17,09

Энергетический спектр и спектр оптического поглощения экзоэдрального фуллерена С₇₀Вr₁₀ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, Йошкар-Ола, Россия E-mail: kvvant@rambler.ru

Поступила в Редакцию 8 сентября 2022 г. В окончательной редакции 12 сентября 2022 г. Принята к публикации 13 сентября 2022 г.

> В рамках модели Хаббарда в приближении статических флуктуаций получен энергетический спектр экзоэдрального фуллерена $C_{70}Br_{10}$ с группой симметрии C_s . С использованием методов теории групп проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетическом спектре молекулы $C_{70}Br_{10}$. На основе энергетического спектра молекулы $C_{70}Br_{10}$ предложена интерпретация наблюдаемых экспериментально полос оптического поглощения экзоэдрального фуллерена $C_{70}Br_{10}$.

> Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, фуллерены, наносистемы, фуллерен С₇₀, экзоэдральный фуллерен С₇₀Вr₁₀.

DOI: 10.21883/FTT.2023.01.53939.470

1. Введение

В 1985 г. одновременно с фуллереном C_{60} был открыт фуллерен C_{70} [1], структура которого исследовалась при помощи ядерного магнитного резонанса (ЯМР) [2]. На ЯМР-спектре ¹³С фуллерена C_{70} было обнаружено пять пиков, в соотношении 10:20:10:20:10. Из данного спектра следовало, что фуллерен C_{70} содержит пять групп неэквивалентных друг другу атомов углерода, которые находятся в соотношении 10:20:10:20:10. Из полученных результатов был сделан вывод, что молекула фуллерена C_{70} , изображенная на рис. 1, обладает симметрией D_{5h} .

Из диаграммы Шлегеля, которая показана на рис. 2, видно, что фуллерен C_{70} с группой симметрии D_{5h} имеет восемь неэквивалентных связей, обозначенных буквами a, b, c, d, e, f, g, h; и пять групп неэквивалентных атомов углерода: $G_1 = \{1, 2, 3, 4, 5, 62, 63, 66, 67, 70\}$, $G_2 = \{6, 9, 12, 15, 18, 61, 64, 65, 68, 69\}$, $G_3 = \{7, 8, 10,$ 11, 13, 14, 16, 17, 19, 20, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60}, $G_4 = \{21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42,$ 45, 46, 49, 50, 53, 54, 57, 58}, $G_5 = \{23, 24, 27, 28, 31,$ 32, 35, 36, 39, 40}.

Ко множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и, кроме того, каждый из них имеет двух ближайших соседей из этого же множества G_1 . Ко множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них не имеет ближайших соседей из этого же множества G_2 . Ко множеству G_3 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них имеет одного ближайшего соседа из этого же множества G₃. При этом ребро, которому принадлежат оба атома, является границей между двумя гексагонами. Ко множеству G₄ принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них имеет одного ближайшего соседа из этого же множества G₄, причем ребро, которому принадлежат оба атома, является границей между гексагоном и пентагоном. Ко множеству G₅ принадлежат атомы, которые находятся в вершинах сочленения трех

Рис. 1. Экзофуллерен $C_{70}Br_{10}$ с группой симметрии C_s с указанием положения атомов углерода, связей между атомами углерода и пентагонов; также указаны атомы, с которыми связаны атомы брома.

Рис. 2. Диаграмма Шлегеля фуллерена С₇₀ с указанием положения атомов углерода и связей между атомами углерода.

гексагонов, и каждый из них имеет одного ближайшего соседа из этого же множества G₅.

Наряду с изучением физических свойств фуллерена С₇₀ проводились также исследования его химических свойств; при этом было получено много различных соединений этого фуллерена. Одними из первых химических соединений фуллеренов С70 и С60 были получены их галогениды [3,4]. Исследованию свойств фторидов, хлоридов и бромидов фуллерена С70 посвящено довольно много работ [5-7]. Кроме изучения галогенидов фуллеренов С₇₀ и С₆₀, довольно много работ посвящено изучению также галогенидов других фуллеренов: С₅₀ [8], С₉₀ [9], С₉₆ [10] и др. Повышенный интерес к галогенидам фуллеренов связан с тем, что они обладают целым рядом ценных для практических целей свойств. Например, C₅₀Cl₁₀ является перспективным материалом для нелинейной оптики, так как это соединение обладает довольно высокими статической поляризуемостью и второй гиперполяризуемостью [11]. Отметим также, что галогенированные фуллерены перспективны как полифункциональные присадки к нефтепродуктам, способные одновременно улучшать их антиокислительные и противоизносные эксплуатационные характеристики [12]. Кроме того, галогениды фуллеренов являются важными соединениями, которые используются для получения самых разнообразных материалов [13]. Для получения новых материалов на основе галогенидов фуллеренов необходимо знание химических и физических свойств этих соединений.

Следует отметить, что наиболее просто из галогенидов фуллерена C_{70} получаются бромиды этого фуллерена. Например, бромид $C_{70}Br_{10}$ получают в два этапа. Вначале при взаимодействии фуллерена C_{70} с жидким бромом при комнатной температуре образуется моносольватированный бромид $C_{70}Br_{10} \times Br_2$. Затем при нагревании $C_{70}Br_{10} \times Br_2$ до 70°С образуется бромид $C_{70}Br_{10}$, выход которого составляет примерно 91% [14].

Проведенные исследования [15] показали, что молекула $C_{70}Br_{10}$ обладает симметрией C_s , причем атомы брома связаны с теми атомами углерода, которые, как видно из рис. 1, находятся в экваториальной области фуллерена C_{70} . Из диаграммы Шлегеля для молекулы $C_{70}Br_{10}$, изображенной на рис. 3, видно, что атомы брома связаны с атомами углерода, которые принадлежат множеству G₄, причем в каждом гексагоне, который состоит из четырех атомов принадлежащих множеству G₄ и двух атомов принадлежащих множеству G₅, содержится по два атома углерода связанных с атомами брома.

Для описания электронных свойств углеродных фуллеренов и нанотрубок [16-26] широко используется модель Хаббарда [27]. В рамках этой модели в приближении статических флуктуаций (ПСФ) были получены энергетические спектры и спектры оптического поглощения фуллерена C₂₀ с группами симметрии I_h, D_{5d} и D_{3d} [16], фуллерена С₂₄ с группами симметрии O_h, D₆ и D_{6d} [17], фуллерена С₂₆ с группой симметрии D_{3h} [18], фуллерена С₂₈ с группой симметрии Т_d [19], фуллерена С₃₆ с группой симметрии D_{6h} [20], фуллерена С₅₀ и экзофуллерена $C_{50}Cl_{10}$ с группой симметрии D_{5h} [21], фуллерена С₆₀ [22], фуллерена С₇₀ [23], фуллерена С₈₀ с группой симметрии I_h [24], а в работе [26] были исследованы электронные свойства углеродных нанотрубок. Полученные в работах [21-24] результаты достаточно хорошо согласуются с экспериментальными данными.

Рис. 3. Диаграмма Шлегеля экзофуллерена C₇₀Br₁₀ с указанием положения атомов углерода, связей между атомами углерода и атомов углерода, с которыми связаны атомы брома.

Целью настоящей работы является исследование энергетического спектра экзоэдрального фуллерена C₇₀Br₁₀ с группой симметрии C_s в рамках модели Хаббарда в приближении статических флуктуаций.

Энергетический спектр экзофуллерена С₇₀Вr₁₀

Как известно, электронные свойства углеродных наносистем зависят в основном от поведения π -электронов в этих системах. Для описания поведения π -электронов в экзофуллерене C₇₀Br₁₀ воспользуемся моделью Хаббарда [27]:

$$H = \sum_{\sigma,i} \varepsilon_{i} n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^{+} c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_{i} n_{i\sigma} n_{i\bar{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле i; $n_{i\sigma}$ — оператор числа частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла iна узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на i-м узле; $\bar{\sigma} = -\sigma$.

Чтобы найти численные значения для интегралов переноса, которые входят в гамильтониан модели Хаббарда (1) и соответствуют молекуле $C_{70}Br_{10}$, воспользуемся следующим соотношением [23,24]:

$$t_{ij} = -8.17065 \cdot \exp(-1.69521 \cdot x_{ij}), \qquad (2)$$

где x_{ij} — расстояние между двумя атомами углерода, один из которых находится в узле *i*, а другой — в узле *j*.

Проведенные рентгеноструктурные исследования показали, что расстояния между атомами углерода у молекулы бромида фуллерена $C_{70}Br_{10}$ [15] имеют следующие значения:

$$\begin{aligned} x_a &= 1.37(2) \text{ Å}, \ x_b &= 1.38(2) \text{ Å}, \ x_c &= 1.39(2) \text{ Å}, \\ x_d &= 1.40(2) \text{ Å}, \ x_f &= 1.41(2) \text{ Å}, \ x_g &= 1.42(2) \text{ Å}, \\ x_h &= 1.43(2) \text{ Å}, \ x_i &= 1.44(2) \text{ Å}, \ x_j &= 1.45(2) \text{ Å}, \\ x_k &= 1.46(2) \text{ Å}, \ x_m &= 1.48(2) \text{ Å}, \ x_n &= 1.49(2) \text{ Å}, \\ x_o &= 1.50(2) \text{ Å}, \ x_p &= 1.51(2) \text{ Å}, \ x_r &= 1.41(2) \text{ Å}, \\ x_s &= 1.53(2) \text{ Å}, \ x_t &= 1.54(2) \text{ Å}, \ x_x &= 1.59(2) \text{ Å}. \end{aligned}$$

Подставив (3) в соотношение (2), получим численные значения интегралов переноса для молекулы C₇₀Br₁₀

с группой симметрии С_s:

$$t_{a} = -0.82863 \text{ eV}, \quad t_{b} = -0.81470 \text{ eV},$$

$$t_{c} = -0.80101 \text{ eV}, \quad t_{d} = -0.78754 \text{ eV},$$

$$t_{f} = -0.77430 \text{ eV}, \quad t_{g} = -0.76129 \text{ eV},$$

$$t_{h} = -0.74849 \text{ eV}, \quad t_{i} = -0.73591 \text{ eV},$$

$$t_{j} = -0.72354 \text{ eV}, \quad t_{k} = -0.71138 \text{ eV},$$

$$t_{m} = -0.68766 \text{ eV}, \quad t_{n} = -0.67611 \text{ eV},$$

$$t_{o} = -0.66474 \text{ eV}, \quad t_{p} = -0.65357 \text{ eV},$$

$$t_{r} = -0.64258 \text{ eV}, \quad t_{s} = -0.57068 \text{ eV}.$$
(4)

Чтобы найти энергетический спектр молекулы С₇₀Вr₁₀, воспользуемся методом антикоммутаторных функций Грина [28]:

$$\left\langle \left\langle c_{f\sigma}^{+} | c_{f\sigma} \right\rangle \right\rangle = \theta(\tau) \left\langle [c_{f\sigma}^{+}(\tau), c_{f\sigma}(0)]_{+} \right\rangle, \tag{5}$$

где f = 1, ..., N; N — число узлов квантовой системы. Как известно [28], чтобы найти энергетический спектр квантовой системы, достаточно вычислить полюса Фурье-образов антикоммутаторных функций Грина. Можно показать [22,23], что Фурье-образ антикоммутаторной функции Грина (5) в ПСФ имеет следующий вид:

$$\left\langle \left\langle c_{j\sigma}^{+} | c_{j\sigma} \right\rangle \right\rangle_{E} = \frac{i}{2\pi} \sum_{m=1}^{p} \frac{F_{j,m}}{E - E_{m} + ih},$$

$$E_{k} = \varepsilon + e_{k}, \ E_{k+p/2} = E_{k} + U, \ F_{j,m} = q_{m,\sigma} \cdot Q_{j,m},$$

$$Q_{j,k+p/2} = Q_{j,k}, \ k = 1, \dots, p/2,$$

$$q_{m,\sigma} = \begin{cases} 1 - \frac{n}{2}, & m = 1, \dots, p/2, \\ \frac{n}{2}, & m = \frac{p}{2} + 1, \dots, p, \end{cases}$$

$$(6)$$

где p — число энергетических состояний квантовой системы, E_m — энергия *m*-го состояния квантовой системы, $F_{j,m}$ — спектральная плотность *m*-го энергетического состояния.

Важной характеристикой энергетического спектра квантовой системы является степень вырождения его энергетических состояний, которую можно найти, зная спектральную плотность этих состояний, которая содержится в функции Грина (6) [22,23]:

$$g_i = \sum_{j=1}^{N} Q_{i,j},$$
 (7)

где g_i — степень вырождения *i*-го энергетического уровня, N — число узлов наносистемы.

Чтобы найти антикоммутаторные функции Грина, прежде всего необходимо определить зависимость операторов рождения от времени. Для этого, используя гамильтониан (1) и диаграмму Шлегеля, изображенную на рис. 3, как и в работах [16–24], запишем для операторов $c_{1\sigma}^+(\tau), c_{1\sigma}^+(\tau)n_{1\bar{\sigma}}(\tau), \ldots, c_{70\sigma}^+(\tau), c_{70\sigma}^+(\tau)n_{70\bar{\sigma}}(\tau),$ заданных в представлении Гейзенберга, уравнения движения в ПСФ:

$$\begin{cases} \frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon c_{1\sigma}^{+} + t_{c}c_{2\sigma}^{+} + t_{g}(c_{6\sigma}^{+} + c_{9\sigma}^{+}) + Uc_{1\sigma}^{+}n_{1\bar{\sigma}}, \\ \frac{d(c_{1\sigma}^{+}n_{1\bar{\sigma}})}{d\tau} = (\varepsilon + U)c_{1\sigma}^{+}n_{1\bar{\sigma}} + t_{c}c_{2\sigma}^{+}n_{2\bar{\sigma}} \\ + t_{g}(c_{6\sigma}^{+}n_{6\bar{\sigma}} + c_{9\sigma}^{+}n_{9\bar{\sigma}}), \\ \dots \\ \frac{dc_{70\sigma}^{+}}{d\tau} = \varepsilon c_{70\sigma}^{+} + t_{j}c_{65\sigma}^{+} + t_{i}c_{62\sigma}^{+} + t_{b}c_{69\sigma}^{+} + Uc_{70\sigma}^{+}n_{70\bar{\sigma}}, \\ \frac{d(c_{70\sigma}^{+}n_{70\bar{\sigma}})}{d\tau} = (\varepsilon + U)c_{70\sigma}^{+}n_{70\bar{\sigma}} + t_{j}c_{65\sigma}^{+}n_{65\bar{\sigma}} \\ + t_{i}c_{62\sigma}^{+}n_{62\bar{\sigma}} + t_{b}c_{69\sigma}^{+}n_{69\bar{\sigma}}, \end{cases}$$

$$\tag{8}$$

где $\tau = it, t$ — время.

Прежде чем решать систему уравнений (8), необходимо еще задать численные значения параметров ε и *U*. В работе [22], исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена C₆₀, в рамках модели Хаббарда в ПСФ были найдены численные значения этих параметров: $\varepsilon = -7.824 \text{ eV}$, U = 5.662 eV. Отметим, что численное значение параметра U = 5.662 eV согласуется с результатами работы [29], согласно которой $U \approx 5 \text{ eV}$.

Теперь, решив систему дифференциальных уравнений (8) с учетом численных значений интегралов переноса (4) и параметров $\varepsilon = -7.824 \text{ eV}$ и U = 5.662 eV, мы получим выражения для операторов рождения $c_{1\sigma}^+(\tau), \ldots, c_{70\sigma}^+(\tau)$. Подставив данные решения в (5), мы получим антикоммутаторные функции Грина. Затем, получив Фурье-образы от антикоммутаторных функций Грина, мы получим выражения, совпадающие по виду с соотношением (6). Из полученных Фурье-образов антикоммутаторных функций Грина и соотношений (6) и (7) получим численные значения для \bar{e}_k , E_k и g_k , где \bar{e}_k — значение энергии k-го уровня относительно $\varepsilon + U/2$, которая, как видно из соотношения (6), связана с величиной E_k следующим образом:

где

$$E_k = \varepsilon + \frac{U}{2} + \bar{e}_k, \qquad (9)$$

$$\bar{e}_{k} = \begin{cases} e_{k} - \frac{U}{2}, & k = 1, \dots, p/2, \\ e_{k} + \frac{U}{2}, & k = \frac{p}{2} + 1, \dots, p. \end{cases}$$
(10)

Из соотношений (9) и (10) следует, что энергетические состояния экзофуллерена $C_{70}Br_{10}$ образуют две подзоны Хаббарда, причем нижнюю подзону Хаббарда образуют энергетические состояния, которые сосредоточены вблизи энергии ε , а верхнюю подзону Хаббарда

Рис. 4. Энергетический спектр молекулы C₇₀Br₁₀.

Рис. 5. Энергетический спектр фуллерена С₇₀ [23].

образуют энергетические состояния, которые сосредоточены вблизи энергии $\varepsilon + U$. Энергетические состояния, образующие энергетический спектр молекулы $C_{70}Br_{10}$ с группой симметрии C_s , можно классифицировать по неприводимым представлениям группы C_s . Энергетический спектр молекулы $C_{70}Br_{10}$ изображен на рис. 4, где значок ' соответствует неприводимому представлению a', а значок '' соответствует неприводимому представлению а". Из рис. 4 видно, что степень вырождения всех энергетических состояний молекулы C₇₀Br₁₀ равна единице. Это связано с тем, что все неприводимые представления группы С_s являются одномерными: а' и а" [30]. В работе [23] был получен энергетический спектр фуллерена C70 с группой симметрии D5h, см. рис. 5. Энергетические состояния фуллерена С70 на рис. 5 классифицированы в соответствии с одномерными a'_1, a'_2, a''_1, a''_2 и двумерными e'_1, e'_2, e''_1, e''_2 неприводимыми представлениями группы D_{5h}. На рис. 5 для удобства изображения переходов, формирующих спектр оптического поглощения фуллерена С₇₀, двукратно вырожденным состояниям соответствуют энергетические уровни первого и третьего столбца, а невырожденным состояниям соответствуют энергетические уровни второго столбца.

Сравнивая энергетические спектры бромида фуллерена $C_{70}Br_{10}$ с группой симметрии C_s и фуллерена C_{70} с группой симметрии D_{5h} , см. рис. 4 и 5, мы видим, что понижение симметрии, вызванное присоединением атомов брома к фуллерену C_{70} , привело к расщеплению дважды вырожденных энергетических состояний. Из рис. 4 также видно, что у экзоэдрального фуллерена $C_{70}Br_{10}$ десять энергетических состояний в нижней подзоне Хаббарда свободны. Это связано с тем, что при образовании молекулы $C_{70}Br_{10}$ десять валентных электронов фуллерена C_{70} пошли на образование прочных химических связей с атомами брома.

Оптический спектр поглощения является важной физической характеристикой любой молекулы. Используя полученный выше энергетический спектр экзоэдрального фуллерена $C_{70}Br_{10}$ с группой симметрии C_s , можно найти переходы, которые формируют оптический спектр этой молекулы. С помощью теории групп [30] можно показать, что у молекулы с группой симметрии C_s в энергетическом спектре разрешены все переходы.

В работе [31] были проведены экспериментальные исследования, посвященные изучению спектра опти-

Рис. 6. Спектр поглощения $C_{70}Br_{10}$ в бензоле (кривая *I*), в 1,2дихлорбензоле (2), в 1,2-диметилбензоле (3) [31].

Полосы λ , nm [31] *E*, eV [31] Teop. E, eV поглощения 380 3.269 3.268 a b 470 2.643 2.643 505 2.460 2.465 cd 535 2.322 2.326 2.199 2.195 f 565 635 1.956 1.958 g

Таблица 1. Экспериментальные и теоретические значения длин волн λ и энергий *E*, соответствующие полосам поглощения в оптическом спектре молекулы $C_{70}Br_{10}$

162

Таблица 2. Переходы, формирующие полосы поглощения *a*, *b*, *c*, *d*, *f*, *g*

ΔE	ΔE , eV	ΔE	ΔE , eV	ΔE	ΔE , eV
а		$E_{78} - E_{57}$	2.6499	$E_{64} - E_{33}$	2.3339
$E_{81} - E_{49}$	3.2650	$E_{72} - E_{46}$	2.6506	f	
$E_{82} - E_{49}$	3.2652	с		$E_{62} - E_{26}$	2.1935
$E_{63} - E_9$	3.2655	$E_{71} - E_{50}$	2.4540	$E_{63} - E_{27}$	2.1953
$E_{66} - E_{14}$	3.2677	$E_{66} - E_{30}$	2.4652	$E_{64} - E_{35}$	2.2054
$E_{92} - E_{60}$	3.2717	$E_{66} - E_{29}$	2.4662	$E_{65} - E_{35}$	2.2058
$E_{93} - E_{60}$	3.2730	$E_{78} - E_{60}$	2.4664	g	
$E_{84} - E_{51}$	3.2745	$E_{63} - E_{23}$	2.4710	$E_{66} - E_{36}$	1.9328
b		$E_{67} - E_{31}$	2.4719	$E_{61} - E_{34}$	1.9519
$E_{76} - E_{55}$	2.6311	$E_{71} - E_{49}$	2.4721	$E_{71} - E_{60}$	1.9579
$E_{79} - E_{58}$	2.6383	d		$E_{67} - E_{36}$	1.9628
$E_{73} - E_{50}$	2.6383	$E_{61} - E_{25}$	2.3164	$E_{61} - E_{33}$	1.9817
$E_{72} - E_{48}$	2.6403	$E_{73} - E_{57}$	2.3256	$E_{62} - E_{34}$	1.9839
$E_{74} - E_{50}$	2.6427	$E_{66} - E_{34}$	2.3291		
$E_{72} - E_{47}$	2.6469	$E_{74} - E_{57}$	2.3301		

ческого поглощения бромида $C_{70}Br_{10}$ в бензоле, в 1,2-дихлорбензоле и в 1,2-диметилбензоле. Проведенные исследования показали, что в оптическом спектре поглощения бромида $C_{70}Br_{10}$ можно выделить, как это видно из рис. 6, шесть полос поглощения: *a*, *b*, *c*, *d*, *f*, *g*, представленных в табл. 1. Зная энергетический спектр молекулы $C_{70}Br_{10}$, можно дать следующую интерпретацию ее экспериментально наблюдаемого спектра оптического поглощения. Полосы спектра оптического поглощения, которые соответствуют экспериментально наблюдаемым энергиям $E_a, E_b, E_c, E_d, E_f, E_g$, представленным в табл. 1, можно интерпретировать как полосы, формирующиеся переходами, представленными в табл. 2. Как видно из табл. 2, энергии этих переходов близки к экспериментальным значениям [31].

3. Заключение

Таким образом, спектр оптического поглощения экзоэдрального фуллерена C₇₀Br₁₀, который наблюдается экспериментально, достаточно хорошо согласуется со спектром оптического поглощения этой молекулы, полученным из энергетического спектра молекулы C₇₀Br₁₀ в рамках модели Хаббарда в приближении статических флуктуаций.

Отметим также, что в работах [21-24] были исследованы энергетические спектры фуллеренов С₆₀, С₇₀, эндоэдральных фуллеренов Lu₃N@C₈₀ и Y₃N@C₈₀ и экзоэдрального фуллерена C₅₀Cl₁₀, выполненные также в рамках модели Хаббарда в приближении статических флуктуаций. Данные исследования показали, что спектры оптического поглощения этих молекул, которые наблюдались экспериментально, также достаточно хорошо согласуются со спектрами оптического поглощения молекул C₆₀, C₇₀ Y₃N@C₈₀, Y₃N@C₈₀ и C₅₀Cl₁₀, полученными в рамках модели Хаббарда в приближении статических флуктуаций. Это позволяет считать, что модель Хаббарда в приближении статических флуктуаций достаточно хорошо описывает электронные свойства углеродных наносистем.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature **318**, 6042, 162 (1985).
- [2] R. Tycko, R.C. Haddon, G. Dabbagh, S.H. Glarum, D.C. Douglass, A.M. Mujsce. J. Phys. Chem. 95, 2, 518 (1991).
- [3] P.R. Birkett, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton. Nature 357, 6378, 479 (1992).
- [4] A.A. Tuinman, P. Mukherjee, J.L. Adcock, R.L. Hettich, R.N. Compton. J. Phys. Chem. 96, 19, 7584 (1992).
- [5] R. Taylor, A.K. Abdul-Sada, O.V. Boltalina, J.M. Street. J. Chem. Soc. 2, 1013 (2000).
- [6] N.B. Tamm, V.A. Brotsman, V.Yu. Markov, S.I. Troyanov. Inorg. Chem. 59, 15, 10400 (2020).
- [7] A.V. Burtsev, E. Kemnitz, S.I. Troyanov. Crystallography Rep. 53, 4, 639 (2008).
- [8] S.Y. Xie, F. Guo, R.B. Huang, C.R. Wang, X. Zhang, M.L. Liu, S.L. Deng, S.L. Zheng. Science **304**, *5671*, 699 (2004).
- [9] E. Kemnitz, S.I. Troyanov. Angew. Chem. Int. Ed. 48, 14, 2584 (2009).
- [10] N.B. Tamm, R. Guan, S. Yang, S.I. Troyanov. Eur. J. Inorg. Chem. 42, 21, 2092 (2020).
- [11] Y. Yang, F.H. Wang, Y.S. Zhou, L.F. Yuan, J. Yang. Phys. Rev. 71, 1, 013202 (2005).
- [12] Е.В. Полункин, Т.М. Каменева, В.С. Пилявский, Р.С. Жила, О.А. Гайдай, П.А. Трошин. Катализ и нефтехимия 20, 70 (2012).
- [13] P.A. Troshin, A.S. Astakhova, R.N. Lyubovskaya. Fullerenes, Nanotubes, and Carbon Nanostructures 13, 4, 331 (2005).
- [14] К.Н. Семенов, Н.А. Чарыков, В.А. Кескинов, Д.Г. Летенко, В.А. Никитин, Е.Г. Грузинская. Журнал общей химии 83, 4, 582 (2013).
- [15] S.I. Troyanov, A.A. Popov, N.I. Denisenko, O.V. Boltalina, L.N. Sidorov, E. Kemnitz. Angew. Chem. Int. Ed. 42, 21, 2395 (2003).
- [16] А.В. Силантьев. ФТТ 61, 2, 395 (2019).

- [17] А.В. Силантьев. ФТТ 62, 3, 473 (2020).
- [18] А.В. Силантьев. ФТТ 63, 11, 1951 (2021).
- [19] А.В. Силантьев. ФТТ 62, 11, 1960 (2020).
- [20] А.В. Силантьев. Изв. вузов. Физика 62, 6, 3 (2019).
- [21] А.В. Силантьев. ФТТ 64, 6, 750 (2022).
- [22] А.В. Силантьев. ЖЭТФ 148, 4, 749 (2015).
- [23] А.В. Силантьев. Изв. вузов. Физика 60, 6, 50 (2017).
- [24] А.В. Силантьев. ФТТ 64, 2, 279 (2022).
- [25] А.В. Силантьев, Изв. вузов. Физика 56, 2, 70 (2013).
- [26] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 1, 183 (2007).
- [27] J. Hubbard. Proc. Roy. Soc. London A 276, 1365, 238 (1963).
- [28] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975). 527 с.
- [29] R.A. Harris, L.M. Falicov. J. Chem. Phys. 51, 11, 5034 (1969).
- [30] Р. Хохштрассер. Молекулярные аспекты симметрии. Мир, М. (1968). 384 с.
- [31] K.N. Semenov, N.A. Charykov, A.S. Kritchenkov. J. Chem. Eng. Data 58, 3, 570 (2013).

Редактор Е.В. Толстякова