04,03

Механизм электропереноса в суперионном проводнике Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} со структурой флюорита

© Н.И. Сорокин, Д.Н. Каримов

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 1 сентября 2022 г. В окончательной редакции 1 сентября 2022 г. Принята к публикации 9 сентября 2022 г.

Методом импедансной спектроскопии в интервале температур 385–794 К проведены измерения ионной проводимости суперионного проводника Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} со структурой флюорита (тип CaF₂, пр. гр. $Fm\bar{3}m$). Объемные кристаллы трехкомпонентного твердого раствора (параметр решетки a = 5.7726(1) Å) получены из расплава методом направленной кристаллизации. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ удовлетворяет уравнению Аррениуса–Френкеля с энтальпией активации электропроводности $\Delta H_{\sigma} = 0.706 \pm 0.05$ eV. Значение σ_{dc} равно $1.5 \cdot 10^{-5}$ S/cm при 500 K. На основании анализа электрофизических и структурных исследований флюоритовых твердых растворов в системах SrF₂–LaF₃ и SrF₂–LuF₃ предложена микроскопическая модель ионного переноса в кристалле Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}. Рассчитаны концентрация и подвижность носителей заряда: $n_{mob} = 7.8 \cdot 10^{20}$ cm⁻³ и $\mu_{mob} = 1.2 \cdot 10^{-7}$ cm²/Vs при 500 K.

Ключевые слова: суперионные проводники, импедансная спектроскопия, монокристаллы, фториды, редкоземельные ионы, структура флюорита.

DOI: 10.21883/FTT.2023.01.53928.467

1. Введение

Многокомпонентные фториды значительно расширяют рамки традиционных областей применения монокристаллов индивидуальных фторидов. Изоморфные гетеровалентные замещения позволяют создавать новые функциональные монокристаллические фторидные материалы, улучшая их физические и эксплуатационные свойства. Работа продолжает публикации [1-8], посвященные выращиванию монокристаллов флюоритовых нестехиометрических фаз Sr_{1-x}R_xF_{2+x} (R — редкоземельные элементы La-Lu, Y), изучению их дефектной структуры и структурно-чувствительной ионной проводимости. Дифториды щелочноземельных металлов (Са, Sr, Ba), принадлежащие к семейству флюорита (CaF₂), являются высокотемпературными (при температурах более 1000°С) суперионными проводниками [9]. Легирование матриц MF_2 (M = Ca, Sr, Ba) фторидами металлов I, III и IV групп периодической системы элементов RF_n позволяет создавать многокомпонентные флюоритовые твердые растворы $M_{1-x}R_xF_{2+(n-2)x}$, обладающие суперионной проводимостью в области средних температур $(200-300^{\circ}C).$

Особый интерес представляют процессы легирования флюоритовых матриц MF_2 трифторидами редкоземельных металлов RF_3 (R = La-Lu, Y), в результате которых синтезированы большие семейства флюоритовых твердых растворов $Ca_{1-x}R_xF_{2+x}$, $Sr_{1-x}R_xF_{2+x}$ и $Ba_{1-x}R_xF_{2+x}$. Нестехиометрические кристаллы $M_{1-x}R_xF_{2+x}$ относятся к примесным супери-

онным проводникам, уровень проводимости которых определяется содержанием и химической природой компонентов. Для реализации высокой ионной проводимости ($\sigma_{dc} > 10^{-4}$ S/cm) необходим уровень легирования в десятки mol.% RF_3 , приводящий к образованию концентрированных твердых растворов (x > 0.1) [10].

Структурный механизм ионного транспорта в двухкомпонентных растворах $M_{1-x}R_xF_{2+x}$ хорошо изучен. Высокая ионная проводимость кристаллов $M_{1-x}R_xF_{2+x}$ обусловлена миграцией анионов F- в структурноискаженных участках флюоритовых матриц MF₂ (M = Ca, Sr, Ba), расположенных вблизи кластеров дефектов (модель "дефектных областей" [10-12]). Анализ структурных данных [13-15] показывает, что наиболее вероятными кластерами в концентрированных твердых растворах $M_{1-x}R_xF_{2+x}$ являются редкоземельные тетраздрические кластеры $[R_4F_{26}]$ [16] и октаздрические кластеры [*R*₆F₃₆₋₃₇] [17]. Кластеры [*R*₆F₃₆₋₃₇] являются ядром более сложных октаэдро-кубических кластеров $[M_8R_6F_{68-69}]$ [18,19]. Тип дефектной структуры флюоритовых кристаллов $M_{1-x}R_xF_{2+x}$ зависит как от природы матричного (M) и редкоземельного (R) катионов, так и от их количественного соотношения в твердом раствоpe [14,19,20].

Дефектная структура твердых растворов $Sr_{1-x}R_xF_{2+x}$ изменяется по ряду R от La к Lu [1,21–25]. В начале ряда образуются тетраэдрические кластеры $[R_4F_{26}]$, в конце ряда — октаэдрические кластеры $[R_6F_{37}]$. Поэтому структурные и электрофизические свойства твердых

растворов $Sr_{1-x}La_xF_{2+x}$ и $Sr_{1-x}Lu_xF_{2+x}$ привлекали повышенное внимание.

В системе SrF₂–LaF₃ область гомогенности флюоритовой фазы Sr_{1-x}La_xF_{2+x} соответствует диапазону составов $0 \le x \le 0.49$ при эвтектической температуре 1723 К [26]. Данная фаза имеет конгруэнтный характер плавления при $x = 0.31 \pm 0.02$ и температуре 1843 ± 10 К. Дефектная структура кристаллов Sr_{0.69}La_{0.31}F_{2.31} изучалась нейтронографическим методом [27], кристаллов концентрационной серии Sr_{1-x}La_xF_{2+x} (x = 0.11-0.47) — методом рентгеноструктурного анализа [21]. Состав Sr_{0.69}La_{0.31}F_{2.31}, отвечающий максимуму плавкости, обладает высокой ионной проводимостью [5,6].

В системе SrF₂–LuF₃ [26] область гомогенности флюоритовой фазы Sr_{1-x}Lu_xF_{2+x} сужается до $0 \le x \le 0.37$ при эвтектической температуре 1278 К. На кривых плавкости температурный максимум отсутствует. Дефектная структура изучена для кристаллов Sr_{0.815}Lu_{0.185}F_{2.185} [22] и Sr_{0.84}Lu_{0.16}F_{2.16} [28] нейтроно- и рентгенографическим методами соответственно. Ионная проводимость кристаллов Sr_{1-x}Lu_xF_{2+x} по сравнению с кристаллами Sr_{1-x}La_xF_{2+x} существенно ниже [5,7].

Исследования электрофизических свойств трехкомпонентных твердых растворов, у которых варьируется состав редкоземельной (R, R') или матричной (M, M') подрешетки, только начинаются. К настоящему времени проведены измерения ионной проводимости кристаллов Sr_{0.8}(La_{1-x}Lu_x)_{0.2}F_{2.2} [4], $(Ca_{1-x}Sr_x)_{0.85}Nd_{0.15}F_{2.15}$, Ba_{0.75}(La_{1-x}Nd_x)_{0.25}F_{2.25} [29], $(Sr_{1-x}Ba_x)_{0.7}La_{0.3}F_{2.3}$ [29,30] и твердых растворов, составы которых отвечают седловинным точкам на фазовых диаграммах тройных систем CaF₂-SrF₂-RF₃ (R = La-Nd) [31,32].

Для изучения природы ионного транспорта во флюоритовых структурах трехкомпонентных твердых растворов представляют особый интерес кристаллы $Sr_{1-x}(La,Lu)_xF_{2+x}$, дефектная структура которых содержит одновременно тетраэдрические [La₄F₂₆] и октаэдрические [Lu₆F₃₇] кластеры. В [4] обнаружено, что немонотонный ход зависимости $\sigma_{dc}(x)$ для трехкомпонентных кристаллов $Sr_{0.8}(La_{1-x}Lu_x)_{0.2}F_{2.2}$ коррелирует с поведением проводимости двухкомпонентных кристаллов $Sr_{0.8}R_{0.2}F_{2.2}$ при изменении R по ряду от La к Lu. Твердый раствор $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ можно рассматривать в качестве модельного кристалла для изучения влияния дефектной структуры на ионный транспорт в трехкомпонентных твердых растворах со структурой флюорита.

Целью настоящей работы являются температурные измерения ионной проводимости, исследование механизма ионного переноса и расчет концентрации и подвижности носителей заряда в суперионном проводнике Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}

2. Эксперимент

Кристаллы Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} получены из расплава методом Бриджмена во фторирующей атмосфере. Методика роста кристаллов подробно описана в [3]. Скорость вывода тигля с расплавом из ростовой зоны составляла 5 mm/h, скорость охлаждения ~ 100 K/h, потери вещества на испарение не превышали 0.5 mass.%. Кристалл не подвергался термической обработке и находился в состоянии "as grown".

Рентгенографическое исследование выполняли на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 (излучение Cu K_{α}). Кристалл представляет собой твердый раствор со структурой флюорита (пр. гр. $Fm\bar{3}m$), кубический параметр решетки равен a = 5.7726(1) Å. Рентгенографическая плотность и молярный объем твердого раствора составляют $\rho_X = 5.25$ g/cm³ и $V_{mol} = 28.96$ cm³/mol соответственно. Измеренная (методом гидростатического взвешивания в дистиллированной воде) плотность $\rho_{exp} = 5.20 \pm 0.03$ g/cm³ хорошо совпадает с теоретическим значением ρ_X .

Значения a, ρ_X и V_{mol} для трехкомпонентного твердого раствора Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} хорошо моделируются значениями этих параметров, рассчитанными по закону аддитивности из характеристик двухкомпонентных твердых растворов Sr_{0.7}La_{0.3}F_{2.3} и Sr_{0.7}Lu_{0.3}F_{2.3}: $a^{cal} = 5.769$ Å, $\rho_X^{cal} = 5.27$ g/cm³ и $V_{mol}^{cal} = 28.92$ cm³/mol. Этот факт и результаты исследования [33] указывают на возможность использовать банк данных по параметрам решетки и плотностям двухкомпонентных кристаллов $M_{1-x}R_xF_{2+x}$ [14,34,35] для расчета характеристик большого количества многокомпонентных (с числом компонент три и более) флюоритовых твердых растворов.

Электропроводность кристалла измеряли методом импедансной спектроскопии на приборе Tesla BM-507 (диапазон частот 0.005-500 kHz) в вакууме ~ 1 Ра в интервале температур 385-794 К. Образец для электрофизических измерений в виде плоскопараллельной пластины толщиной h = 2.45 mm изготовляли из оптически однородного, прозрачного участка в средней части кристаллической були. Подробное описание кондуктометрической установки дано в [5]. В качестве электродов использовали серебряную пасту марки Degussa (Германия). Площадь электродов S составляла 35 mm².

Наличие в спектрах импеданса блокирующего эффекта от инертных (серебряных) электродов указывает на ионный характер электропроводности. Объемное сопротивление R_b кристалла находили по пересечению годографа импеданса с осью действительных сопротивлений. Величину ионной проводимости σ_{dc} рассчитывали из данных по объемному сопротивлению R_b с учетом геометрии кристаллического образца (*h* и *S*):

$$\sigma_{dc} = h/(R_b S). \tag{1}$$

Относительная погрешность определения величины σ_{dc} не превышала 5%.

Кристаллы	Множитель σ_0 , SK/cm	Энтальпия $\Delta H_{\sigma},$ eV	Проводимость σ_{dc} при 500 K, S/cm	Ссылка
Система SrF2-LaF3-LuF3				
$Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ a = 5.7726 Å	$9.53 \cdot 10^4$	0.706	$1.5 \cdot 10^{-5}$	Настоящая работа
$Sr_{0.8}La_{0.17}Lu_{0.03}F_{2.2}$ a = 5.8195 Å [33]	$4.1 \cdot 10^5$	0.71	$6.0 \cdot 10^{-5}$	[4]
$\frac{\text{Sr}_{0.8}\text{La}_{0.14}\text{Lu}_{0.06}\text{F}_{2.2}}{a = 5.8021 \text{ Å } [33]}$	$3.5 \cdot 10^5$	0.75	$1.8 \cdot 10^{-5}$	
Система SrF ₂ -LaF ₃				
$Sr_{0.85}La_{0.15}F_{2.15} a = 5.820 \text{ Å } [37]$	$5.4 \cdot 10^5$	0.71	$7.6 \cdot 10^{-5}$	[5,6]
$Sr_{0.69}La_{0.31}F_{2.31} a = 5.842 \text{ Å } [37]$	9.6 · 10 ⁵	0.66	$4.3 \cdot 10^{-4}$	
Система SrF2-LuF3				
$\frac{\text{Sr}_{0.84}\text{Lu}_{0.16}\text{F}_{2.16}}{a = 5.745 \text{ Å } [37]}$	$1.1 \cdot 10^{6}$	1.08	$2.9 \cdot 10^{-8}$	[5,7]
$\frac{\text{Sr}_{0.75}\text{Lu}_{0.25}\text{F}_{2.25}}{a = 5.714 \text{ Å } [37]}$	$1.3 \cdot 10^{6}$	1.08	$3.4 \cdot 10^{-8}$	

Параметры ионной проводимости флюоритовых твердых растворов в системах SrF_2-LaF_3 , SrF_2-LuF_3 и $SrF_2-LaF_3-LuF_3$ (монокристаллы)

Кондуктометрические изотермические измерения с выдержкой 30 min проводили в цикле нагрев–охлаждение. При охлаждении величина σ_{dc} оказалась более высокой, чем при нагреве. Так, при 500 К значения σ_{dc} составляют $7.7 \cdot 10^{-6}$ и $1.5 \cdot 10^{-5}$ S/ст при нагревании и охлаждении соответственно. Это явление характерно для кристаллов нестехиометрических фторидов [36] и обусловлено, по-видимому, отжигом термических напряжений в образцах. Обработку электрофизических данных проводили для режима охлаждения.

Температурная зависимость ионной проводимости кристалла $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ показана на рис. 1. Параметры ионной электропроводности рассчитывали с помощью уравнения Аррениуса–Френкеля

$$\sigma_{dc}T = \sigma_0 \exp(-\Delta H_\sigma/kT), \qquad (2)$$

где σ_0 — предэкспоненциальный множитель, ΔH_{σ} — энтальпия активации ионного переноса, k — постоянная Больцмана, T — температура. В интервале от 794 до 385 K значения σ_{dc} уменьшаются от $3.9 \cdot 10^{-3}$ до $1.4 \cdot 10^{-7}$ S/cm, что составляет приблизительно четыре порядка. Значения множителя σ_0 и энтальпии активации ΔH_{σ} равны $9.53 \cdot 10^4$ Scm⁻¹ K и 0.706 ± 0.005 eV соответственно.

В таблице приведены кондуктометрические данные для флюоритовых твердых растворов (монокристаллы) в системах с участием SrF₂, LaF₃ и LuF₃. Можно

видеть, что ионная проводимость флюоритовых твердых растворов тем выше, чем больше в них содержание трифторида лантана.

Рис. 1. Температурные зависимости ионной проводимости для кристаллов $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ (1), $Sr_{0.85}La_{0.15}F_{2.15}$ [5,6] (2) и $Sr_{0.84}Lu_{0.16}F_{2.16}$ [5,7] (3).

3. Микроскопический механизм электропереноса в суперионном проводнике Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}

Ионную проводимость флюоритовых твердых растворов $Sr_{1-x}R_xF_{2+x}$ и $Sr_{1-x}(La,Lu)_xF_{2+x}$ определяет их неравновесная дефектная структура. Структурные исследования кристаллов $Sr_{1-x}La_xF_{2+x}$ и $Sr_{1-x}Lu_xF_{2+x}$ [19,21–25] показали, что внедренные во флюоритовую матрицу SrF_2 катионы La^{3+} и Lu^{3+} координируются междоузельными ионами фтора определенного типа и образуются разные кластеры дефектов: тераэдрические [La_4F_{26}] и октаэдрические [Lu_6F_{37}] (или в более обобщенной форме октаэдро-кубические кластеры [$Sr_8Lu_6F_{69}$]).

Согласно данным ЯМР ¹⁹F [38,39], причиной высокой электропроводности кристаллов $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba) является интенсивная диффузия ионов F- по междоузельному механизму. Для повышения ионной проводимости нестехиометрических флюоритов необходимо увеличить концентрацию носителей заряда и/или уменьшить высоту потенциальных барьеров для их миграции (увеличить подвижность носителей заряда).

Энтальпия активации ионного переноса в кристалле Sr_{0.69}La_{0.31}F_{2.31} с тетраэдрическими кластерами [La₄F₂₆] ($\Delta H_{\sigma} = 0.66 \pm 0.01 \text{ eV}$) значительно меньше, чем в кристалле Sr_{0.75}Lu_{0.25}F_{2.25} с октаэдрическими кластерами [Lu₆F₃₇] ($\Delta H_{\sigma} = 1.08 \text{ eV}$). Значения проводимости (при 500 K) кристаллов Sr_{0.69}La_{0.31}F_{2.31} и Sr_{0.75}Lu_{0.25}F_{2.25} различаются в ~ 1.3 \cdot 10⁴ раза (см. таблицу).

Можно предположить, что величина проводимости кристалла $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ связана с существованием в структуре этого твердого раствора структурноискаженных флюоритовых участков вокруг тетраэдрических кластеров $[La_4F_{26}]$ (параметры решетки *a* равны 5.800 и 5.7726 Å для матрицы SrF_2 и твердого раствора $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ соответственно). Действительно, это предположение прямо подтверждается взаимосвязью электрофизических данных для флюоритовых фаз $Sr_{1-x}La_xF_{2+x}$ и $Sr_{1-x}(La,Lu)_xF_{2+x}$ на рис. 2. Значения проводимости и энтальпии активации ионного переноса в кристаллах $Sr_{1-x}(La,Lu)_xF_{2+x}$ (в зависимости от содержания в них трифторида лантана) хорошо соответствуют кривым $\sigma_{dc}(x)$ и $\Delta H_{\sigma}(x)$ для твердого раствора $Sr_{1-x}La_xF_{2+x}$.

Концентрация носителей заряда в твердом растворе $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ является температурно-независимой и определяется механизмом гетеровалентных замещений катионов Sr^{2+} на La^{3+} . Замещения Sr^{2+} на La^{3+} приводят к зарядовой неоднородности катионной подсистемы и пространственной неоднородности анионной подрешетки, вызванной появлением дополнительных ионов фтора в междоузельных позициях F_{32f} пр. гр. $Fm\bar{3}m$ с координатами (w, w, w), w = 0.41-0.42 [21,27]. Структурно-разупорядоченное состояние анионной подрешетки имеет кристаллохимическую природу и сохраняется при низких температурах.

Рис. 2. Зависимости проводимости при 500 К (*a*) и энтальпии активации ионного переноса (*b*) от содержания LaF₃ для флюоритовых твердых растворов $Sr_{1-x}La_xF_{2+x}$ (1 - [2], 2 - [4], 3 - [5,6]) и $Sr_{1-x}(La,Lu)_xF_{2+x}$ ($4 - Sr_{0.8}(La_{1-x}Lu_x)_{0.2}F_{2.2}$ [4], $5 - Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$).

При гетеровалентных замещениях Sr^{2+} на La^{3+} в кристаллах $Sr_{1-x}La_xF_{2+x}$ и $Sr_{1-x}(La,Lu)_xF_{2+x}$ междоузельные ионы фтора образуются по двум причинам: во-первых, за счет компенсации избыточного заряда примесных катионов (обозначения дефектов приводятся в символах Крегера–Винка [40]):

$$\operatorname{Sr}_{\operatorname{Sr}}^{\times} \to \operatorname{La}_{\operatorname{Sr}}^{\bullet} + \mathbf{F}_{i}^{\prime},$$
 (3)

и, во-вторых, вследствие образования вакансий фтора для преодоления коротких связей катион-фтор (образование антифренкелевских дефектов):

$$\mathbf{F}_{\mathbf{F}}^{\times} \to V_{\mathbf{F}}^{\bullet} + \mathbf{F}_{i}^{\prime}.\tag{4}$$

Наличие ионов F'_i в междоузельных позициях 32f и вакансий V_F^{\bullet} в основных позициях 8c пр. гр. $Fm\bar{3}m$ флюоритовой структуры $Sr_{1-x}La_xF_{2+x}$ обнаружено методами нейтро- и рентгеноструктурного анализа [21,27]. Этот факт указывает на образование в структуре твердых растворов катион-анионных кластеров [La₄F₂₆] [16,19]. Для нестехиометрических кристаллов имеет место схема гетеровалентных замещений (блочный изоморфизм [41]):

$$[Sr_4F_{23}]_{Sr_4F_{23}}^{\times} \to [La_4F_{26}]_{Sr_4F_{23}}^{\bullet} + F'_{mob},$$
(5)

где F'_{mob} — подвижные ионы фтора в позициях 4b пр. гр. $Fm\bar{3}m$, находящиеся вне кластера [13]. Концентрация подвижных междоузельных ионов фтора F'_{mob} :

$$n_{mob} = Zx/4a^3, \tag{6}$$

где Z — число формульных единиц в структуре флюорита Z = 4, x — мольная доля LaF₃ в твердом растворе, a — параметр элементарной ячейки. Для кристалла $n_{mob} = 7.8 \cdot 10^{20} \text{ cm}^{-3}$ и составляет 1.6% от общего числа анионов.

Полученная величина n_{mob} в кристалле $\mathrm{Sr}_{0.7}\mathrm{La}_{0.15}\mathrm{Lu}_{0.15}\mathrm{F}_{2.3}$ превышает в $\sim 10^7$ раз концентрацию антифренкелевских дефектов во флюоритовой матрице SrF_2 ($n_{mob} = 3.2 \cdot 10^{13} \,\mathrm{cm}^{-3}$ [42] при 500 K), что является доказательством сильного структурного разупорядочения анионной подсистемы.

Зная статическую проводимость σ_{dc} и концентрацию носителей заряда n_{mob} , можно оценить подвижность носителей μ_{mob} :

$$\mu_{mob} = \sigma_{dc}/qn_{mob},\tag{7}$$

где q — элементарный заряд. Подвижность носителей заряда при 500 К $\mu_{mob} = 1.2 \cdot 10^{-7} \text{ cm}^2/\text{sV}$ в суперионном кристалле $\text{Sr}_{0.7}\text{La}_{0.15}\text{Lu}_{0.15}\text{F}_{2.3}$ выше подвижности вакансий фтора V_{F}^{\bullet} в кристалле SrF_2 ($\mu_{vac} = 9.4 \cdot 10^{-9} \text{ cm}^2/\text{sV}$ [42]), и сравнима с подвижностью междоузельных ионов фтора F'_i в этом кристалле ($\mu_{int} = 1.1 \cdot 10^{-7} \text{ cm}^2/\text{sV}$ [42]).

4. Заключение

Для изучения природы процессов электропереноса и дефектообразования во фторпроводящих системах использовано мультилегирование (ионами La³⁺, Lu³⁺) флюоритовой матрицы SrF₂. Кристаллы суперионного проводника Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} выращены методом Бриджмена в атмосфере CF₄. Этот суперионик представляет собой трехкомпонентный твердый раствор со структурой флюорита (пр.гр. $Fm\bar{3}m$), для которого параметр решетки a = 5.7726(1) Å и экспериментальная плотность $\rho_{exp} = 5.20 \pm 0.03$ g/cm³. Проведены температурные измерения ионной проводимости кристалла Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3} методом импедансной спектроскопии. Дефектная структура кристаллов $Sr_{0.7}La_{0.15}Lu_{0.15}F_{2.3}$ содержит два типа кластеров дефектов — тетраэдрические $[La_4F_{26}]$ и октаэдрические $[Lu_6F_{37}]$ кластеры. На основании анализа электрофизических и структурных данных предложен механизм ионного переноса, рассчитаны концентрация и подвижность носителей заряда. Результаты проведенного исследования являются полезными для направленного синтеза новых фторидных суперионных материалов сложного химического состава.

Благодарности

Авторы благодарят Н.А. Ивановскую за помощь в получении денситометрических данных.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию Федерального научноисследовательского центра "Кристаллография и фотоника" Российской академии наук.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Е.А. Сульянова, Д.Н. Каримов, Б.П. Соболев. Кристаллография **65**, 569 (2020).
- [2] Н.И. Сорокин, Д.Н. Каримов, Е.А. Сульянова, З.И. Жмурова, Б.П. Соболев. Кристаллография **55**, 707 (2010).
- [3] Б.П. Соболев, Д.Н. Каримов, С.Н. Сульянов, З.И. Жмурова. Кристаллография 54, 129 (2009).
- [4] N.I. Sorokin, M.W. Breiter. Solid State Ionics 104, 325 (1997).
- [5] A.K. Ivanov-Shits, N.I. Sorokin, P.P. Fedorov, B.P. Sobolev. Solid State Ionics 31, 253 (1989).
- [6] А.К. Иванов-Шиц, Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. ФТТ 25, 1748 (1983).
- [7] А.К. Иванов-Шиц, Н.И. Сорокин, Б.П. Соболев, П.П. Федоров. ФТТ 28, 2552 (1986).
- [8] Н.И. Сорокин. ЖНХ 40, 233 (1993).
- [9] A.V. Chadwick. Solid State Ionics 8, 209 (1983).
- [10] B.P. Sobolev, N.I. Sorokin, N.B. Bolotina. In: Protonic & Eletronic Properties of Fluoride Materials / Eds. A. Tressaud, K. Poeppelmeier. Elsevier, Amsterdam (2016). P. 465.
- [11] K.E.D. Wapenaar, J.L. van Koesveld, J. Schoonman. Solid State Ionics 2, 145 (1981).
- [12] H.W. den Hartog, J.C. Langevoort. Phys. Rev. B 24, 3547 (1981).
- [13] Н.И. Сорокин, А.М. Голубев, Б.П. Соболев. Кристаллография 59, 275 (2014).
- [14] B.P. Sobolev. The rare earth trifluorides. Pt. 1 and 2. Institute of Crystallography, Moscow & Institut d'Estudis Catalans, Barcelona (2000–2001). 980 p.
- [15] P.P. Fedorov. Butll. Soc. Cat. Cien. 12, 349 (1991).
- [16] Л.А. Мурадян, Б.А. Максимов, В.И. Симонов. Координационная химия 12, 1398 (1986).

- [17] D.J.M. Bevan, J. Strahle, O. Greis. J. Solid State Chem. 44, 75 (1982).
- [18] А.М. Голубев, В.И. Симонов. Кристаллография 31, 478 (1986).
- [19] E.A. Sulyanova, B.P. Sobolev. Cryst. Eng. Commun. 24, 3762 (2022).
- [20] Н.И. Сорокин. Кристаллография 35, 793 (1990).
- [21] Е.А. Сульянова, Н.Б. Болотина, А.И. Калюканов, Н.И. Сорокин, Д.Н. Каримов, И.А. Верин, Б.П. Соболев. Кристаллография 64, 47 (2019).
- [22] Е.А. Сульянова, И.А. Верин, Б.П. Соболев. Кристаллография 57, 79 (2012).
- [23] Е.А. Сульянова, Д.Н. Каримов, Б.П. Соболев. Кристаллография 64, 874 (2019).
- [24] Е.А. Сульянова, Н.Б. Болотина, Д.Н. Каримов, И.А. Верин, Б.П. Соболев. Кристаллография 64, 196 (2019).
- [25] Е.А. Сульянова, Д.Н. Каримов, С.Н. Сульянов, Б.П. Соболев. Кристаллография **59**, 19 (2014).
- [26] B.P. Sobolev, K.B. Seiranian. J. Solid State Chem. 39, 17 (1981).
- [27] Л.А. Мурадян, Б.А. Максимов, Б.Ф. Мамин, Н.Н. Быданов, В.А. Сарин, Б.П. Соболев, В.И. Симонов. Кристаллография **31**, 248 (1986).
- [28] А.А. Лошманов, Б.А. Максимов, Б.П. Соболев, Н.И. Сорокин, В.И. Симонов. Координационная химия 15, 1133 (1989).
- [29] В. Трновцова, П.П. Федоров, И.И. Бучинская, М. Кублиха. Электрохимия 47, 683 (2011).
- [30] Д.Н. Каримов, И.И. Бучинская, А.Г. Иванова, О.Н. Ильина, Н.А. Ивановская, Н.И. Сорокин, Б.П. Соболев, Т.М. Глушкова, Д.А. Ксенофонтов. Кристаллография 63, 972 (2018).
- [31] Д.Н. Каримов, И.И. Бучинская, Н.И. Сорокин, Т.М. Глушкова, С.П. Чернов, П.А. Попов. Кристаллография 64, 818 (2019).
- [32] Н.И. Сорокин, Д.Н. Каримов, Е.А. Кривандина, З.И. Жмурова, О.Н. Комарькова. Кристаллография 53, 297 (2008).
- [33] Н.И. Сорокин. ЖНХ 66, 885 (2021).
- [34] П.П. Федоров, Б.П. Соболев. Кристаллография **37**, 1210 (1992).
- [35] Н.И. Сорокин, Е.А. Кривандина, З.И. Жмурова. Кристаллография 58, 952 (2013).
- [36] Н.И. Сорокин, М.В. Фоминых, Е.А. Кривандина, З.И. Жмурова, Б.П. Соболев. ФТТ 41, 310 (1996).
- [37] B.P. Sobolev, K.B. Seiranian, L.S. Garashina, P.P. Fedorov. J. Solid State Chem. 28, 51 (1979).
- [38] A. Duvel, J. Bednarcik, V. Sepelak, P. Heitjans. J. Phys. Chem. C 118, 7117 (2014).
- [39] А.Н. Мацулев, Б.М. Бузник, А.И. Лившиц, П.П. Федоров, Б.П. Соболев. ФТТ 30, 3554 (1988).
- [40] F.A. Kroger. The chemistry of inperfect crystals. North-Holland, Amsterdam (1964). 1039 p.
- [41] Б.П. Соболев, А.М. Голубев, П. Эрреро. Кристаллография 48, 148 (2003).
- [42] W. Bollmann. Kristall und Technik 15, 197 (1980).

Редактор Е.Ю. Флегонтова