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Mode bistability of plasmons and dispersive jump in a structure
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Plasmon modes in a symmetric structure consisting of two layers of inverted graphene separated by a dielectric

barrier layer and their dispersion properties are studied for various parameters of the barrier layer. The occurrence

of a bifurcation of the splitting of the branch of the dispersion dependence, which leads to the appearance of

bistability and a dispersion jump with a change in the stability of the branches included in the bistability, is found.

The plasmonic modes belonging to the two branches of the bistable state differ in the gain increment and phase

velocity, and their group velocities are opposite in sign.
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1. Introduction

Graphene and various structures based thereon have

been recently considered as one of the most promising

photonics materials. Retardation and control of dispersion

characteristics of the waves, its phase and group velocity can

be performed in the said structures by external electric and

magnetic fields and the temperature as well. At terahertz

frequencies, the graphene-based structures have a strong

plasmon response due to unique electronic and optical

properties of graphene, which are correlated to a zero-gap

linear energy spectrum of charge carriers [1–12]. Generation
of plasma waves in the graphene structures allows concen-

trating the electromagnetic field near graphene layers and

substantially increasing efficiency of its interaction with the

structure.

The papers [13–17] have shown that the THz radiation

may be enhanced by graphene with inverted distribution

of the charge carriers (electrons and holes). When optical

pumping is at a certain threshold value, the inversion of

the charge carriers in graphene results in negative high-

frequency conductivity [18]. The presence of negative

differential conductivity may lead to stimulated generation

of the THz plasmons in graphene [19]. In the structure

consisting of two parallel graphene layers, which are divided

by a thin dielectric barrier layer, the electromagnetic fields

propagating in these layers of plasmons interact with each

other, thereby leading to generation of a single plasmonic

mode [20–24].

The present paper studies the gaining plasmonic modes

in the symmetrical structure with two graphene layers at

different parameters of the barrier layer. Construction

and analysis of dispersion dependences of antisymmetric

plasmonic modes made it possible to detect bifurcation

of splitting of a dispersion branch, thereby resulting in

modal bistability and a dispersive jump, which occurs

when stability of bistable states changes. Conditions of

implementation of this effect have been revealed.

2. Initial equations

Let us consider a planar symmetric structure consisting of

two monolayers of inverted graphene, which are divided by

the dielectric barrier layer d thick and covered by dielectric

liners. Dielectric permittivities (DP) of the barrier layer εb

and the liners εc do not depend on the frequency and are

real values. The graphene layers have the same inversion of

population of vacant charge carriers created, which can be

provided by symmetric direct or diffusive pumping of each

of the graphene layers [25,26]. For inverted distribution

of the charge carriers, a surface dynamic distribution of

graphene is determined using the expression [18,27,28]:

σ (ω)
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8kBTτ
π~(1 − iωτ )

ln

[

1 + exp

(
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kBT

)]

+ tanh
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4kBT
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iπ

∞
∫
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G(ε, EF)−G(~ω/2, EF)
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(1)
where the function

G(ε, EF) =
sinh(ε/kBT )

cosh(ε/kBT ) + cosh(EF/kBT )
.

Here σ0 = e2/4~, e — the elementary charge, ~ — Planck

constant, kB — Boltzmann constant, τ — time of dissipation
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of the charge carriers, ±EF — quasi Fermi levels, which

define an inversion value of the charge carriers (electrons
and holes) at the temperature T . The first summand in (1)
characterizes intraband dissipative (Drude’s) absorption in

graphene as defined by the time τ . The second summand

characterizes interband transitions of the charge carriers

in graphene. The presented expression does not include

spatial dispersion of the conductivity. This is justified by the

fact that the main interest of this study includes plasmons

with low values of wave vectors and frequencies. This

approximation was also used in other papers dedicated to

similar structures [9,23,28].
Next, we will investigate a case in which TM-type waves

propagate in the symmetric graphene structure. Let us

represent a spatial& time dependence of magnetic and

electric components of the single plasmon field in the three

structure regions with the following equations:

Hz (t, x , y) = exp[i(ωt − kx x)]Hz (y),

Hz (y) =

{

Ac exp(kcy |y |), |y | > d/2,

A−

b exp(−kby y) + A+
b exp(kby y), |y | < d/2,

(2)

Ex = −
1

ik0εb

∂Hz

∂y
, Ey =

1

ik0εb

∂Hz

∂x
, (3)

where kx — plasmon propagation constant (PC), k0 = ω/c ,
ω and c — frequency and speed of light in vacuum. For

polaritons localized at the boundaries of the barrier layer

(i.e. at the graphene sheets), transverse components of

the wave vector in each of the media are represented as

k jy =
√

k2
x − ε jω2/c2, where j = b, c means the barrier

layer and liners.

In order to find a dispersion equation of the waves

propagating in the structure, it is necessary to supplement

the relationships for the fields (2,3) with the following

boundary conditions

Ecx = Ebx , Hcz − Hbz = ±
4π

c
σEcx (y = ±d/2). (4)

Equating a determinant of the equation system (4) to zero,

we come to the dispersion equation, which was obtained

earlier in the paper [22]

tanh(kby d) = −
2ψ

1 + ψ2
, ψ =

kby

εb

(

εc

kcy
+ i

4πσ

ω

)

. (5)

Taking into account complex nature of parameters in this

equation, it defines dependence of a PC real and imaginary

part on the wave frequency. The equation (5) is split into

two equations:

tanh(kyb d/2) = −1/ψ, tanh(kyb d/2) = −ψ. (6)

We name the modes, corresponding to the equation (6),
symmetric ones (as per the paper [22]), while those

corresponding to the equation (7) — antisymmetric ones.

In accordance with the distribution Ex — a component

of the electric field of the TM-waves of the plasmons,

which is tangential to the graphene layers relative to a

structure reflection plane — this component is symmetric

and antisymmetric for the corresponding modes. Below, we

present results of numerical analysis of the equation for the

antisymmetric plasma modes as obtained at the following

values of the parameters: εc = 1, T = 300K, τ = 1 ps.

3. Calculation of dispersion
dependences

The frequency dependence of the graphene conductiv-

ity (1) includes both dissipation mechanisms — Drude’s

intraband dissipative absorption and interband dissipation

due to generation and recombination of electron-hole pairs.

The Fig. 1 shows the dependence of the real and imaginary

part of the conductivity on the frequency at the quasi-Fermi

level’s energy EF = 10, 30, 50, 70meV (the curves 1−4). It
is clear that the real part of the conductivity may be negative

in a quite wide region of the terahertz range. Due to the

radiative interband transitions in the said frequency region,

the energy exceeds its total losses in graphene. The real part

of the conductivity is positive outside this region (which

corresponds to a mode of absorption in graphene), as at

lower frequencies the intraband dissipative losses prevail,

while at higher frequencies an energy quantum exceeds the

double quasi-Fermi level’s energy in the second summand

of the formula (1). The imaginary part of the conductivity

accounted for resonance frequencies of plasma oscillations

in graphene is steadily changing in the whole frequency

range under consideration.
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Figure 1. Dependence of the normalized real and imaginary

part of the conductivity of the inverted graphene on the radiation

frequency at the quasi-Fermi level’s energy value EF = 10, 30, 50,

70meV (1−4).
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Figure 2. Dependences of plasmon PC components on the fre-

quency at EF = 50, 70meV (a, b) and εb = 10 for the thicknesses

d = 10, 20, 30, 40, 50 nm (1−5).

Next, we will consider the dependence of the real and

imaginary plasmon PC part on the frequency. The Fig. 2

shows a general view of the dependences k ′

x (ω) and

k ′′

x (ω), which were obtained for the following values of the

structure parameters: EF = 70meV, εb = 10, d = 10, 20,

30, 40, 50 nm (the curves 1−5). It is clear from the figure

that at EF = 50meV the dispersion dependences k ′

x(ω)
have a single maximum and are similar to those obtained for

TM modes in the previous studies [10,20]. The situation is

different at EF = 70meV: for quite small thicknesses of the

barrier layer (d < 50 nm) there is also an evident additional

maximum (besides the prominent maximum of the PC real

part) to be followed by a substantial decrease in PC (to
values smaller in order) and its abrupt increase thereafter.

The presented figure (and hereinafter as well) depicts all

numerically obtained solutions with blue dots (which are

usually to be visually merged into a continuous line), while

a line connecting the dots is red — in this way, it makes

presence and absence of skipping more visible. The PC

imaginary part is also undergoing an abrupt change at the

same time. Note that in the case under consideration k ′′

x is

negative, i.e. the structure plasmons are undergoing gaining.

With the increase in the barrier layer’s thickness, the jump is

shifting to the region of lower frequencies with decrease in

its amplitude at the same time. And at quite big thicknesses

(depending on EF and εb, as the calculations demonstrate)
the dispersive jump is disappearing.

4. Bifurcation of the dispersion
dependence and bistability

Despite the above solution is only for the equation of

antisymmetric modes (7), the inconsiderate opinion makes

the impression that the dispersive jump is attributed to the

skipping between the different modes, whose dispersion

curves approach closely to each other near the jump (the
background thereof can be exemplified by roots and hy-

perbolic functions of a complex argument in the dispersion

equation). Let us investigate in more detail a region of

parameters near values corresponding to occurrence of the

dispersive jump. The Fig. 3 shows the dependences k ′

x(ω)
and k ′′

x (ω) at EF = 70meV, εb = 10 for d = 44, 43, 42, 41,

40, 39, 38, 37.5, 37, 36.5, 36 nm (the curves 1−11) —
note that refinement of occurrence of the jump, as such,

should predominantly focused on a mathematical aspect of

the issue, rather than implementability of all selected values

of the parameters.

It is clear from the figure that for the curve 1 no jump

is observed, but for the curves 9−11 the dependence

k ′

x(ω) starts smoothly decreasing before the jump, with the

corresponding increase of the dependence k ′′

x (ω). In other

cases, there are two main jumps: the dependences go away

to another branch of solutions and return to an original

branch, and with decrease of d, sections for implementation

of the second branch are increasing at the same time. It

should be noted that some sections have the red lines of the

skipping thickened. It results from several closely adjacent

skips due to bistability, i.e. one of the two solutions is

implemented at the same parameters with the approximately

equal probability.

Let us consider a progress of these dependences in more

detail. The Fig. 4 marks out with blue color the increasing

dependences k ′

x(ω) of one branch of the solutions (and
the respective decreasing dependences k ′′

x (ω)), while the

decreasing k ′

x (ω) (and increasing k ′′

x (ω)) dependences, cor-

responding to presumably another branch of the solutions —
to which it comes off — are marked with green color. It is

clear, however, that for the curves 8 and 9 the blue branches
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Figure 3. Dependences of plasmon PC components at

EF = 70meV, εb = 10 for d = 44, 43, 42, 41, 40, 39, 38, 37.5,

37, 36.5, 36 nm (the curves 1−11) — the numeric solutions are

depicted with blue dots connected by red lines.

continuously go into the green ones, and they skip again to

the blue branch at the end thereof! Thus, we are dealing

not with two initially different branches of the solutions,

but with bifurcation, at which one branch of the dispersion

dependence is split into two branches of different stability

and different probability of implementation, respectively

(while in narrow regions, which have evident
”
thick red

lines“ on the figure, these probabilities are approximately

equal). It is obvious that the splitting bifurcation occurs

within a region of a changing dependence progress, i.e.

where a section close to the linear dependence ends. The

Figure (a) indicates with a dotted curve 3
′ an approximate

location of a branch unstable in a parametric space, which

is occurring after the bifurcation (whose stability then

changes). This situation is quite common in synergistic

effects [29]. Discussing the process physics, we can

state the following. In the two-layer graphene system

under consideration, there is a situation, in which under

a changing parameter the dispersion relationship derived

based on the boundary conditions begins to be met with

two combinations of the numbers k ′

x and k ′′

x instead of

one thereof — two modes occur differing in the PC real

and imaginary part. As the dependence branches can be
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Figure 4. Occurrence of the modal bistability depending on the

real and imaginary (a, b) plasmon PC components at EF = 70meV,

εb = 10, d = 44, 43, 42, 41, 40, 39, 38, 37, 36 nm (the
curves 1−9).
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Figure 5. Dependences of PC components of the symmetric

plasmon modes on the frequency at EF = 70meV and εb = 10 for

the thicknesses d = 10, 30, 50 nm (1−3).

considered attractors with a different region of attraction,

real systems having parameter fluctuations will have one

mode related to a more stable branch out of the two

modes corresponding to the bistability implemented (the
numerical simulation reflects the specifics of the real process

in this sense). If the system parameters are changing, then

the stability of the bistability-related branches is changing,

thereby leading to the evident dispersive jumps.

Additional studies have demonstrated that there is nei-

ther bifurcation, nor dispersive jumps in the dispersion

dependence of the plasmon symmetric modes (6) under the
parameters under consideration. The Fig. 5 shows the de-

pendences of the PC components of the symmetric plasmon

modes on the frequency at EF = 70meV and εb = 10 for

the thicknesses d = 10, 30,50 nm (the curves 1−3). The

bifurcation of the dispersion dependence is essentially a

synergistic effect present in the multi-layer structure under

consideration. Thus, it is quite sensitive both to changing of

parameters and a form of the equations under consideration.

5. Dependences on the thickness
of the barrier layer

The dispersive jumps due to bistability occurred are

also in the PC dependences on a refraction index or

a thickness of the barrier layer. The respective split-

ting bifurcation of the plasmon dispersion branch occurs

within a limited frequency range and at a quite big DP

(εb > 9). The Fig. 6 shows the dependence of the

real and imaginary plasmon PC component on d at the

frequencies ω = (0.8, 1.0, 1.2, 1.4, 1.6, 1.8) · 1014 s−1 (the

curves 1−6) for the parameters of the barrier layer and

graphene εb = 10, EF = 70meV. Increase in DP εb and

the quasi-Fermi level energy leads to an extended interval

of the barrier layer thicknesses, in which the jump of the

dispersion dependences is implemented and to shifting its

boundary to bigger d . The presented figure also shows

that in all the cases the jump is before the dependences

are constant, when mutual influence of the graphene layers

becomes very small. It can be concluded that there is

no effect under consideration in the systems with one

graphene layer.

As in the previous section, let us consider occurrence of

the dispersive jump and its disappearance. For εb = 10
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1.8) · 1014 s−1 (the curves 1−6).
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Figure 7. Dependence of the real PC plasmon com-

ponent on the barrier layer thickness at the frequen-

cies ω = (1.705÷ 1.76) · 1014 s−1 (a, the curves 1−12) and

ω = (0.84÷ 0.91) · 1014 s−1 (b, the curves 1−15); εb =10,

EF =70meV.

and EF = 70meV, the Fig. 7 shows the dependence of

the real plasmon PC component on d at the frequencies

ω = (1.705 ÷ 1.76) · 1014 s−1 (a, the curves 1−12 —

in equal 1ω) and ω = (0.84 ÷ 0.91) · 1014 s−1 (b, the

curves 1−15 — in equal 1ω). The Fig. (a) shows evident

occurrence of the splitting bifurcation of the dispersion

branch when the frequency is decreasing. At the same

time, first the lower branch (with lesser k ′

x) turns out to be

unstable. However, further decrease in the frequency leads

to changing of stability of the branches and an extended

interval, at which only the lower branch becomes stable.

In each case, there is a critically low value k ′

x , after which

the lower branch loses stability and it jumps to the upper

branch of the dispersion bistability. (Some sections of the

dispersion dependences, which are unstable in a parametric

space, are shown in a dashed line.) The Fig. b shows evident

reverse bifurcation: when the frequency is decreasing, the

two dispersion branches merge into one and the jump

disappears. Note that the presented figure also has evident

narrow sections (with thickened red lines), at which both

branches of the dispersion bistability have near stability and

are implemented with approximately equal probability. At

the same time, the plasmonic modes related to different

branches making up the bistability have a different gain

increment and different phase and group velocities as well.

In the conclusion, note that the structure with doped

graphene layers, in which the conductivity is determined

using the formula as applied in the papers [27,31], was

studied to demonstrate that there is also the bifurcation

in the dispersion dependence in them, but at other values

of the quasi-Fermi level. In particular, the structure with

inverted graphene has the bifurcation and the respective

bistability implemented at EF = 70, 90meV, whereas for

doped graphene — at EF = 50, 70meV. For passive

graphene, there is also the evident splitting bifurcation at

the considered thicknesses of the barrier layer (however,
in order to compare the dispersion at the said states of

the structures, additional special studies are required). It

means than this effect is somewhat general and observed in

different states of the structure, uncritically depending on

specific values of the graphene conductivity.

No detection of the presented effects in the previous stud-

ies of the similar structures [10,20,22,30] may be attributed

to the fact that they are only in certain intervals of parameter

values. Moreover, with a quite big step of parameter

variation the specifics of the dispersion dependencies under

consideration can be regarded as defects in numerical

analysis.

6. Conclusion

For the plasmonic modes in the two-layer graphene

structure the numerical analysis of the dispersion equation

has demonstrated that at the quasi-Fermi level’s energy

EF ≥ 60meV and a quite thin barrier layer (d ≤ 50 for

εb > 10) there was the modal bistability and the dispersive

jump of the real and imaginary plasmon PC part. This effect

is caused by implementing the bifurcation of separation of

one branch of the solutions to two branches, i.e. when

the dispersion equation begins to be met with two sets

of complex PC components. In the bistability occurred,

usually, only one of the branches is stable (the unstable

branch should also meet the dispersion equation, but

because of a very narrow
”
region of attraction“ in the

parametric space it can not be virtually obtained numerically

or experimentally). However, under a changing parameter
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the stability of the branches changes and the region, in

which the second branch limited by a minimum value of

the real PC component becomes stable, is extended. When

it is at that value, the stability returns to the first branch. In

doing so, narrow parameter regions were detected, in which

both branches included in the bistability are stable, i.e. in

practice, both plasmonic modes will occur at approximately

equal probability, differing in the gain increment, the phase

velocity and having a different sign of their group velocities.

The reverse bifurcation of joining two dispersion branches

to one is also revealed.

The dispersive jump region has the following values

therein k ′

x ∼ 0.1Mm−1, and 1k ′

x ∼ 10Mm−1. At the

same time, the imaginary PC components remains neg-

ative k ′′

x ∼ −10Mm−1, and, therefore, plasmon gaining

is implemented. The increase in the Fermi energy and

the barrier layer DP allows increasing the barrier layer

thickness, at which there are the modal bistability and the

dispersive jump. The additional studies have demonstrated

that with the increase in the Fermi energy the periodicity of

implementation of the splitting bifurcation shifted to higher

values. The plasmon group velocities related to different

dispersion branches included in the bistability are opposite

in sign, which can be used for creating terahertz radiation

generators based on two-layer graphene structures.
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