УДК 621.315.592

Электронографическое исследование температурно-временны́х зависимостей кристаллизации нанотолщинных аморфных пленок Culn₅Te₈, сублимированных в обычных условиях и в условиях воздействия внешнего электрического поля

© Г.Е. Дашдамирова

Институт физики Национальной академии наук, AZ1143 Баку, Азербайджан E-mail: Uli200909@rambler.ru

Поступила в Редакцию 6 апреля 2022 г. В окончательной редакции 21 июля 2022 г. Принята к публикации 5 сентября 2022 г.

Методом электронографического структурного анализа исследованы процессы кристаллизации аморфных пленок $CuIn_5Te_8$, полученные в обычных условиях и в условиях воздействия внешнего электрического поля напряженностью 500 В \cdot см⁻¹. Построены изотермические кривые фазовых переходов и определены кинетические параметры фазовых превращений: установлены мерности роста кристаллов и значения активационных энергий. Показано, что при кристаллизации аморфных пленок CuIn₅Te₈ скорости зародышеобразования и дальнейшего их роста следуют соотношениям Аррениуса.

Ключевые слова: электронографический структурный анализ, тонкие пленки, изотермы кристаллизации, энергия активации.

DOI: 10.21883/FTP.2022.10.53953.9854

1. Введение

В работе [1] электронно-микроскопическими исследованиями установлено, что CuIn₅Te₈ обладает несколько неупорядоченной тиогаллатной структурой. Доменная структура, обусловленная различным расположением катионов внутри общей гранецентрированной кубической подрешетки теллура, согласуется с симметрией тиогаллатной структуры. В работе [2] на основе анализа данных комбинационного рассеяния света проведено сравнительное исследование колебательных мод кристаллических решеток соединений системы Cu-In-Te, включая и тройное соединение состава CuIn₅Te₈. Установлено, что самые высокие фононные частоты, наблюдаемые при 237 и 270 см⁻¹, связаны с комбинацией мод E и B_2 . Согласно данным работы [3], энергия запрещенной зоны соединения CuIn₅Te₈, кристаллизующегося в структуру халькопирита, варьируется от 1.10 до 1.02 эВ в интервале температур 10-300 К. Установлено, что изменение Eg в зависимости от температуры обусловлено вкладом оптических фононов с энергией 17 МэВ.

Изучение температурно-временны́х зависимостей кинетики фазовых переходов ($\Phi\Pi$) в нанотолщинных полупроводниковых аморфных носителях, наряду с изучением структуры, распределение примесей в кристаллических и аморфных пленках, установление сверхструктурных фаз, возникающих в результате деформаций кристаллических решеток, образования фаз вследствие реакций химических элементов и т. д. является важным направлением электронографических исследований. Для этих исследований характерными объектами являются наноразмерные тонкие полупроводниковые слои. В работе [4] синтезом двойных соединений псевдобинарных разрезов системы $A^{I}C^{VI}-B_{2}^{III}C_{3n}^{VI}$ (n = 0, 1, 2...)и химических элементов тройной системы Cu-In-Te, взятых в соотношениях Cu:In:Te = 1:5:8 компоненты, которые перед загрузкой в двойные кварцевые ампулы подвергались химико-термической обработке, синтезированы тройные соединения, входящие в общую химическую группу $A^{I}C^{CVI}-B_{2n+1}^{III}C_{3n+2}^{VI}$. Индексы составов фаз тройных соединений в этой относятся к ряду чисел n = 0, 1, 2...формуле Методом рентгеноструктурного анализа установлено, что синтезированные объемные монокристаллы (Cu:In:Te = 7.18:35.31:57.51 ат%) согласуются с составом исходных навесок (Cu:In:Te = 7.14:35.72:57 at%). Кристаллографические параметры тетрагональных решеток выращенных монокристаллов со структурой халькопирита состава CuIn₅Te₈ равны a = 6.162 и c = 12.29 Å.

В работах [5,6] для различных соединений систем Cu(Ag)-In-Te типа 2:4:7 и 1:5:8 со структурой халькопирита установлены условия получения нанокристаллов и определены значения их оптических запрещенных зон.

2. Экспериментальные методы

Настоящая работа посвящена экспериментальному изучению температурно-временны́х зависимостей ФП

в результате кристаллизации нанотолщинных аморфных пленок состава CuIn₅Te₈, полученных сублимацией двойных соединений Cu2Te и In2Te3 в вакууме с остаточным давлением $\sim 10^{-4}$ Па, а также нанесенных испарением компонентов системы Cu-In-Te высшей очистки, взятых в соотношениях 1:5:8. С целью получения и исследования кинетики кристаллизации аморфных пленок состава CuIn₅Te₈ производилось одновременное термическое испарение двойных соединений Cu₂Te и In₂Te₃ в вакууме $\sim 10^{-4}$ Па в обычных условиях и в условиях воздействия внешнего электрического поля напряженностью 500 В · см⁻¹ из вольфрамовых спиралеобразных конически навитых спиралей. Тонкие пленки CuIn₅Te₈, расчетная толщина которых составляла ~ 250 Å, были получены путем сублимации указанных выше синтезированных двойных соединений на предварительно охлажденных до 203 К подложках NaCl.

Изучение кинетики какого-либо процесса, т.е. установление соотношения между долей претерпевающего изменения вследствие ФП и временем превращения t определяет кинетику любых физических и химических процессов. Так как электрические поля, постоянные и переменные, оказывают существенное влияние на процессы кристаллизации, нами исследована также кинетика кристаллизации аморфных пленок CuIn₅Te₈, конденсированных в условиях воздействия внешнего электрического поля напряженностью 500 В · см⁻¹. Постоянное электрическое поле создавалось между двумя параллельными медными пластинами. На поверхности отрицательно заряженной нижней пластины располагались подложки — свежие сколы NaCl. В верхней пластине имелись два отверстия диаметрами 5 мм, через которые молекулярные пучки проходили и достигали поверхности подложек. Температура подложек составляла 203 К. Скорость осаждения была 20 Å/с. Установление кинетических параметров ФП сопряжено с определенной сложностью, так как зачастую неизвестен механизм образования центров при кристаллизации аморфных веществ и дальнейшего их роста, сведения о которых можно получить лишь изучением температурновременны́х зависимостей ФП. Для установления зависимости между объемом, претерпевающим ФП, и временем превращения следует найти значения двух взаимосвязанных параметров: скорость зародышеобразования (v_n) и дальнейшего их роста (v_{gr}) . Общее аналитическое уравнение, содержащее в себе решение и описывающее кинетические процессы ФП, приведено в работах [7,8]:

$$V_t = V_0 [1 - \exp(-kt^m)].$$
(1)

Данное выражение описывает кинетику $\Phi\Pi$, протекающего с возникновением зародышей новой фазы с учетом статистического характера перекрытия растущих центров. В формуле (1) *k* является константой скорости реакции, равной $\frac{1}{3}\pi v_3 v_{gr}^3$, величина *m* зависит от мерности роста и различна для возможных типов $\Phi\Pi$.

В работах [9,10] показано, что закономерности и кинетические параметры ФП могут быть установлены, минуя громоздкий количественный анализ процессов превращения, путем молекулярно-кинетического рассмотрения кристаллизации аморфных веществ согласно формуле (1). Для непрерывного во времени наблюдения за ходом процесса превращения известны приведенные в работах [11,12] способы, с помощью которых в процессе нагрева образца регистрируются изменения интенсивностей дифракционных рефлексов, у которых изменяются угловые положения в процессе ФП. Смещения дифракционных пиков измеряются счетчиком с щелевой апертурой. Погрешности в определении изменений интенсивностей дифракционных пиков при этом могут достигать $\sim 15\%$.

Методом, разработанным в работе [13], удается получить непрерывные электронографические снимки, по точности и резкости дифракционного поля не уступающие дискретным электронограммам, фиксирующиеся на фотопластинках. Сущность метода кинематической электронографии как физического метода заключается в фиксации дифракционной картины на равномерно движущуюся фотопластинку, равномерное движение которой достигается редуцированным электродвигателем. Дифракционная картина от поликристалла получается с помощью щели, расположенной вдоль горизонтального радиуса дифракционных концентрических колец. В этом случае образуется узкая полоса, которая превращает дифракционную картину в параллельные линии, симметричные относительно электронного пучка. Кинематические съемки нами проводились со скоростью 1/3, 1/2, 1/6 и 1/10 мм/с. Термическая обработка пленок CuIn₅Te₈ толщиной 250 Å производилась с помощью танталовой ленты с несколькими отверстиями диаметром 0.1-0.5 мм. Исследуемые пленки нагревались непосредственно в колонне электронографа марки ЭМР-102. Градуировка этих специальных печек, состоящих из танталовых лент размером $25 \times 1.5 \times 0.07 - 0.1$ мм, производилась с использованием медно-константовой или хромель-алюмелевой термопары, а также по точкам плавлений In, Sn, Pb. Эксперименты по получению аморфных пленок состава CuIn5Te8, пригодных для исследования, были аналогичны экспериментам, проведенным в работах [14,15].

3. Результаты и обсуждение

С нагревом аморфные пленки CuIn₅Te₈ со значениями $S = 4\pi \sin \theta / \lambda = 1.66$, 3.20 и 4.91 Å⁻¹, соответствующими диффузным линиям на кинематических электронограммах (рис. 1), при сравнительно небольших температурах переходят в кристаллическое состояние.

Были определены интенсивности дифракционных линий с индексами (210), (301) и (420), которые имели лучшие разрешения, а следовательно, были наиболее удобны для измерений интенсивностей. От значений интенсивностей дифракционных отражений кристаллического CuIn₅Te₈ к соответствующим значения объема

Рис. 1. Кинематическая электронограмма от аморфного $CuIn_5Te_8$, претерпевающего $\Phi\Pi$ при 403 K.

Рис. 2. Кинетические кривые кристаллизации аморфного CuIn₅Te₈.

 V_t переходили по методике, приведенной в работе [16]. Как видно из изотерм кристаллизации аморфных пленок, построенных для температур 350, 373 и 403 К (рис. 2), с увеличением температуры наклон кривых резко возрастает, что указывает на быстрое увеличение скорости кристаллизации с повышением температуры отжига пленок.

Для сопоставления экспериментальных изотерм с аналитическим выражением кинетики кристаллизации были построены зависимости $\ln \ln V_0/(V_0 - V_t)$ от $\ln t$ (рис. 3). Для всех температур получаются почти параллельные линии, которые указывают на то, что экспериментальные изотермы можно описывать выражением (1). Из наклона прямых к оси абсцисс установлено значение показателя *m* в выражении (1), равное ~ 4. Это значение m указывает на то, что в случае кристаллизации аморфных пленок CuIn₅Te₈ толщиной ~ 250 Å так же, как и в случае CuIn₅S₈ [14], имеет место трехмерный рост кристалликов. Значения ln *k*, установленные с помощью графика зависимости ln ln $V_0/(V_0 - V_t)$ от ln *t*, следующие: при 358 K ln k = -33.7, при 373 K ln k = -23.2 и при 403 K ln k = -12.9. Из графика зависимости ln *k* от обратной температуры (рис. 4), построенного на основе указанных выше данных, видно, что экспериментальные точки лежат на одной прямой.

Линейная зависимость $\ln k$ от 1/T объясняется тем, что в исследуемой области температур скорость зародышеобразования υ_n и скорость роста кристаллика υ_{gr} могут быть описаны выражением типа Аррениуса. Представляя υ_n и υ_{gr} в уравнение типа Аррениуса и логарифмируя k, получим

$$\ln k = c - \frac{U_n + 3U_{gr}}{RT},\tag{2}$$

здесь c — некоторая постоянная, не зависящая от температуры, U_n и U_{gr} — энергии активации зародышеобразования и роста кристалликов соответственно,

Рис. 3. Зависимость $\ln \ln V_0/(V_0 - V_t)$ от $\ln t$ для кристаллизации аморфного CuIn₅Te₈.

Рис. 4. Зависимость $\ln k$ от обратной температуры для кристаллизации аморфного CuIn₅Te₈.

Значения энергий активаций кристаллизации аморфных пленок CuIn₅Te₈, полученных в условиях воздействия электрического поля и вне его

Напряженность электрического поля	т	$U_{tot},$ ккал/моль	U _n , ккал/моль	$U_{gr},$ ккал/моль
$E = 500 \mathrm{B} \cdot \mathrm{cm}^{-1}$ $E = 0$	4	55.8	33.5	7.4
	4	32.8	12.6	6.7

R — универсальная газовая постоянная. Значение суммы $U_n + 3U_{gr}$, установленное по наклону прямой, приведенной на рис. 4 к оси абсцисс, равно 32.8 ккал/моль. Энергия активации зародышеобразования U_n , вычисленная по наклону прямой зависимости $1/\tau$ от $\ln t$ (где τ — инкубационное время, т. е. экспериментально наблюдаемое время начала кристаллизации), равна 12.6 ккал/моль. U_{gr} , определенная из соотношения $U_{gr} = (U_{tot} - U_n)/3$, оказалась равной 6.7 ккал/моль.

Исследование кинетики кристаллизации аморфных пленок CuIn₅Te₈, полученных при воздействии поля, проводилось аналогично исследованию пленок, полученных в обычных условиях. Изотермические кинематические электронограммы были получены при температурах 358, 373 и 403 К. Из графика зависимости $\ln \ln V_0/(V_0 - V_t)$ от $\ln t$, построенного на основе кинетических кривых кристаллизации CuIn5Te8 для вышеуказанных температур, для чего определялись интенсивности дифракционных линий с индексами, указанными выше для закристаллизованных пленок, полученных в обычных условиях, была определена мерность роста кристалликов m = 4. Суммарная энергия активации процесса кристаллизации равна: $U_{tot} = U_n + 3U_{gr} = 55.8$ ккал/моль. Величины энергий активаций зародышеобразования (U_n) и роста (U_{gr}) , установленные аналогично случаю отсутствия поля, равны 33.5 и 7.4 ккал/моль соответственно. Из экспериментальных данных, полученных в результате выполненных электронографических исследований, видно, что в обоих случаях наблюдается трехмерный рост кристалликов. Значения энергий активации кристаллизации для пленок CuIn₅Te₈, полученных под воздействием электрического поля, несколько больше соответствующих величин для пленок, сублимированных вне поля. Для сравнения найденные значения кинетических параметров кристаллизации приведены в таблице.

Таким образом, установлено, что при конденсации пленок системы $Cu_2Te-In_2Te_3$ под воздействием электрического поля образующиеся аморфные пленки состава $CuIn_5Te_8$ формируются в более устойчивом состоянии. Степень деформированности цепочек молекул уменьшается и, как следствие, уменьшается степень разрыва цепочек молекул на короткие фрагменты, что в свою очередь приводит к уменьшению их подвижности при последующей термообработке, в результате чего увеличиваются значения энергий активаций кристаллизации CuIn₅Te₈.

4. Заключение

Кинетика кристаллизации аморфных пленок состава CuIn₅Te₈, полученных вакуумным препарированием синтезированных двойных соединений Cu2Te и In2Te3, а также испарением компонентов системы Cu-In-Te, взятых в соотношениях 1:5:8, сублимированных из раздельных источников, подчиняется закономерностям, установленным Аврами-Колмогоровым. Для аморфных пленок, образующихся в условиях осаждения молекулярных пучков в электрическом поле, значения энергий активаций кристаллизации получаются завышенными по сравнению с соответствующими значениями для тонких слоев, полученных вне поля. В условиях осаждения молекулярных пучков в электрическом поле, так же, как и в пленках CuIn₅Se₈ [17], скрепляющие структуру связи укорачиваются — меняются расстояния в ближайшем окружении атомов в пленках CuIn5Te8. Независимо от способа и условий формирования пленок CuIn₅Te₈, полученных в обычных условиях и реконструированных под воздействием внешнего электрического поля, происходит трехмерный рост кристалликов.

4.1. Благодарности

Я выражаю свою благодарность докт. физ.-мат. наук, проф. Д.И. Исмаилову за помощь, оказанную мне при проведении экспериментов и расчетов, а также за полезные дискуссии и советы при оформлений данной статьи.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- N. Frangis, G. van Tendeloo, C. Manolikas, J. van Landuyt, S. Amelinckx. J. Solid State Chem., 61 (3), 369 (1986).
- [2] C. Rincón, S.M. Wasim, G. Marin, E. Hernández, J.M. Delgado, J. Galibert. J. Appl. Phys., 88, 3439 (2000).
- [3] C. Rincón, S.M. Wasim, R. Márquez, I.A.N. Rojas, G. Marin, E. Hernández, J. Galibert. J. Phys. Chem. Solids, 63 (4), 581 (2002).
- [4] И.В. Боднарь, В.Ю. Рудь, Е.И. Теруков, А.М. Ковальчук. ФТП, 45 (5), 617 (2011).
- [5] O. Yarema, M. Yarema, W.M.M. Lin, V. Wood. Chem. Commun., 52, 10878 (2016).
- [6] D. Ni, L.T. Nquyen, E.S. Feverston, R. Zhong, R.J. Cava. J. Solid State Chem., 292, 121752 (2020).
- [7] А.Н. Колмогоров. Изв. АН СССР. Сер. мат., 3, 355 (1937).
- [8] M. Avrami. J. Chem. Phys., 7 (12), 1103 (1939).
- [9] Н.Н. Сирота. Состояние и проблемы теории кристаллизации. Кристаллизация и фазовые переходы (Минск, Изд-во АН БССР, 1962) с. 11.
- [10] В.З. Беленкий. Геометрико-вероятностные модели кристаллизации (М., Наука, 1980) с. 186.
- [11] Д.М. Хейкер. Ренгеновская дифрактометрия (М., Наука, 1963) с. 272.

- [12] Я.С. Уманский. Ренгенография металлов и полупроводников (М., Наука, 1969) с. 379.
- [13] Г.А. Эфендиев, Р.Б. Шафизаде. ПТЭ, 1, 142 (1963).
- [14] Г.Е. Дашдамирова, Э.Б. Аскеров, Д.И. Исмаилов. ФТП, 56 (3), 297 (2022).
- [15] Г.Е. Дашдамирова, Э.Б. Аскеров, Д.И. Исмаилов. ФТП, 56 (5), 447 (2022).
- [16] Б.К. Вайнштейн. Структурная электронография (М., AH ССР, 1956).
- [17] А.Ч. Мамедова, Н.К. Керимова, Д.И. Исмаилов, С.М. Багирова, А.М. Нуриева. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2, 62 (2016).

Редактор А.Н. Смирнов

Electron Diffraction Study of the Temperature — Time Dependences of Crystallization of Nano thick amorphous Culn₅Te₈ Films Sublimated Under Normal Conditions and under the Action of an External Electric Field

G.E. Dashdamirova

Institute of Physics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan

Abstract Kinematic electron diffraction was used to study the crystallization processes of amorphous $CuIn_5Te_8$ films obtained under normal conditions and under the influence of an external electric field with a strength of $500 \text{ V} \cdot \text{sm}^{-1}$. Isothermal curves of phase transitions are examined and the kinetic parameters of phase transformations are determined: the dimensions of crystal growth and of activation energies are established. It is shown that during the crystallization of amorphous $CuIn_5Te_8$ films, the rates of nucleation and their further growth follow the Arrhenius relations.