03,13 Эффекты памяти и нелинейная электропроводность легированного перовскитоподобного ферритов лантана-стронция La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-δ}

© Э.А. Петухова, В.В. Хартон, В.В. Кведер

Институт физики твердого тела РАН, Черноголовка, Россия E-mail: elina.petukhova@issp.ac.ru

Поступила в Редакцию 12 сентября 2022 г. В окончательной редакции 12 сентября 2022 г. Принята к публикации 24 сентября 2022 г.

Проведен анализ наличия эффектов памяти в модельных гетероструктурах на основе легированного феррита La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- $\delta}$ со структурой перовскита. Показано, что слой феррита толщиной 5–10 μ m, зажатый между Pt и Ni электродами, проявляет аналоговый мемристорный эффект. При положительной полярности происходит плавное увеличение проводимости, а при отрицательной полярности — ее плавное уменьшение. Данный эффект предположительно связан с изменением локальных концентраций вакансий кислорода за счет их дрейфа в электрическом поле. Поскольку ферриты лантана-стронция обладают хорошей устойчивостью к изменению стехиометрии по кислороду, в данной системе удается избежать роста дендритов. Зависимости тока от напряжения обладают сильной нелинейностью, связанной с эффектом Пула–Френкеля, в системе наблюдается увеличение предэкспоненциального фактора температурной зависимости электропроводности под действием поля, которое может объясняться увеличением эффективной подвижности дырок.}

Ключевые слова: перовскит, ферриты лантана-стронция, эффекты памяти, нелинейный электронный транспорт, мемристоры.

DOI: 10.21883/FTT.2023.01.53924.475

1. Введение

Современные достижения в области "искусственного интеллекта" и "глубокого машинного обучения" на основе искусственных нейронных сетей (ИНС) открыли пути решения многих проблем, которые ранее казались непреодолимыми. В настоящее время ИНС обычно реализуют в виде программного обеспечения в стандартных компьютерах, которые лишь имитируют нейронные сети. Радикального повышения эффективности ИНС можно добиться путем создания специальных чипов с нейроморфной архитектурой [1-4], совмещающих хранение и обработку информации подобно нейронным сетям в мозге животных. Для создания искусственных синапсов в таких чипах весьма привлекательными являются аналоговые мемристоры, т.е. электронные элементы, электросопротивление которых может плавно и обратимо изменяться в зависимости от протекшего через них заряда.

В настоящее время имеется огромное число публикаций, посвященных созданию и исследованию мемристоров, и их число быстро растет. Большинство известных мемристоров основаны на тонких пленках оксидов металлов между двумя металлическими электродами. Существуют по крайней мере два механизма, приводящих к изменению электропроводности этих мемристоров при

приложении к ним напряжения. Один механизм (так называемые аналоговые мемристоры) связан с плавным изменением электронной проводимости при изменении концентрации кислородных вакансий за счет их дрейфа в приложенном сильном электрическом поле. Второй механизм (двоичные мемристоры, имеющие лишь два состояния) основан на росте очень тонких металлических нитей из-за "конденсации" анионных вакансий на металлическом острие, растущем от отрицательного электрода (катода) за счет дрейфа к нему кислородных вакансий в очень сильном локальном поле вблизи острия [5,6]. Когда растущая металлическая нить касается противоположного электрода, происходит резкое уменьшение электрического сопротивления — переход в состояние "включено". Приложение противоположной полярности приводит к "растворению" части нити и резкому росту сопротивления — состояние "выключено". Такие мемристоры вполне подходят для двоичной энергонезависимой памяти [7], но для синапсов нейроморфных сетей гораздо предпочтительнее "аналоговые" мемристоры.

Мемристорные эффекты уже наблюдались для многих оксидов металлов (TiO₂, SiO₂, CuO, NiO, CoO, Fe₂O₃, MoO, VO₂) и оксидных соединений, такие как SrTiO_{3- δ}, (La,Sr)MnO₃, (Pr,Ca)MnO₃, BaTiO₃, (La,Sr)(Co,Fe)O₃ и CeCu₃Ti₄O₁₂ [8–18]. К сожалению, в большинстве слу-

чаев наблюдался мемристорный эффект двоичного типа из-за почти неизбежного образования металлических нитей или металлических дендритов за счет реакций типа $\mathrm{Me^{+2}O^{-2}} + \mathrm{V_O^{+2}} + 2e \Leftrightarrow \mathrm{Me^0}$ происходящих на растущем металлическом острие за счет дрейфа к нему подвижных вакансий кислорода V_O^{+2} . Из-за концентрации тока на острие система неустойчива относительно роста таких металлических дендритов и от них трудно избавиться. Об аналоговых мемристорах сообщалось лишь в нескольких публикациях, таких как Pt/NiO/Ag [19] и Pt/Co_{0.2}TiO_{3.2}/ITO [20]. Однако аналоговое поведение в первом случае было нестабильным и устройство легко переключалось в двоичный режим в результате образования металлических нитей. Сообщалось о более стабильном аналоговом поведении для структуры $Pt/Hf_xAl_{1-x}O_{1-y}/TiN$ [21]. Кроме того, как аналоговые, так и двоичные характеристики в одном и том же устройстве были описаны в пленках Ag-TiO₂ [22], Ag/CH₃-NH₃PbI_{3x}Cl_x/FTO [23] и Ni/Ta₂O₅/Si [24].

Чтобы получить аналоговые оксидные мемристоры и избежать появления металлических нитей в них, желательно использовать оксидные соединения со следующими свойствами:

 стабильность кристаллической решетки в широком диапазоне нестехиометрии по кислороду. Кристаллическая структура оксида должна быть далека от структуры соответствущего металла;

 высокая концентрация кислородных вакансий и их достаточно высокая подвижность при комнатной температуре;

 – большое изменение электронной проводимости при изменении концентрации кислородных вакансий.

В настоящей работе мы исследовали перспективы использования для аналоговых мемристоров перовскитоподобных ферритов лантана-стронция на основе оксидной системы $La_{1-x}Sr_xFeO_{3-\delta}$ (x = 0-1).

Ранее эта группа соединений (с различным дополнительным легированием) подробно исследовалась как перспективный материал для катодных слоев твердооксидных топливных элементов (ТОТЭ) и кислородных мембран. Известно, что при содержании стронция в интервале x = 0.3 - 0.6 и температурах $T > 900^{\circ}$ С он сочетает высокий коэффициент диффузии кислорода и высокую электронную электропроводность. Эти соединения относятся к структурному типу перовскита АВО₃, где La или Sr находятся позициях А кристаллической решетки, а Fe (или такие легирующие элементы, как Al, Ni, Mo) находятся в узлах В. Валентная зона и зона проводимости ферритов типа $La_{1-x}Sr_xFeO_{3-\delta}$. образованы перекрытием волновых функций FeO₆ октаэдров, соединенных углами. Если в структуре La_{1-x}Sr_xFeO_{3-δ} нет стронция (x = 0) и кислородных вакансий ($\delta = 0$), ионы железа имеют среднюю валентность Fe⁺³ и материал является широкозонным полупроводником с шириной запрещенной зоны порядка 2.4 eV [25]. Замена части La³⁺ на Sr⁺² приводит к появлению дырок в валентной зоне, что означает, что ионы железа частично находятся

в состоянии Fe⁺⁴. По мере добавления стронция, концентрация дырок растет, а ширина запрещенной зоны постепенно падает до 1 eV [25]. Кроме того, при этом падает энергия образования вакансий кислорода V_O^{+2} что стимулирует увеличение их концентрации.

Легко понять, что при низкой температуре концентрация дырок (p) в валентной зоне должна быть $p = x - 2\delta$, поскольку часть дырок будет захвачена вакансиями кислорода. Таким образом, увеличение концентрации вакансий кислорода должно приводить к падению концентрации дырок в валентной зоне и падению дырочной электропроводности. Отсутствие упорядочения в распределении La³⁺ и Sr²⁺ в подрешетке *A*, а также электронфононное взаимодействие (поляронный эффект) приводят к частичной локализации дырок в валентной зоне (по типу андерсоновского диэлектрика усугубленного поляронным эффектом). Таким образом, проводимость дырок в валентной зоне носит, в основном, прыжковый характер.

Для таких ферритов характерна относительно высокая термодинамическая и кинетическая стабильность и широкий диапазон изменений кислородной нестехиометрии без фазовых переходов [26,27]. Чтобы увеличить число вакансий кислорода при сохранении высокой стабильности перовскитоподобной фазы, мы легировали базовое соединение катионами алюминия и никеля.

Ниже мы приводим результаты исследования электропроводности тонких (порядка $5-10\,\mu$ m) поликристаллических слоев перовскита $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$ в высоких электрических полях с целью определения перспектив использования данной группы материалов для создания аналоговых мемристоров.

2. Образцы и методики экспериментов

Однофазные материалы состава La_{0.5}Sr_{0.5}FeO_{3- δ}, La_{0.5}Sr_{0.5}Fe_{0.8}Al_{0.2}O_{3- δ} и La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- δ} были синтезированы при помощи глицин-нитратного метода [28,29]. Полученные при синтезе порошки были отожжены в атмосфере воздуха при температуре T = 1373 К в течение 10 h, а затем перемолоты в этаноле в шаровой мельнице с шарами из диоксида циркония диаметром 0.5 и 0.3 mm. Средний размер частиц, определенный по результатам сканирующей электронной микроскопии (СЭМ, Supra 50 VP, Carl Zeiss), был равен 400 \pm 170 nm.

Для измерения температурной зависимости удельной электропроводности были изготовлены керамические образцы в виде цилиндрических пластин радиусом 8.5 mm и толщиной 1 mm путем прессования порошков и спекания на воздухе при 1673 К в течение 4 h. Удельная электропроводность этих образцов измерялась стандартным четырехточечным методом с платиновыми контактами в режиме медленного охлаждения образцов в потоке сухого аргона или воздуха.

Рис. 1. Рентгенограммы порошков ферритов (a) и спеченной керамики (b).

Таблица1.Параметрырешетки иплотностьдлякерамикLa_{0.5}Sr_{0.5}FeO_{3-\delta},La_{0.5}Sr_{0.5}Fe_{0.8}Al_{0.2}O_{3-\delta}иLa_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}(пространственнаягруппаR3c)

Параметр	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$	ρ , g/cm ³
$La_{0.5}Sr_{0.5}FeO_{3-\delta}$	5.514	13.419	353.3	6.12
$La_{0.5}Sr_{0.5}Fe_{0.8}Al_{0.2}O_{3-\delta}$	5.474	13.373	347.0	6.07
$La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$	5.480	13.395	348.4	6.05

Тонкие керамические слои для измерения электропроводности в больших электрических полях изготавливались методом трафаретной печати. Пасты для трафаретной печати готовились смешиванием полученных порошков в соотношении 1:0.8 с органическим связующим, состоящим из 10% поливинилбутираля (Butvar B-98 Acros Organics, USA) и 90% альфа-терпениола (Shanghai Huizhong Technology, China).

Однофазность образцов проверяли при помощи рентгенофазового анализа на дифрактометре Siemens D500 ($CuK_{\alpha 1}$ -излучение). Дифрактограммы порошков и керамики представлены на рис. 1, *а* и *b* соответственно. В табл. 1 указаны параметры решетки для вышеупомянутых составов.

Для исследования электропроводности образцов в высоком электрическом поле, на подложку из диоксида циркония, стабилизированного иттрием (YSZ), наносился слой платиновой пасты (Heraeus, Германия) толщиной 2μ m и отжигался при температуре 1223 К в течение 1 h. Затем при помощи трафаретной печати на этот слой платины наносился слой ферритной пасты и отжигался при температуре T = 1473 К в течение 1 h на воздухе. Толщина полученных слоев составляла

Физика твердого тела, 2023, том 65, вып. 1

5

 $5-10\,\mu$ m. В качестве второго контакта на поверхность феррита напылялся в вакууме электрод из металлического никеля диаметром $0.5-0.7\,\text{mm}$ (см. рис. 2, a).

Напряжение на образец подавалось от цифроаналогового преобразователя DAC через последовательно включенное постоянное сопротивление R_d , много меньшее сопротивления образца. Электропроводность *S* образца вычислялся как $S = I/U_b$, где U_b — напряжение на образце, между никелевым и платиновым контактами, измеряемое при помощи аналого-цифрового преобразователя ADC₂, а I — ток через образец, который вычислялся из падения напряжения на сопротивлении R_d , измеряемом при помощи аналого-цифрового преобразователя ADC₁. Для измерения дифференциальной (динамической) электропроводности образца, на него помимо постоянного напряжения подавалось (при помощи DAC) небольшое напряжение на частоте 30 Hz. Динамическая электропроводность S_d образца вычислялся

Рис. 2. Схема образцов (*a*) и установки (*b*) для измерения электропроводности.

Состав образца В воздухе В сухом аргоне $E_a = 0.08 \pm 0.01 \,\mathrm{eV},$ $E_a = 0.21 \pm 0.01 \,\mathrm{eV},$ $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ $\sigma_0 = 2053 \pm 3 \,\Omega^{-1} \,\mathrm{cm}^{-1}$ $\sigma_0 = 1163 \pm 3 \,\Omega^{-1} \,\mathrm{cm}^{-1}$ La_{0.5}Sr_{0.5}Fe_{0.8}Al_{0.2}O_{3-δ} $E_a = 0.12 \pm 0.02 \,\mathrm{eV},$ $E_a = 0.19 \pm 0.01 \,\mathrm{eV},$ $\sigma_0 = 2180 \pm 4 \, \Omega^{-1} \, \mathrm{cm}^{-1}$ $\sigma_0 = 454 \pm 3 \ \Omega^{-1} \ \mathrm{cm}^{-1}$ $E_a = 0.11 \pm 0.01 \,\mathrm{eV},$ $E_a = 0.22 \pm 0.02 \,\mathrm{eV},$ $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$ $\sigma_0 = 472 \pm 3 \, \Omega^{-1} \, \mathrm{cm}^{-1}$ $\sigma_0 = 1188 \pm 3 \,\Omega^{-1} \,\mathrm{cm}^{-1}$

Таблица 2. Значения энергии активации E_a и предэкспоненциального фактора σ_0 , вычисленные из температурной зависимости удельной электропроводности при $T < 500^{\circ}$ С при охлаждении образцов в воздухе и в аргоне

как $S_d = \Delta I / \Delta U_b$, где ΔU_b и ΔI — фурье-компоненты напряжения и тока на частоте 30 Hz, вычисляемые компьютером по данным, поступающим с ADC₂ и ADC₁.

3. Результаты и обсуждение

На рис. З изображены температурные зависимости удельной электропроводности (σ) для синтезированных материалов, измеренные при медленном охлаждении образцов в воздухе (незакрашенные символы) и в сухом аргоне (закрашенные символы). Интерпретация результатов такого рода измерений в перовскитоподобных ферритах лантана-стронция обсуждалась ранее во многих работах [26–38,30]. Было показано, что ионный вклад в общую электропроводность таких материалов в данном интервале температур пренебрежимо мал по сравнению с током квази-свободных дырок в валентной зоне. Уменьшение электропроводности с ростом температуры, наблюдаемое в диапазоне высоких температур, $T > 600^{\circ}$ С (T > 833 K), происходит из-за экспоненциального роста

Рис. 3. Температурные зависимости проводимости в аррениусовских координатах $log(\sigma)$ от 1000/Т для $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ (1 — треугольники), $La_{0.5}Sr_{0.5}Fe_{0.8}Al_{0.2}O_{3-\delta}$ (2 — квадраты) и $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$ (3 — круги), измеренные при медленном охлаждении в потоке воздуха (незаполненные символы) и в потоке сухого аргона (заполненные символы).

Рис. 4. Сравнение проводимости тонкого слоя $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$, толщиной 5 μ m нанесенного на YSZ (без Pt слоя) с объемной проводимостью керамики $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$ в атмосфере воздуха (незакрашенные круги) и аргона (закрашенные круги).

концентрации вакансий кислорода при нагревании, что приводит к снижению концентрации дырок в валентной зоне и уменьшению их подвижности. Тот же фактор отвечает за снижение электропроводности при выдержке образца при высокой температуре в атмосфере аргона по сравнению с воздухом.

При температурах ниже $T < 450^{\circ}$ C (T < 723 K) кислородный обмен между образцом и атмосферой практически прекращается, и концентрация кислородных вакансий при понижении температуры остается постоянной. В этом случае температурная зависимость электропроводности носит типичный для полупроводников термически активированный характер.

В табл. 2 приведены значения энергии активации (E_a) , рассчитанные по наклону прямых линий на рис. 3, соответствующих зависимостям: $\sigma = \sigma_0^* \exp(-E_a/kT)$.

Все экспериментальные данные, приведенные ниже, соответствуют образцам состава La $_{0.5}$ Sr} $_{0.5}$ Fe}_{0.75}Al}_{0.2}Ni}_{0.05}O_{3-\delta}, поскольку он характеризуется наиболее низкой проводимостью в исследованной серии составов.

На рис. 4 сравнивается удельная электропроводность слоя La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- δ} толщиной 5 μ m, нанесенного на подложку YSZ без подслоя Pt и быстро охлажденного (закаленного) после спекания при $T = 950^{\circ}$ C (1223 K), и данные по объемной проводимости объемной керамики того же состава из рис. 3. Проводимость измерялась вдоль слоя с использованием четырех контактов из Ni. Результаты хорошо согласуются с объемной электропроводностью керамики La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- δ}, измеренной при медленном охлаждении в аргоне. Энергия активации составляет 0.21 eV. Тот факт, что E_a постоянна в таком широком диапазоне температур, указывает на то, что фазовых переходов не происходит и механизм проводимости остается неизменным.

На рис. 5 представлены зависимость тока *I*, а также статической и динамической электропроводности $S = I/U_b$ и $S_d = dI/dU_b$ от напряжения на образце U_b , измеренные на модельной гетероструктуре (см. рис. 2, *a*) Pt/La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- δ}/Ni, в режиме быстрого сканирования (0.35 V/s) при T = 296 K. Хорошо видно, что вольт-амперные характеристики сильно нелинейны. При быстром сканировании вверх и вниз по напряжению заметного гистерезиса не наблюдается.

Рис. 5. Зависимость тока Ι от напряжения образце U_b для модельной гетероструктуры на Pt/La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-δ}/Ni (a), и зависимости электропроводности $S = I/U_b$ и $S_d = dI/dU_b$ (b), измеренные в режиме быстрого сканирования (0.35 V/s). T = 296 К.

Рис. 6. Зависимость тока *I* от U_b на образце Pt/La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3- δ}/Ni (*a*), и зависимости его электропроводности $S = I/U_b$ и $S_d = dI/dU_b$ (*b*), измеренные в режиме сканирования U_b в течение 10 s от 0 до +3.5 V, затем ожидание 60 s при $U_b = 3.5$ V, затем 10 s сканирование от +3.5 до -3.5 V, выдержка 60 s и сканирование 10 s от -3.5 до 0 V, T = 296 K.

На рис. 6 показаны аналогичные вольт амперные характеристики и зависимости статической и динамической электропроводности $S = I/U_b$ и $S_d = dI/dU_b$ от напряжения U_b , для того же образца, но на этот раз измеренные с остановками по 60 s при максимальном положительном и отрицательном напряжениях. Хорошо видно, что ожидание при $U_b = +3.5$ V приводит к росту электропроводности, тогда как изменение полярности и ожидание при $U_b = -3.5$ V приводит к восстановлению исходной характеристики.

Существенно, что возрастание и уменьшение электропроводности происходит плавно по времени и величину изменения можно контролировать путем изменения времени приложения напряжения. Это проиллюстрировано на рис. 7, где показана кинетика процесса "записи" и "стирания". В момент времени t = 0 было приложено напряжение $U_b = +4.8$ V, что привело к монотонному росту электропроводности $S = I/U_b$, а в момент t = 60 s было приложено напряжение $U_b = -4.8$ V, которое вызвало монотонное уменьшение проводимости. Таким образом, мы имеем "аналоговый" мемристорный эффект.

Можно предположить, что природа наблюдаемого гистерезиса и эффекта "памяти" связана с перераспределе-

Рис. 7. Зависимость электропроводности $S = I/U_b$ образца от времени *t* при приложении в момент t = 0 напряжения +4.8 V, а в момент t = 60 s напряжение -4.8 V.

нием вакансий кислорода под действием приложенного электрического поля. Поскольку концентрация подвижных носителей заряда (электронных дырок в валентной зоне) напрямую связана с концентрацией кислородных вакансий, их перераспределение приводит к изменениям проводимости. Наблюдающееся отсутствие симметрии образца относительно знака электрического поля связано, вероятно, с частичным окислением никелевого электрода, что приводит к локальному увеличению вакансий кислорода вблизи него. Таким образом, Niэлектрод вероятно может действовать как "кислородный буфер" из-за обратимого окисления и восстановления никеля. Однако, это плохой и медленный буфер для кислородных вакансий. Кроме того, большие характерные времена переключения связаны и с большой толщиной образца.

Чтобы сократить характерное время переходного процесса и увеличить относительное изменение электропроводности при переключении, мы в дальнейшем планируем нарушить симметрию системы не с помощью использования никеля, а за счет создания гетероструктуры из двух слоев с разным соотношением La/Sr, что должно привести к разным концентрациям кислородных вакансий в них. По нашим ожиданиям, тогда переключение будет происходить за счет перераспределения вакансий за счет их дрейфа между слоями. Кроме того, с целью уменьшения характерных времен переключения, мы планируем существенно уменьшить толщину слоев за счет использования вакуумного напыления.

С целью исследования причин наблюдаемой нелинейности вольт-амперных характеристик, мы измерили их при различных температурах, используя быстрое сканирование напряжения, чтобы избежать эффектов, связанных с перераспределением кислородных вакансий. На рис. 8 представлены температурные зависимости проводимости S(T) исследуемого образца при различных приложенных напряжениях U_b . Экспериментальные данные хорошо описываются зависимостями $S = S_0^* \exp(-E_a/kT)$, показанными на рис. 8 прямыми линиями. На рис. 9 показана зависимость энергии активации E_a , рассчитанной из наклона прямых на рис. 8, как функция от $U_b^{1/2}$. Экспериментальные точки хорошо укладываются на зависимость $E_a = 0.197 \,\text{eV} + 0.0074^* U_b^{1/2}$ (eV), показанную на рис. 9 прямой линией.

Наиболее вероятной причиной понижения энергии активации, пропорционального квадратному корню электрического поля, является хорошо известный эффект Пула-Френкеля.

Эффекта Пула–Френкеля заключается в уменьшении энергии тепловой активации дырок, локализованных на ловушках (в нашем случае на вакансиях кислорода), в

Рис. 8. Зависимости электропроводности образца от температуры в Аррениусовских координатах, измеренные при напряжениях $U_b = 1, 2, 3$ и 4 V.

Рис. 9. Энергия активации, вычисленная из температурной зависимости электропроводности, как функция от $U_b^{1/2}$.

валентную зону под влиянием внешнего электрического поля $\mathscr{E} = U_B/d$, где d — толщина образца $(5-10\,\mu\text{m})$. Эффект Пула–Френкеля часто можно наблюдать для дефектов с глубокими уровнями в полупроводниках (см. например, [31]). В случае кулоновского поля вокруг дефекта $U(r) = -e^2/\varepsilon r$, где е — заряд электрона, а ε — эффективная диэлектрическая проницаемость, во внешнем поле \mathscr{E} энергия захваченной на дефект дырки может быть выражена как

$$U(x) = -e^2/(x^*\varepsilon) - e\mathscr{E}^*x, \qquad (1)$$

где x — расстояние по направлению поля. Энергия термической активации дырки в валентную зону определяется энергией в седловой точке $x = x_0$ этого потенциала, соответствующей нулю производной

$$dU/dx = e^2/(x_0^{2*}\varepsilon) - \mathscr{E}^* e = 0.$$
⁽²⁾

Отсюда следует, что $x_0 = (e/(\mathscr{E}^*\varepsilon))^{1/2}$, а уменьшение термической энергии активации электрическим полем составит

$$\Delta E_a = U(\mathscr{E}) - U(0) = -e^* (e\mathscr{E}/\varepsilon)^{1/2} = -\beta^* (U_b)^{1/2}.$$
 (3)

Эффективная диэлектрическая постоянная, рассчитанная из ёмкости нашего образца, измеренной при 1 MHz, равна $\varepsilon \approx 4$. Тогда для $d = 5 \,\mu$ m значение β должно быть порядка

$$\beta = e^* (e/d\varepsilon)^{1/2} \approx 0.0085 \,[eV^{1/2}]. \tag{4}$$

Эта оценка также должна быть справедлива и для уменьшения энергии активации прыжков дырок в случайном кулоновском потенциале в валентной зоне, связанным со случайным распределением ионов La и Sr в подрешетке A, а также Fe, Al и Ni в подрешетке B перовскита. Понятно, что энергия активации электропроводности есть сумма энергии активации для концентрации дырок в валентной зоне и энергии активации для их диффузии в валентной зоне.

Как мы видим, экспериментальная величина $\beta = 0.0074 \, [\mathrm{eV}^{1/2}]$ достаточно близка к расчетной величине 0.0085 $[\mathrm{eV}^{1/2}]$ что указывает на то, что эффект Пула-Френкеля дает заметный вклад в наблюдаемую нелинейность электропроводности. Поскольку $S = S_0^* \exp(-E_a/kT)$, уменьшение E_a с ростом напряжения U_b приводит к существенному росту электропроводности.

Однако, только лишь эффект Пула–Френкеля не может полностью объяснить наблюдаемую нелинейность электропроводности. Это следует из рис. 10, на котором представлена зависимость величины предэкспоненциального фактора S_0 от U_b , вычисленная из данных рис. 8.

Как видно из рис. 10, величина S_0 весьма сильно растет с ростом напряжения U_b и может быть описана достаточно хорошо как линейной зависимостью $S_0 = 0.21 + 0.36^* U_b$, так и квадратичной зависимостью $S_0 = 0.57 + 0.073^* U_b^2$.

Рис. 10. Зависимость S_0 от U_b , где S_0 — значения предэкспоненциального фактора, вычисленные из данных рис. 8 для разных значений U_b .

Эффект Пула–Френкеля не предполагает наблюдаемый рост S_0 с электрическим полем. Мы полагаем, что электрическое поле частично разрушает локализацию дырок в валентной зоне, вызванную существующими в образце флуктуациями состава. Это приводит к увеличению эффективной подвижности дырок и росту *S*.

4. Заключение

Впервые исследована электропроводность и эффекты памяти в тонких слоях перовскитоподобного феррита лантана-стронция La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-δ}. Было показано, что модельные гетероструктуры, содержащие один слой $La_{0.5}Sr_{0.5}Fe_{0.75}Al_{0.2}Ni_{0.05}O_{3-\delta}$ толщиной 5-10 µm между электродами Pt и Ni, демонстрируют аналоговый мемристорный эффект, т.е. плавное обратимое увеличение электропроводности при приложении электрического поля одной полярности и уменьшение электропроводности при приложении электрического поля противоположной полярности. Мы полагаем, что наблюдаемый эффект обусловлен изменением локальной концентрации вакансий кислорода за счет их дрейфа в электрическом поле. Система оказалась устойчивой относительно роста в ней металлических дендритов. Сильная нелинейность вольтамперных характеристик может быть частично объяснена уменьшением энергии термической активации захваченных на кислородные вакансии дырок за счет эффекта Пула-Френкеля, что приводит к росту концентрации дырок в валентной зоне при увеличении электрического поля. Помимо этого электрическое поле приводит к увеличению предэкспоненциального фактора температурной зависимости электропроводности, что вероятно говорит об увеличении эффективной подвижности дырок за счет частичного подавления их локализации. Таким образом, перовскиты на основе феррита лантана-стронция можно рассматривать в качестве перспективных исходных материалов для аналоговых мемристоров. Чтобы сократить характерное время переключения и увеличить относительное изменение электропроводности при переключении, мы в дальнейшем планируем использовать гетероструктуры из двух слоев феррита с разным соотношением La/Sr, что должно привести к разным концентрациям кислородных вакансий в них. Кроме того, с целью ускорения переключения, мы планируем существенно уменьшить толщину слоев за счет использования вакуумного напыления.

Финансирование работы

Работа частично поддержана ИФТТ РАН — российскими государственными контрактами. Измерения электропроводности проводились в рамках проекта № 17-79-30071, поддержанного Российским научным фондом.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov. Nature **521**, 7550, 61 (2015).
- [2] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M-F. Chang, H.-J. Yoo, H. Qian, H. Wu. Nature Electronics 3, 7, 371 (2020).
- [3] M.A. Zidan, J.P. Strachan, W.D. Lu. Nature Electronics 1, *1*, 22 (2018).
- [4] B. Kim, S. Jo, W. Sun, H. Shin. J. Nanosci. Nanotechnology 19, 10, 6703 (2019).
- [5] В.А. Чеснаков, В.В. Кведер. Письма в ЖЭТФ 58, 210 (1993).
- [6] D. Xu, X.N. Shangguan, S.M. Wang, H.T. Cao, L.Y. Liang, H.L. Zhang, J.H. Gao, W.M. Long, J.R. Wang, F. Zhuge. AIP Advances 7, 2, 025102 (2017).
- [7] O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi,
 D. Abbott. Proc. Royal Society A 466, *2120*, 2175 (2010).
- [8] N.I. Mou, Y. Zhang, P. Pai, M. Tabib-Azar. Solid-State Electron. **127**, 20 (2017).
- [9] Z.-M. Liao, C. Hou, Q. Zhao, D.-S. Wang, Y.-D. Li, D.-P. Yu. Small 5, 21, 2377 (2009).
- [10] F. Gul. Ceram. Int. 44, 11417 (2018).
- [11] M.K. Rahmani, B.-D. Yang, H.W. Kim, H. Kim, M.H. Kang. Semicond. Sci. Technol. 36, 095031 (2021).
- [12] G. Zhou, X.Yang, L. Xiao, B. Sun, A. Zhou. Appl. Phys. Lett. 114, 163506 (2019).
- [13] L. Jamilpanah, I. Khademi, J.S. Gharehbagh, S.A. Mohseni, S.M. Mohseni, J. Alloys Comp. 835, 155291 (2020).

- [14] O.A. Novodvorsky, L.S. Parshina, A.A. Lotin, V.A. Mikhalevsky, O.D. Khramova, E.A. Cherebylo, V.Ya. Panchenko. J. Surf. Investigat.: X-ray, Synchrotron Neutron Techniques 12, 2, 322 (2018).
- [15] R. Bruchhaus, R. Waser. Thin Film Metal-Oxides. Springer US, Boston, MA (2010). 131 c.
- [16] J.L.M. Rupp, P. Reinhard, D. Pergolesi, Th. Ryll, R. Tolke, E. Traversa. Appl. Phys. Lett. **100**, 012101 (2012).
- [17] Y.V. Pershin, M. Di Ventra. Adv. Phys. 60, 145 (2011).
- [18] A.A. Felix, J.L.M. Rupp, J.A. Varela, M.O. Orlandi. J. Appl. Phys. **112**, 054512 (2012).
- [19] Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, Y. Pei. ACS Appl. Mater. Interfaces 10, 29, 24598 (2018).
- [20] M.M. Góis, M.A. Macêdo. J. Mater. Sci.: Mater. Electron. 31, 5692 (2020).
- [21] A. Markeev, A. Chouprik, K. Egorov, Yu. Lebedinskii, A. Zenkevich, O. Orlov. Microelectron. Eng. 109, 342 (2013).
- [22] X. Yan, J. Zhao, S. Liu, Zh. Zhou, Q. Liu, J. Chen, X.Y. Liu. Adv. Functional Mater. 28, 1705320 (2018).
- [23] E. Yoo, M. Lyu, J.-H. Yun, Ch. Kang, Y. Choi, L. Wang. J. Mater. Chem. C 4, (2016).
- [24] J.-H. Ryu, F. Hussain, Ch. Mahata, M. Ismail, Y. Abbas, M.-H. Kim, Ch. Choi, B.-G. Park, S. Kim. Appl. Surf. Sci. 529, 147167 (2020).
- [25] L. Wang, Y. Du, P.V. Sushko, M.E. Bowden, K.A. Stoerzinger, S.M. Heald, M.D. Scafetta, T.C. Kaspar, S.A. Chambers. Phys. Rev. Mater. 3, 025401 (2019).
- [26] V.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenborgh. Chem. Mater. **20**, *20*, 6457 (2008).
- [27] V.V. Kharton, J.C. Waerenborgh, A.P. Viskup, S.O. Yakovlev, M.V. Patrakeev, P. Gaczynski, I.P. Marozau, A.A. Yaremchenko, A.L. Shaula, V.V. Samakhval. J. Solid State Chem. **179**, 1273 (2006).
- [28] V.V. Kharton, M.V. Patrakeev, J.C. Waerenborgh, A.V. Kovalevsky, Y.V. Pivak, P. Gaczyński, A.A. Markov, A.A. Yaremchenko. J. Phys. Chem. Solids 68, 355 (2007).
- [29] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos. Mater. Lett. 10, 6 (1990).
- [30] E.V. Tsipis, E.A. Kiselev, V.A. Kolotygin, J.C. Waerenborgh, V.A. Cherepanov, V.V. Kharton. Solid State Ionics 179, 2170 (2008).
- [31] O. Mitrofanov, M. Manfra. J. Appl. Phys. 95, 11, 6414 (2004).

Редактор Д.В. Жуманов