can easily see two

subbands established at µ ∈
[

−2; 1.5
]

and µ ∈
[

3; 7
]

due

to these many-body interactions. In the gap the electron

concentration reaches a plateau, where 〈n〉 ∼= 0.5 (see the

right y axis and curve with triangulars). As V grows, the

topological phase with single Majorana state begins to be

rapidly suppressed for most values of µ. This effect is

significantly stronger than the previously discussed in the

BDI-class wires which is caused by the strong Hubbard

repulsion only [41]. It is essential that at µ ∈
[

−1.9;−1.5
]

and µ ∈
[

4; 6
]

the realization of single Majorana states is

2∗ Physics of the Solid State, 2022, Vol. 64, No. 13
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still possible. This observation is also confirmed by the

calculations of the Majorana polarization MP1,2 and the

topological index D, which are shown in Fig. 3, b. The found

stability of the topological phases with respect to the strong

charge correlations can be explained by the fact that the

noted regions of the chemical potential are characterized by

a low concentration of electrons or holes, and, accordingly, a

relatively weak effect of intersite repulsion on the properties

of the system.

The function D (µ) in Fig. 3, b considerably fluctuates at

V = 3.5 inside the chemical-potential area µ ∈
[

−1.5; 3.5
]

.

This behavior is related to the suppression of short-range

superconducting pairings and effective breaking of electron-

hole symmetry in the system. A similar effect is observed in

the case 11 = 0, V = 0 and very strong Hubbard repulsion

U > 10. It can be seen that the intersite repulsion leads

to a much faster suppression of superconductivity in the

system in comparison with the case of taking into account

the Hubbard interaction only.

Finally, we note that when the chemical potential en-

ters the quasi-forbidden bands induced by the Coulomb

interactions a quantum phase transition occurs in the

system without changing the topological index (see the

dependences ε1,2(µ) in Fig. 3, a in the vicinity of µ ≈ 2.2).
It is important that such effects are due precisely to the

presence of intersite repulsion in the system and cannot be

found at V = 0. However, elucidation of the nature and

properties of such quantum transitions is beyond the scope

of this study.

4. Conclusions

The effect of strong intersite electron repulsion on

the topological phases of the nanowire with spin-orbit

interaction, superconducting pairing of extended s -type
symmetry and placed in the external magnetic field is

investigated on the basis of the renormalization group

method for the density matrix. The analysis performed is a

continuation of the study [41], where the superconducting

nanowire was characterized by strong Hubbard repulsion,

while the intersite Coulomb correlations were supposed

to be significantly screened. It is shown that with an

increase of the repulsion intensity of electrons located at

the neighboring sites the lower Hubbard band splits into

two subbands. Between them the region with a very low

density of states, similar to the Mott-Hubbard gap, appears.

The emergence of two subbands is also observed at the

electron concentrations above unity. In each region with

a low density of states (both in the Mott-Hubbard and

V -induced gaps), quantum transitions are observed without

a change in the topological index as the chemical potential

is swept. Such transitions are realized only in the presence

of the sufficiently strong intersite repulsion.

The topological properties of the described electron

subbands in the lower Hubbard band were investigated

on the basis of an analysis of the excitation spectrum,

Majorana polarization and quantum entanglement spectrum.

It is shown that under the strong intersite repulsion the

nontrivial topological phases can be found only in the

parametric regions characterized by the low concentration

of electrons or holes. For the other fillings, the topologically

trivial phase with significantly suppressed superconductivity

due to the Coulomb interactions is realized. It is noted

that the intersite repulsion, as a factor leading to the

Cooper pairing destruction, is substantially stronger than

the Hubbard interaction.
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