© Г.А. Гаврилов, А.А. Капралов, Б.А. Матвеев, Г.Ю. Сотникова

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: g.sotnikova@mail.ioffe.ru

Поступило в Редакцию 4 июля 2022 г. В окончательной редакции 12 октября 2022 г. Принято к публикации 20 октября 2022 г.

> На примере монолитных микрооптопар, состоящих из нескольких диодов на основе гетероструктур *p*-InAsSbP/*n*-InAs или *p*-InAsSbP/*n*-InAsSb, выращенных на единой подложке *n*-InAs, показано, что электропроводность подложки (*n*-InAs) приводит к появлению значительных электрических помех в выходном сигнале оптопар. Величина этих помех при регистрации в схемах с трансимпедансным усилителем значительно возрастает при уменьшении динамического сопротивления диодов вблизи нуля смещения и/или увеличении темновых токов. Проведен анализ эквивалентной электрической схемы микрооптопар и даны рекомендации для снижения указанных помех.

> Ключевые слова: оптические сенсоры, датчики нарушенного полного внутреннего отражения, оптопары, гетероструктуры *p*-InAsSbP/*n*-InAs(Sb).

DOI: 10.21883/PJTF.2022.23.53952.19295

Оптоэлектронные сенсоры, имеющие в своем составе первичные преобразователи (датчики), работающие в видимом и инфракрасном (ИК) диапазонах спектра излучения, используются во многих практических приложениях [1,2], причем датчики на основе оптопар светодиод-фотодиод (СД-ФД), включая датчики нарушенного полного внутреннего отражения (НПВО) для качественного и количественного анализа химического состава жидкостей [3,4], становятся все более востребованными. Принцип действия таких датчиков основан на изменении условий поглощения и преломления в канале передачи излучения от СД к ФД при его контакте с анализируемым веществом, которые приводят к изменению фототока I_{ph} — выходного информационного сигнала датчика. Включение датчика в электронную схему сенсора, содержащую элементы питания и усиления/преобразования тока ФД, обеспечивает получение наиболее удобного для измерения и представления в цифровом виде вольтового сигнала Uout, например, с использованием операционного усилителя (ОУ), включенного по трансимпедансной схеме [5]. В наиболее благоприятных условиях сигнал на выходе ОУ связан с фототоком через коэффициент К_I преобразования электрической схемы: $U_{out} = U_{ph} = K_I I_{ph}$. Неидеальность же электрических схем неизбежно приводит к появлению в них различных электрических смещений и, как следствие, к появлению дополнительной, неинформативной составляющей (электрической помехи) на выходе сенсора, имеющей смысл "темнового сигнала" Udark. "Темновой сигнал" может трактоваться так же, как "темновой ток" фотодиода Idark, связанный с его выходным сигналом соотношением $U_{dark} = K_I I_{dark}$. При этом

выходной сигнал сенсора имеет вид

$$U_{out} = U_{ph} + U_{dark} = K_I I_{ph} + K_I I_{dark} = K_I I_{PD} = U_{PD},$$

где $I_{\rm PD} = I_{ph} + I_{dark}$. В простейшем случае для учета "темновой" составляющей проводят измерение выходного сигнала сенсора в отсутствие фототока (освещения) ФД, например в промежутке между импульсами тока СД. При анализе работы оптопар в составе сенсоров с различными электрическими схемами усиления и преобразования сигнала иногда удобно рассматривать токовый эквивалент выходного сигнала датчика, а именно $I_{\rm PD}$, рассчитываемый как приведенный ко входу усилителя (выходу микрооптопары) токовый сигнал: $I_{\rm PD} = U_{\rm PD}/K_I$, где K_I — коэффициент преобразования трансимпедансного усилителя.

Выделение из выходного сигнала $I_{\rm PD}$ его составляющих, вызванных поглощением фотонов в активной области ФД, т.е. собственно фототока I_{ph} (так называемой оптической составляющей), и составляющих, вызванных электрическими смещениями (так называемой электрической составляющей) ($I_{\rm PD} - I_{ph}$), становится особенно важным при анализе функциональных возможностей оптоэлектронных сенсоров в условиях нестабильности смещения на ФД. В этом случае понятие "темновой ток" при освещении ФД может трактоваться в более широком смысле, включающем ток, сосуществующий с фототоком.

Вопросам стабильности электрического смещения на $\Phi Д$ в различных усилительных схемах, его связи с оптической мощностью излучателя и влиянием на выходной сигнал датчиков на основе средневолновых инфракрасных $\Phi Д$ (2.5–6 μ m) не уделялось должного внимания. В то же время динамическое сопротивление для многих типов таких ФД значительно ниже, чем для ФД видимого и ближнего ИК-диапазона. Так, например, для одиночных ФД, работающих на длинах волн более $4-5\,\mu$ m, значение динамического сопротивления при нулевом смещении (R_0) в несколько Ω или десятков Ω не является чем-то необычным [5]. Для таких ФД вклад электрической составляющей I_{dark} в выходной сигнал сенсора может быть значительным.

Для монолитных датчиков НПВО среднего ИК-диапазона спектра, собранных по методу "флип-чип" и имеющих перспективы их использования для анализа жидкостей, например содержащих в своем составе углеводороды [4], вопрос разделения оптической I_{ph} и электрической I_{dark} составляющих тока ФД особенно актуален, поскольку они изготавливаются на низкоомных подложках n-InAs, что предполагает неполное электрическое изолирование диодов, составляющих микрооптопару. Поскольку алгоритм проведения измерений обычно предусматривает использование набора данных, полученных в широком диапазоне токов СД [4], анализ влияния электрической связи между СД и ФД на выходной сигнал оптопары имеет особое значение. Однако применительно к датчикам НПВО среднего ИК-диапазона такой анализ не проводился.

Цель настоящей работы состоит в анализе соотношения оптической и электрической составляющих в выходном сигнале монолитных оптоэлектронных датчиков НПВО среднего ИК-диапазона спектра, изготовленных на низкоомных подложках, и выработке путей для снижения нежелательных электрических помех.

Объектами исследования являлись датчики НПВО, изготовленные из гетероструктур *p*-InAsSbP/*n*-InAs (рабочая длина волны $3.4\,\mu$ m, $R_0 = 3.3\,\mathrm{k\Omega}$, № 1669) и *p*-InAsSbP/*n*-InAsSb (рабочая длина волны $4.2\,\mu$ m, $R_0 = 45\,\Omega$, № 1767), выращенных на подложках *n*-InAs аналогично образцам из работ [4] и [6] соответственно.

На рис. 1, *а* приведена фотография чипа (1×3) эпитаксиальной поверхности гетероструктуры, где расположены три круглые мезы диаметром 0.19 mm с напыленными на их поверхности дисковыми анодами диаметром 0.17 mm (A1, A2 и A3), а также три подковообразных металлических катода (C1, C2 и C3). На рис. 1, *b* представлена схема сечения этого чипа, смонтированного на контактной плате, позволяющей осуществлять подсоединение внешних устройств, например источника тока I_{LED} к крайнему левому диоду (контакты A1 и C1) и усилителя для регистрации тока I_{PD} в среднем диоде (контакты A2 и C2).

В данной конструкции в качестве канала передачи излучения от СД к ФД выступала прозрачная подложка *n*-InAs, а сам образец представлял собой монолитную микрооптопару с характерными значениями коэффициента передачи $I_{ph}/I_{\text{LED}} = 5 \cdot 10^{-5} - 2 \cdot 10^{-4}$ [4]. Чипы (1×3) монтировались на монтажную керамическую плату $(7.1 \times 7.1 \text{ mm})$ из AlN, которая приклеивалась к

корпусу ТО-3 эпоксидным клеем. На рис. 1, c приведена эквивалентная электрическая схема выделенного на рис. 1, b фрагмента чипа, учитывающая сопротивление контактов (анодов и катодов) для каждого из диодов (R_{A1} , R_{C1} , R_{A2} , R_{C2} ,), а также возможность протекания в подложке n-InAs "тока электрической связи" (I^* на рис. 1, c) от одного катода к другому ("шунт": путь в объеме подложки от C1 к C2), связанная с низким объемным сопротивлением n-InAs. Электрическая схема на рис. 1, c содержит также внешнюю по отношению к датчику цепь, в которой для регистрации выходного сигнала U_{out} используется трансимпедансный ОУ.

В приведенной на рис. 1, *с* электрической схеме величина сопротивления обратной связи ОУ R_f определяет коэффициент преобразования (K_I [V/A]) тока ФД I_{PD} в измеряемый сигнал напряжения U_{out} , численно равный сопротивлению R_f :

$$U_{out} = I_{\rm PD}K_I = I_{\rm PD}R_f = I_{ph}R_f + I_{dark}R_f.$$

В величине I_{dark} можно выделить две составляющие: 1) ток из-за постоянного смещения e_0 между входами ОУ, характерного для устройств подобного типа [5]; 2) ток, возникающий при активации СД из-за дополнительного смещения U_c — напряжения в точке *B* на рис. 1, *c*, создаваемого на сопротивлении контакта R_{C2} из-за протекания тока через шунтирующее сопротивление R_{C1C2} .

С учетом указанного выше выходной сигнал сенсора имеет вид, в котором лишь первое слагаемое связано с оптическим информационным сигналом датчика:

$$U_{out} = I_{ph}R_f + e_0R_f/R_0 + U_cR_f/R_0 = U_{ph} + U_0 + U^*,$$

где U^* — электрическая помеха.

В наших экспериментах использовался малошумящий ОУ ADA 4895 (Ultralow Distortion, Ultralow Noise, производство Analog Device), выходной сигнал которого U_{out} подавался на плату многоканального аналогоцифрового преобразователя (АЦП) одновременно с другими измеряемыми сигналами: током через светодиод I_{LED} , токами через сопротивления контактов, измеряемых на вспомогательных сопротивлениях (R_1 и R_2 на рис. 1, c). В соответствии со схемой, представленной на рис. 1, c, можно записать простое выражение для "тока электрической связи" I^* и соответствующей ему величины дополнительной электрической помехи U^* на выходе ОУ:

$$U^{*} = I^{*} R_{C} R_{f} / R_{0},$$

$$I^{*} = I_{\text{LED}} \frac{R_{C}}{R_{C1C2} + 2R_{C} + R_{2}},$$
(1)

где R_C — сопротивление контактов (считаем, что $R_{C1} = R_{C2} = R_C$), R_{C1C2} — шунтирующее сопротивление между катодами СД и ФД, R_f — сопротивление обратной связи ОУ, R_2 — вспомогательное сопротивление.

Выражение (1) позволяет оценить ожидаемую величину электрической помехи в выходном сигнале в

Рис. 1. a — фотография чипа (1×3) с эпитаксиальной стороны гетероструктуры. b — схема сечения чипа, смонтированного на контактной плате. A1, A2, A3 — аноды, C1, C2, C3 — катоды, Me — металлы (Au, припой), HS — гетероструктура, n — слой с электронным типом проводимости, p — слой с дырочным типом проводимости. Стрелкой показан ход лучей от СД (LED) к ФД (PD), испытавшим полное внутреннее отражение от границы раздела n-InAs/воздух. Штриховыми линиями показаны некоторые из возможных путей для тока в подложке n-InAs и соответствующие им омические сопротивления. Штрихпунктирной линией ограничен фрагмент чипа, которому соответствует четырехполюсник A1A2C1C2. c — эквивалентная схема для формирования выходного сигнала датчика, в котором задействован четырехполюсник A1A2C1C2.

зависимости от параметров I_{LED} , R_{C1C2} , R_0 и R_C , а также показывает возможность минимизации помехи, в частности, путем уменьшения значения сопротивления контактов R_C и/или введения дополнительного сопротивления ления R_2 .

Для оценки величины R_{C1C2} контакты C1 и C2чипа подсоединялись к шине заземления через вспомогательные сопротивления $R_1 = R_2 = 1 \Omega$. При подаче на анод чипа (A1) импульсов тока амплитудой $I_{\text{LED}} = 43.9 \pm 1.4 \text{ mA}$ измерялись напряжения на сопро-

Рис. 2. Зависимость "темнового сигнала" на выходе сенсоров на основе дискретных диодов от величины тока I^* , моделирующего электрическую связь между СД и ФД, возникающую вследствие смещения ФД под действием напряжения U_c на сопротивлении 0.1 Ω . Последнее имитирует сопротивление контакта R_{C2} .

тивлениях R_1 и R_2 (выходы CH1, CH2), что позволило рассчитать величины токов через сопротивления контактов R_{C1} и R_{C2} : $I_1 = 20.6 \pm 0.5$ mA, $I_2 = 19.1 \pm 0.5$ mA. Погрешность измерений токов показана с учетом класса точности вспомогательных сопротивлений R_1 и R_2 и погрешности АЦП (значения сопротивлений имеют точность 1%, погрешность АЦП соответствует LSB = $8 \cdot 10^{-5}$ V). Имея в виду равенство R_{C1} и R_{C2} , величину "электрической связи" в рассматриваемой структуре можно оценить как сильную, количественно выраженную сопротивлением $R_{C1C2} \approx 0.08 \Omega$ для обоих типов гетероструктур.

Для оценки степени влияния сопротивления контактов на данные измерений был проведен модельный эксперимент, в котором схема четырехполюсника микрооптопары A1A2C1C2 (рис. 1, c) была реализована на двух дискретных диодах (№ 1697, $\lambda = 3.4 \, \mu m$, $R_0 = 1.3 \,\mathrm{k\Omega}$ либо № 1844, $\lambda = 4.2 \,\mu\mathrm{m}$, $R_0 = 75 \,\Omega$) с использованием последовательного включения в цепь ФД дискретного сопротивления $R_C = 0.1 \Omega$, имитирующего сопротивление контакта R_{C2} в монолитном чипе. В точку, эквивалентную точке А на схеме, показанной на рис. 1, с, подавалось напряжение, которое через переменное сопротивление создавало регулируемый ток (0-10 mA), имитирующий "ток электрической связи" I* в моменты активации СД. Это позволяло контролировать выходной сигнал датчика (ток ФД) после его преобразования в ОУ при различных значениях тока смещения и наличии/отсутствии "засветки" от СД.

Результаты модельного эксперимента, представленные на рис. 2, показали, что наиболее сильное влияние "тока электрической связи" I^* на выходной сигнал сенсора имело место в "низкоомной" оптопаре (№ 1844, $R_0 = 75 \Omega$) и проявлялось в значительном отклонении ее "темнового сигнала" от уровня, соответствующего отсутствию смещения на ФД при изменении его величины $(U_c = R_C I^*)$ в пределах 1 mV.

Очевидно, что для монолитной микрооптопары "электрическая связь" через сопротивление R_{C1C2} полностью эквивалентна подаче внешнего смещения на ФД. Отличие заключается лишь в том, что в модельном эксперименте на дискретных диодах напряжение смещения было приложено к ФД постоянно, а смещение вследствие протекания тока через сопротивление R_{C1C2} в монолитном чипе возникало только во время подачи импульсов тока на СД и определялось истинной величиной сопротивления контакта R_C .

На рис. 3 представлены экспериментальные и расчетные значения выходного сигнала для двух микрооптопар в зависимости от R_2 при $I_{\text{LED}} = 44 \text{ mA}, R_f = 30 \text{ k}\Omega.$ Оптопара с невысоким значением R₀ (45 Ω, № 1767) характеризуется значительной зависимостью выходного сигнала ФД от величины дополнительного сопротивления R_2 . Для более высокоомной оптопары ($R_0 = 3.3 \,\mathrm{k}\Omega$, № 1669) эта зависимость выражена существенно слабее. Полученные экспериментальные данные позволяют оценить величину контактных сопротивлений, используя их интерполяцию функцией (1) с известными значениями I_{LED} , R_0 , R_f и полученным ранее значением $R_{C1C2} \approx 0.08 \,\Omega$. Для обеих оптопар хорошее согласие расчетных значений (см. соотношение (1) и штриховые линии на рис. 3) с результатами эксперимента наблюдалось при $R_C \approx 0.24 \,\Omega$. Из рис. 3 видно, что в обеих микрооптопарах введение дополнительного сопротивления R₂ в схему ОУ позволяет значительно снизить вклад электрической составляющей в их выходной сигнал. На рис. 3 представлена также зависимость отношения информативной (оптической) части сигнала к полному измеряемому сигналу на выходе оптопары (I_{ph}/I_{PD}) , которое может рассматриваться как один из критериев для определения эффективности использования и чувствительности оптоэлектронного сенсора. Для $R_2 > 100 \,\Omega$ соотношение I_{ph}/I_{PD} близко к единице, при этом абсолютные значения фототоков составили 5.4 µA $(I_{ph}/I_{LED} = 1.3 \cdot 10^{-4})$ и 12.2 μ A $(I_{ph}/I_{LED} = 2.8 \cdot 10^{-4})$ для оптопар с активным слоем из InAsSb и InAs cootветственно. Полученные значения с хорошей точностью совпадают со значениями I_{ph}, полученными на этих же монолитных чипах при измерении вольт-амперных характеристик ФД без ОУ в условиях работающего СД при $I_{\text{LED}} = 44 \text{ mA}$ так, как было описано, например, в [4], что подтверждает практическую применимость изложенного выше подхода для устранения электрических помех в выходном сигнале монолитных микрооптопар на низкоомных подложках.

Рис. 3. Зависимость токового эквивалента выходного сигнала сенсоров на основе микрооптопар № 1669 $(3.4 \,\mu\text{m}, R_0 = 3.3 \,\text{k}\Omega)$ и № 1767 $(4.2 \,\mu\text{m}, R_0 = 45 \,\Omega)$ и отношения I_{ph}/I_{PD} от величины дополнительного сопротивления R_2 (см. схему включения $\Phi \Pi$ на рис. 1, *c*) при токе активации СД $I_{LED} = 44 \,\text{mA}$. Штриховыми линиями показаны ожидаемые значения, рассчитанные в соответствии с выражением (1).

Таким образом, проведенные исследования показали, что при использовании трансимпедансных усилителей для монолитных чипов микрооптопар среднего ИК-диапазона спектра на основе InAs и InAsSb имеет место сосуществование оптической и электрической составляющих в измеряемом сигнале. Проанализирована и предложена модификация схемы включения для существенного снижения неинформативной (электрической) составляющей в выходном сигнале таких или подобных им микрооптопар. Полученные результаты будут полезны при проектировании оптоэлектронных химических сенсоров на основе узкозонных гетероструктур.

Благодарности

Авторы выражают благодарность сотрудникам ООО "ИоффеЛЕД", а также А.А. Лаврову, А.А. Усиковой, Н.Д. Ильинской и Т.С. Лухмыриной за оказанную техническую помощь.

Финансирование работы

Работа выполнена в рамках госзадания (научные темы 0040-2019-0019, 0040-2019-0028).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.S. Huertas, O. Calvo-Lozano, A. Mitchell, L.M. Lechuga, Front. Chem., 7, 724 (2019). DOI: 10.3389/fchem.2019.00724
- [2] F. Seichter, J. Vogt, E. Tütüncü, L.T. Hagemann, U. Wachter, M. Gröger, S. Kress, P. Radermacher, B. Mizaikoff, J. Breath Res., 15 (2), 026013 (2021). DOI: 10.1088/1752-7163/ab8dcd
- [3] J. Jing, Y. Hou, Y. Luo, L. Chen, L. Ma, Y. Lin, K.H. Li, Z. Chu, ACS Sensors, 7 (3), 849 (2022).
 DOI: 10.1021/acssensors.1c02616
- [4] S.A. Karandashev, T.S. Lukhmyrina, B.A. Matveev, M.A. Remennyi, A.A. Usikova, Phys. Status Solidi A, 219 (2), 2100456 (2022). DOI: 10.1002/pssa.202100456
- [5] K. Achtenberg, J. Mikołajczyk, C. Ciofi, G. Scandurra, K. Michalczewski, Z. Bielecki, Measurement, 183, 109867 (2021). DOI: 10.1016/j.measurement.2021.109867
- [6] С.Е. Александров, Г.А. Гаврилов, А.А. Капралов, Б.А. Матвеев, М.А. Ременный, Г.Ю. Сотникова, ЖТФ, 88, (9), 1433 (2018). DOI: 10.21883/JTF.2018.09.46433.35-18
 [S.E. Aleksandrov, G.A. Gavrilov, А.А. Каргаlov, В.А. Маtveev, М.А. Remennyi, G.Yu. Sotnikova, Tech. Phys., 63 (9), 1390 (2018). DOI: 10.1134/S1063784218090025].