Оптические и теплофизические свойства твердых растворов CuAl_xIn_{1-x}Te₂

© И.В. Боднарь¶

Белорусский государственный университет информатики и радиоэлектроники, 220072 Минск, Белоруссия

(Получена 22 января 2003 г. Принята к печати 28 января 2003 г.)

Впервые изучены оптические и теплофизические свойства кристаллов твердых растворов CuAl_xIn_{1-x}Te₂, выращенных методом Бриджмена. По спектрам пропускания и отражения в области края собственного поглощения для соединений CuInTe₂, CuAITe₂ и их твердых растворов определена ширина запрещенной зоны (E_g) и построена ее концентрационная зависимость. Установлено, что E_g с увеличением x изменяется нелинейно и описывается квадратичной зависимостью. Дилатометрическим методом изучено тепловое расширение твердых растворов. Показано, что в области фазовых превращений коэффициент теплового расширения (α_L) имеет λ -образный вид. Построены изотермы концентрационной зависимости α_L . Исследована теплопроводность, и построена ее концентрационная зависимость. Установлено, что зависимость теплопроводности от x имеет минимум в области средних составов.

1. Введение

Теллуриды CuInTe₂ и CuAITe₂ относятся к большому классу тройных соединений I–III–VI₂, которые кристаллизуются в структуре халькопирита (пространственная группа $D_{2d}^{12} - I42d$) [1]. Эти соединения характеризуются прямыми межзонными переходами и коэффициентом оптического поглощения > 10^4 см⁻¹, что делает их перспективными материалами для изготовления солнечных элементов, приборов нелинейной оптики и поляризационной электроники. Свойства этих соединений к настоящему времени исследованы достаточно хорошо [2–7], в то же время сведения о свойствах твердых растворов на основе соединений CuInTe₂ и CuAITe₂ в литературе отсутствуют вообще.

В данной работе впервые представлены результаты исследования оптических и теплофизических свойств твердых растворов CuAl_xIn_{1-x}Te₂.

2. Экспериментальная часть

Тройные соединения CuAlTe₂, CuInTe₂ и твердые растворы CuAl_xIn_{1-x}Te₂ выращивали методом Бриджмена (горизонтальный вариант), используя для этого диаграмму состояния системы CuInTe2-CuAlTe2 [8]. Металлические компоненты (в графитизированной кварцевой лодочке) и теллур находились в разных частях вакуумированной кварцевой ампулы. Ампулу размещали в двухзонной горизонтальной печи. Температуру зоны с металлическими компонентами устанавливали на 20-40 К выше температуры плавления соединения или температуры ликвидуса соответствующего твердого раствора. Температуру зоны, где находился теллур, повышали со скоростью $\sim 100 \,\text{K/y}$ до $1000 - 1100 \,\text{K}$ и выдерживали в течение 3 ч для протекания реакции между металлическими компонентами и парами теллура. По истечении указанного времени проводили направленную кристаллизацию расплава, уменьшая температуру со скоростью $\sim 2 \text{ K/ч}$. Для гомогенности полученных сплавов их отжигали при 950 К в течение 720 ч. Полученные после отжига слитки были крупноблочными со средними размерами отдельных блоков 5 $\times 4 \times 3 \text{ мм}^3$.

Состав и гомогенность твердых растворов определяли рентгеновским методом (ДРОН-3М, CuK_{α} -излучение, никелевый фильтр). На всех снятых дифрактограммах присутствовала система линий, соответствующая структуре халькопирита, в которой кристаллизуются исходные соединения CuAlTe₂ и CuInTe₂. Разрешение высокоугловых линий на дифрактограммах свидетельствует о гомогенности выращенных кристаллов. Состав твердых растворов определяли исходя из выполнения в системе CuInTe₂–CuAlTe₂ закона Вегарда с точностью $\pm 1 \mod [8]$.

3. Результаты и их обсуждение

На полученных кристаллах CuAlTe₂, CuInTe₂ и твердых растворах CuAl_xIn_{1-x}Te₂ проведены исследования спектров пропускания и отражения в области края собственного поглощения. Спектры регистрировали на спектрофотометре Beckman-5240 в области длин волн 0.5-2.0 мкм при 80 и 293 К. Для измерений из выращенных кристаллов вырезали монокристаллические блоки, которые механически шлифовали и полировали с двух сторон до толщин ~ 20 мкм. Непосредственно перед измерениями образцы подвергали обработке в травителе состава Br₂: C₂H₅OH = 1:3.

По спектрам пропускания (T) и отражения (R) рассчитывали коэффициент поглощения (α) по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце

$$\alpha = (1/d) \ln \left\{ (1-R)^2 / 2T + \sqrt{\left[(1-R)^2 / 2T \right]^2 + R^2} \right\}, \quad (1)$$

где *d* — толщина образца, коэффициент отражения *R* для разных составов равен 0.25–0.27.

[¶] E-mail: chemzav@gw.bsuir.unibel.by

Известно, что соединения $A^{I}B^{III}C_{2}^{VI}$ являются материалами с прямыми межзонными переходами, поэтому ширину запрещенной зоны (E_{g}) как для тройных соединений, так и для их твердых растворов определяли экстраполяцией прямолинейного участка зависимости ($\alpha\hbar\omega$)² от энергии фотона ($\hbar\omega$) до пересечения с осью обсцисс.

На рис. 1 представлены указанные зависимости при 80 и 293 К. Они имеют ярко выраженные прямолинейные участки, что свидетельствует (как и рентгеновские данные) о гомогенности и однородности выращенных кристаллов.

Значения энергий Eg для исходных соединений равны: (0.97 ± 0.01) 3B (293 K) (1.00 ± 0.01) \Rightarrow B (80 K) И CuInTe₂, (2.06 ± 0.01) 9B (293 K) для и (2.18 ± 0.01) эВ (80 K) для CuAlTe₂. Температурные коэффициенты ширины запрещенной зоны: $\partial E_g / \partial T =$ $= 1.4 \cdot 10^{-4}$ эВ/К для CuInTe₂ и 5.6 $\cdot 10^{-4}$ эВ/К для CuAlTe₂. На рис. 1, с представлены концентрационные зависимости E_g для твердого раствора CuAl_xIn_{1-x}Te₂. Как видно, Eg с x изменяется нелинейно, что свойственно твердым растворам, образованным тройными соединениями $A^{I}B^{III}C_{2}^{VI}$ [9–12].

Для объяснения отклонения $E_g(x)$ от линейности в настоящее время используют два приближения: диэлектрическая модель и модель псевдопотенциала [13–15]. Первая из моделей основывается на том, что определяющую роль в отклонении E_g от линейности в твердых растворах играют флуктуации кристаллического потенциала, вызванные хаотическим расположением замещающих атомов. Вторая — отклонение есть следствие свойств кристаллического поля.

Для описания $E_g(x)$ нами использована квадратичная зависимость следующего вида:

$$E_g(x) = E_g(1) + [E_g(2) - E_g(1) - c]x + cx^2, \quad (2)$$

где $E_g(1)$ и $E_g(2)$ — ширина запрещенной зоны CuInTe₂ и CuAITe₂ соответственно, c — параметр нелинейности, характеризующий степень отклонения E_g от линейной зависимости для x = 0.5 и определяемый из выражения

$$c = 2[E_g(1) + E_g(2)] - 4E_g(x = 0.5).$$
(3)

Рассчитанные значения ширины запрещенной зоны для твердых растворов по выражению (2) показаны на рис. 1, *с* сплошными линиями. Видно, что между расчетными и экспериментальными величинами имеется хорошее согласие.

Концентрационные зависимости $E_g(x)$ при 80 и 295 К для твердых растворов CuAl_xIn_{1-x}Te₂ описываются следующими функциями:

$$E_g^{80}(x) = 1.00 + 0.74x + 0.44x^2,$$

$$E_g^{295}(x) = 0.97 + 0.59x + 0.50x^2.$$
 (4)

На кристаллах тройных соединений CuInTe₂, CuAITe₂ и твердых растворов CuAl_xIn_{1-x}Te₂ исследованы температурные зависимости коэффициентов теплового расширения α_L . Исследования проводились на кварцевом дилатометре [16]. Измерение температурной зависимости

Рис. 1. Спектральные зависимости коэффициента поглощения в виде функции $(\alpha \hbar \omega)^2$ от $\hbar \omega$ при 80 (*a*) и 293 K (*b*) и концентрационные зависимости ширины запрещенной зоны $E_g(x)$ (*c*) при 80 (*I*), 293 K (*2*) для твердых растворов CuAl_xIn_{1-x}Te₂.

Физика и техника полупроводников, 2003, том 37, вып. 11

Рис. 2. Температурные зависимости коэффициента теплового расширения для твердых растворов $CuAl_x In_{1-x} Te_2$, x = 0.0 (1), 0.1 (2), 0.2 (3), 0.4 (4), 0.7 (5), 1.0 (6).

относительного удлинения ($\Delta l/l$) проводили на образцах размерами $3 \times 3 \times 8 \text{ мм}^3$. Коэффициент теплового расширения α_L рассчитывали по формуле, приведенной в [16]. Температуру измеряли хромель-алюмелевой термопарой. Погрешность измерений не превышала 5%. Во избежание окисления образцов измерения проводили в атмосфере инертного газа. Скорость нагревания составляла 3-5 K/мин.

На рис. 2 представлены температурные зависимости коэффициентов теплового расширения α_L для соединений CuInTe₂, CuAITe₂ и твердых растворов CuAl_xIn_{1-x}Te₂. Видно, что как для тройных соединений, так и для твердых растворов на их основе α_L линейно растет с увеличением температуры в интервале T = 80-290 К. Затем рост α_L замедляется вплоть до температуры фазового превращения. В области фазового превращения происходит λ -образное изменение коэффициента теплового расширения.

Таким образом, по данным дифференциального термического анализа [8] и экспериментальной зависимости $\alpha_L = f(T)$ можно заключить, что наблюдаемые в твердых растворах CuAl_xIn_{1-x}Te₂ с $0 \le x \le 0.5$ превращения являются фазовыми переходами первого рода, поскольку осуществляются они с тепловыми эффектами. Однако, в отличие от типичных фазовых переходов первого рода, которые происходят при постоянной температуре, эти превращения близки к фазовым переходам второго рода, так как происходят в интервале температур с λ -образным изменением α_L . С другой стороны, известно, что в тройных соединениях $A^{I}B^{III}C_2^{VI}$ возможны два типа фазовых превращений [17], обусловленных катион–катионным и катион–анионным разупорядочением. В [18] высокотемпературными рентгеновскими исследованиями было показано, что указанные тройные соединения в результате катион-катионного разупорядочения претерпевают переход из структуры халькопирита в структуру сфалерита. По аналогии с тройными соединениями $A^{I}B^{III}C_2^{VI}$ можно предположить, что такие же превращения характерны и для твердых растворов $CuAl_xIn_{1-x}Te_2$ с $0 \le x \le 0.5$ (переход из структуры халькопирита в структуру сфалерита).

Физическую сущность происходящих твердофазных превращений в исследуемых веществах можно представить следующим образом. При катион-катионном разупорядочении, которое осуществляется в интервале температур 10-30 К, атомы в катионной подрешетке обмениваются местами. До тех пор пока вероятность нахождения катионов в различных узлах не одинакова, эти узлы остаются не эквивалентными, структура не меняется и остается прежней (халькопирит). Когда эти вероятности сравниваются и все узлы в катионной подрешетке становятся эквивалентными, структура халькопирита переходит в структуру сфалерита, а симметрия кристалла повышается. Для подтверждения сказанного была проведена закалка кристаллов (погружением в жидкий азот) как тройного соединения CuInTe₂, так и твердых растворов $CuAl_xIn_{1-x}Te_2$, нагретых выше температуры фазовых превращений, соответствующих катион-катионному разупорядочению. Ни для одного из этих веществ не удалось обнаружить высокотем-

Рис. 3. Концентрационные зависимости коэффициента теплового расширения для твердых растворов $\text{CuAl}_x \text{In}_{1-x} \text{Te}_2$ при 80 (1), 300 (2) и 900 K (3).

пературную модификацию, соответствующую структуре сфалерита. Это также указывает на близость фазовых превращений к фазовым переходам второго рода, поскольку для таких переходов невозможно существование явлений перегрева или переохлаждения.

На рис. З представлены изотермы концентрационной зависимости коэффициентов теплового расширения. Видно, что α_L линейно увеличивается с ростом содержания в твердых растворах атомов индия.

Полученные экспериментальные значения температур плавления (для соединений), температур ликвидуса (для твердых растворов) и коэффициентов теплового расширения были использованы для расчета характеристических температур Дебая (Θ) и среднеквадратичных динамических смещений атомов ($\sqrt{u^2}$) (параметры, позволяющие судить об особенностях межатомного взаимодействия) по следующим соотношениям [19,20]:

$$\Theta^{\alpha_L} = 14.3/\alpha_L^{1/2} \bar{A}^{1/2} V^{1/3}, \tag{5}$$

$$\Theta^{T_m} = 137 \cdot T_m / \bar{A}^{1/2} V^{1/3}, \tag{6}$$

$$\overline{u^2} = 4.3 \cdot 10^{-14} [D(\Theta/T)/(\Theta/T) + 1/4] / \overline{A}\Theta,$$
 (7)

где Θ^{α_L} , Θ^{T_m} — температуры Дебая, определенные по коэффициенту теплового расширения и температуре плавления, \bar{A} — средняя атомная масса, V — средний атомный объем, T_m — температура плавления, $D(\Theta/T)$ — функция Дебая.

Результаты расчетов представлены в таблице, из которой видно, что с увеличением содержания в твердых растворах атомов индия температура Дебая уменьшается, а среднеквадратичные динамические смещения атомов в кристаллической решетке растут. Такое поведение указанных величин свидетельствует об ослаблении химической связи в твердых растворах $CuAl_x In_{1-x} Te_2$ с ростом концентрации атомов индия.

Теплопроводность (χ) указанных соединений и их твердых растворов измеряли абсолютным стационарным методом [21] в интервале температур T = 300-700 К на образцах, размеры которых указаны выше. Точность измерений ~ 6%. Температурная зависимость χ для исследуемых материалов приведена на рис. 4, *a*. Теплопроводность тройных соединений в интервале 300–400 К изменяется пропорционально T^{-1} , что характерно для трехфононных процессов рассеяния. Полученный разультат

Температуры Дебая и среднеквадратичные динамические смещения атомов для тройных соединений CuAlTe₂, CuInTe₂ и твердых растворов CuAl_xIn_{1-x}Te₂

x	<i>Ā</i> , г	<i>V</i> , см ³	Θ^{α_L}, K	Θ^{T_m}, \mathbf{K}	$\sqrt{u^2}$, Å
1.0	86.43	16.37	204	200	0.190
0.7	93.02	16.69	191	188	0.197
0.5	97.10	17.04	181	179	0.202
0.4	99.61	17.22	176	176	0.205
0.2	104.00	17.48	169	170	0.208
0.1	106.20	17.66	166	166	0.212
0.0	108.39	17.81	163	165	0.214

Рис. 4. Температурные (a) и концентрационная (b) зависимости теплопроводности для твердых растворов CuAl_xIn_{1-x}Te₂.

согласуется с теорией Паерлса, согласно которой при температурах выше температуры Дебая χ должна быть обратно пропорциональна температуре [22]. При этом имеет место фонон-фононное рассеяние, при котором происходит обмен энергией между тремя фононами (трехфононные процессы). В результате таких процессов один фонон аннигилирует и появляются два новых, или два фонона аннигилируют и рождается третий. При более высоких температурах χ описывается выражением вида $\chi \propto T^{-n}$, где 0 < n < 1, что указывает на преобладание при таких температурах процессов рассеяния на примесях и дефектах кристаллической решетки. Следствием этого является слабая зависимость χ от температуры. В твердых растворах для теплопроводности во всем интервале температур наблюдается степенная зависимость $\chi \propto T^{-n}$, что свидетельствует о преимущественном протекании процессов рассеяния на дефектах кристаллической решетки.

На рис. 4, *b* приведена концентрационная зависимость теплопроводности для твердых растворов CuAl_xIn_{1-x}Te₂. Видно, что зависимость χ от *x* имеет минимум, который приходится на состав, близкий к эквимолярному. Такое поведение χ (значительное снижение χ для твердых растворов по сравнению с исходными соединениями) связано с нарушениями периодичности кристаллической решетки в твердых растворах из-за статистического распределения атомов по эквивалентным узлам.

Известно, что, хотя в твердых растворах атомы в кристаллической решетке занимают правильное положение в узлах, порядок расположения атомов разных сортов в ней не соблюдается. Вследствие этого массы атомов и силовые постоянные беспорядочно меняются от узла к узлу, что приводит к рассеянию фононов. В связи с этим твердые растворы можно рассматривать как переходные вещества между кристаллическим состоянием (сохранение кристаллической решетки) и аморфным (из-за наличия беспорядка в расположении атомов). Для твердых растворов максимальное разупорядочение соответствует средним составам, поэтому и теплопроводность для них минимальна.

4. Заключение

Методом Бриджмена (горизонтальный вариант) выращены крупноблочные кристаллы тройных соединений CuAlTe₂, CuInTe₂ и твердых растворов CuAl_xIn_{1-x}Te₂. По спектрам пропускания и отражения в области края собственного поглощения определена E_g для указанных соединений и их твердых растворов. Установлено, что E_g с содержанием Al x изменяется нелинейно. Исследовано тепловое расширение и теплопроводность указанных материалов. Установлено, что коэффициент теплового расширения α_L с x изменяется линейно, теплопроводность имеет минимум в области средних составов.

Список литературы

- [1] Н.А. Горюнова. Сложные алмазоподобные полупроводники (М., Химия, 1968).
- [2] M. Iqbol, J. Galibert, S.M. Wasim, E. Hernandez, P. Bocaranda, J. Leotin. Phys. St. Sol. (b), 219, 351 (2000).
- [3] S. Roy, P. Guha, S. Chaudhuri, A.K. Pal. Phys. St. Sol. (a), 189 (1), 209 (2002).
- [4] И.В. Боднарь. ЖНХ, 46, 655 (2001).
- [5] В.Ю. Рудь, Ю.В. Рудь, В.Ф. Гременок, И.А. Викторов, Р.Н. Бекимбетов, И.В. Боднарь, Д.Д. Криволап. ФТП, 33, 824 (1999).
- [6] В.М. Глазов, М.С. Миргаловская, Л.А. Петракова. Изв. АН СССР. Отд. техн. наук, 7, 68 (1957).
- [7] H. Miyake, M. Hibi, K. Sugiyama, K. Hiramatsu. Jap. J. Appl. Phys., **39**, Suppl. 39-1, 54 (2000).
- [8] И.В. Боднарь. ЖНХ, 47, 1038 (2002).
- [9] S. Shirakata, S. Chichibu, R. Sudo, A. Ogawa, S. Matsumoto. Jap. J. Appl. Phys., 32, L1304 (1993).
- [10] S. Shirakata, A. Ogawa, S. Isomura, T. Kariya. Jap. J. Appl. Phys., **32**, Suppl. 32-3, 588 (1993).
- [11] И.В. Боднарь, В.А. Иванов, В.А. Гайсин. Опт. и спектр., 82, 43 (1997).
- [12] K. Yoshino, N. Mitani, M. Sugiyama, S. Chichibu, H. Komaki, T. Ikari. Physica B, **302–303**, 349 (2001).

- [13] J.A. Van-Vechten, T.K. Bergstresser. Phys. Rev. B, 1, 3351 (1970).
- [14] R. Hill, D. Richardson. J. Phys. C, 6, L115 (1973).
- [15] R. Hill. J. Phys. C, 7, 521 (1974).
- [16] С.И. Новикова. Тепловое расширение твердых тел (М., Наука, 1974).
- [17] Л.С. Палатник, В.М. Кошкин, Л.П. Гальчинецкий. ФТТ, 4, 2365 (1962).
- [18] J.J.M. Binsma, L.J. Giling, J. Bloem. Phys. St. Sol. (a), 63, 595 (1981).
- [19] И.В. Боднарь, Б.В. Корзун, А.П. Чернякова. Phys. St. Sol. (a), 101, 409 (1987).
- [20] И.Н. Францевич. Вопросы порошковой металлургии и прочности металлов (Киев, Наук, думка, 1956).
- [21] Б.М. Могилевский, А.Ф. Чудновский. Теплопроводность полупроводников (М., Наука, 1972).
- [22] Р. Пайерлс. Квантовая теория твердых тел (М., Иностр. лит., 1956).

Редактор Л.В. Шаронова

Optical and thermophysical properties of $CuAl_x In_{1-x} Te_2$

I.V. Bodnar

Belorussian State University of Informatics and Radioelectronics, 220072 Minsk, Belarus