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Phase transitions in the diluted 2D three-state Potts model
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The computer simulation method was used to study phase transitions in a two-dimensional site-diluted 3-state

Potts model. Systems with linear dimensions L × L = N, L = 10÷ 160 at a spin concentration p = 1.00, 0.80

are considered. The numerical data obtained indicate that in a pure 3-state Potts model on a square lattice, a

phase transition of the second order is observed in accordance with the theory. The introduction of disorder in the

form of non-magnetic impurities (p = 0.80) in the 3-state Potts model preserves the phase transition of the second

order.
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1. Introduction

The computer technologies and computational study

methods have developed to their prevalence over the theo-

retical and experimental methods in studying the unordered

magnetic systems. This is due to the fact that real systems

always have complicating factors, which impede use of

theoretical and experimental procedures [1–5]. Many of

the known theoretical arrangements within a theory& field

renormalization&group method becomes inoperative if

applied to systems with disorder (see reviews [4,5]). In

modern experimental studies big difficulties are encountered

when studying thermodynamic and critical properties of the

spin systems with in-frozen disorder. Today’s experimental

results do not make it possible to form a complete and

consistent picture of critical behavior of impurity systems.

It is not just the situation when the results of experimental

studies largely depend a method and a specific sample, but

on a sample preparation method as well. Moreover, in

practice there is no experimental studies to be carried out

based on a single approach on series of same-type samples

with strictly-controlled content of an impurity quantity.

Almost all the experimental studies still have a serious

unresolved problem of getting to an asymptotic critical

mode [2,4]. This background presents promising results and

possibilities of studying the impurity systems by means of

MC methods.

By now, it is known that structure flaws realized

as non-magnetic impurities affect thermal and magnetic

characteristics of the spin systems and may affect phase

transitions (PT), if the so-called Harris criterion is met [6].

According to this criterion, the impurities are substantial, if a

respective critical index of heat capacity α of a pure system

is positive, i.e. the heat capacity diverges, and, therefore,

this criterion can be applied to the three-dimensional Ising

model, for which α > 0. During recent thirty years, the

study of critical properties of the unordered Ising model

with in-frozen disorder has been reflected in a significant

number of papers (see reviews [4,5] and [7,8]) and has got

a substantial progress in understanding features of impact

of the non-magnetic impurities on this model. At the

same time, the Harris criterion is not applied for the two-

dimensional Ising model, as α = 0. Detailed examination

of this case [9] allowed concluding that impurity impact

affects only the heat capacity behavior, whereas other

thermodynamic and correlation functions do not change

their behavior.

On the other hand, in case of the spin systems, homo-

geneously undergoing phase transitions of the first order

the impurities can affect a kind of phase transitions [10].
A recent paper [11] has also indicated a stabilizing role

of the non-magnetic impurities when implementing the

phase transitions of the second order by applying the

theoretical methods. To study this case, the Potts model

suits well. On the one hand, it is related to the fact,

that the Potts model has the evident phase transition

of the first order when q > 4 and the evident phase

transition of the second order when q ≤ 4. On the

other hand, the Potts model is a theoretical tool to

be applied to study a wide class of phenomena in the

condensed matter physics [12]. It is obvious that the
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lattice structure of this model is isomorphic for a big

number of such systems as: a lamellar magnetic mate-

rial, aerogels, liquid helium films, superconductive films,

etc. [13].

Thus, the Potts models can be used to check the specifics

of impurity impact on the phase transitions and to determine

their role as a stabilizing factor in case of the phase

transitions of the second order. Moreover, in accordance

with the Harris criterion, [6] for the two-dimensional Potts

models with q = 3 or with q = 4 the impurities must also

affect the critical behavior as for these models α = 1/3 and

α = 2/3, respectively. The paper [14] has studied a four-

component (q = 4) impurity Potts model and demonstrated

that the phase transition and the critical behavior of

this model are affected by disorder implemented as non-

magnetic impurities. At the same time, for the Potts mode

with q = 3 the literature has almost zero information as to

influence of the in-frozen disorder on the phase transition

and its critical behavior, in particular, when the disorder

is canonically implemented as the non-magnetic impurities.

Values of the critical temperatures are not determined and

one has not revealed the specifics of disorder impact on

the thermodynamic parameters such as magnetization m,

susceptibility χ, energy E , heat capacity C and Binder

cumulants UL and VL.

In connection therewith, the purpose of this study is

to study impact of non-magnetic impurities on the phase

transitions and the thermodynamic behavior of the three-

component (q = 3) two-dimensional Potts model on a

square lattice.

2. Two-dimensional impurity Potts model
with q = 3 on the square lattice

Here we include formulation of the two-dimensional

standard impurity Potts model with a number of spin

states q = 3, which is used to describe a big number of

objects and phenomena in the condensed matter physics.

In the model under our consideration the impurities are

canonically distributed [4]. When building such a model the

following features shall be taken into account:

1. The square lattice sites have spins Si , which can

be oriented in 3 symmetric directions in the space with

a dimension q − 1, so that the angles between any two

spin directions are equal and the non-magnetic impurities

(vacancies) (see Fig. 1). The non-magnetic impurities

are randomly distributed and fixed on various lattice sites

(quenched disorder).

2. The bond energy between the two sites is zero, if they

are in different states (no matter in which exactly) or, if at

least one site contains a non-magnetic atom, and is equal

to J, if the interacting sites are in the identical states (again,

no matter in which exactly).

1 2 1

1

1

113 3

2 2 3

1 2 3 2

1

2 3

Figure 1. Standard two-dimensional Potts model with the number

of the spin states q = 3 on the square lattice.

Taking into account these features, a microscopic Hamil-

tonian of such a system can be presented as follows [13]:

H = −1

2
J

∑

i, j

ρiρ jδ(Si , S j), Si = 1, 2, 3, (1)

where

δ(Si , S j) =

{

1, if Si = S j,

0, if Si 6= S j .

and

ρi =

{

1, if the site has a spin

0, if the site has a non-magnetic impurity.

A concentration of the magnetic spins is determined by

the expression:

p =
1

L2

L2

∑

i=1

ρiδ(Si , q). (2)

Then the value p = 1 corresponds to the pure Potts

model, while p = 0 — the empty, purely-impurity lattice.

3. Research procedure

Presently, as selected from all the options of cluster

algorithms of the Monte-Carlo method, the Wolff algorithm

is the most effective [15]. The procedure of its realization

is detailed in the papers [8,16]. In this paper, we have used

that algorithm as follows.

1. Two random numbers specify coordinates i, j of

the site on the lattice. If this site has a non-magnetic

impurity, then new random numbers are generated until the

coordinates of the magnetic spin Si are generated.
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2. All the nearest neighbors S j of this spin Si are

considered. If the adjacent site is occupied with the

magnetic spin, then with the probability

P = 1− exp(−K), (3)

where K = J/kBT , kB — Boltzmann constant, T —
temperature, the bond between Si and S j is activated, if Si

and S j have identical values when J > 0. Note that for

the Potts model, in order to express the probability of

spin inclusion in the cluster (2), the exponent 2, which

is typical for the corresponding probability of the Ising

model, disappears. Thus, it can be affirmed that the Potts

model with the spin state q = 2 is equivalent to the Ising

model with accuracy of a number factor 2 in the exchange

constant J .
3. If the bond between the spins Si and S j is activated,

then the spin in the site j is included in the cluster. It should

be noted that, as for the Ising model with the impurities, the

same spin can be included in the cluster only once, whereas

it can be checked for cluster inclusion several times.

4. After checking all the nearest neighbors of the selected

spin i , the first cluster-included spin becomes
”
a central

one“to start the process of activation of bonds of this spin

with the nearest neighbors. This process continues until

checking all the nearest neighbors of all the cluster-included

spins or reaching system boundaries.

5. All the spins as bonded therebetween form
”
a cluster“.

6. The cluster produced is turned with the probability 1.

For the Potts model, the cluster turn means that a new

value of the spin S′

i , as different from the old value Si ,

will be assigned to all the cluster-included spins, with equal

probability among all of its states q. Then we pass to the

item 2.

The efficiency of the single-cluster Wolff algorithm as

applied to the Potts model can be judged by a critical

index z , which characterizes the efficiency of the algorithm

being used. In particular, the study of the clean two-

dimensional Potts model with q = 3 based on the single-

cluster Wolff algorithm has demonstrated that the critical

index z = 0.60± 0.02, while using the Metropolis classic

algorithm provided the value z ≈ 2 [17]. According to the

above-mentioned Wolff algorithm [14], the Markov process

has been realized for the systems with periodic boundary

conditions. The calculations have been carried out for the

systems with periodic boundary conditions, for the systems

with linear dimensions L = 10÷ 160 and a number of

the sites p × L × L = N. Originally, configurations were

specified so that all the spins were ordered along one of

the axes X , Y or Z. In order to bring the system to

an equilibrium, a nonequilibrium section of the length τ0
was cut off for the system with the linear dimensions L.
This nonequilibrium section was discarded. Each chain

had average done across a section of the Markov chain

of the length τ = 150τ0 . For the biggest system L = 160,

τ0 = 1.8 · 103 MC steps/spin.

4. Simulation results

The computer simulation included calculation of the

thermodynamic characteristics of a single sample by the

following formulas [12,18]:

U = [〈U〉] =
1

N
[〈H〉], (4)

mF =

[

q
(

Nmax

N

)

− 1
]

q − 1
, (5)

C = (NK2)
⌊

〈U2〉 − 〈U〉2
⌋

, (6)

χ = (NK)
⌊

〈m2〉 − 〈m〉2
⌋

, (7)

where K = |J|/kBT , Nmax = max{N1, N2, N3}, Ni — a

number of the spins in a state with q = i , N = pL2 — a

number of the magnetic points; the angle brackets mean

thermodynamic averaging, while the square brackets mean

averaging across the impurity configurations.

The Figures 2 and 3 show typical magnetization depen-

dences for the pure (p = 1.00) and diluted (p = 0.80) Potts
model on the temperature, respectively. Here and below,

all the figures include a data error, which does not exceed

dimensions of symbols used for plotting. As it is clear

from these figures, all the considered systems have evident

behavior, which is typical for the phase transition of the

second order.

The Figures 4 and 5 show the temperature dependences

for susceptibility χ and heat capacity C, for the systems

with different linear dimensions L at the spin concentration

p = 1.0, while in the Figures 6 and 7 — at p = 0.8.

As it is clear from these figures, the spin systems with

quite big linear dimensions L have prominent maximums

in the critical area and these maximums fall into the same

temperature within the error.

A method of the Binder cumulants of the fourth order

has shown good results for analysis of the PT nature [19]:

VL(T, p) = 1−
〈

E4(T, p; L)
〉

L

3
〈

E2(T, p; L)
〉2

L

, (8)

UL(T, p) = 1−
〈

m4(T, p; L)
〉

L

3
〈

m2(T, p; L)
〉2

L

, (9)

where E — energy and m — a parameter of the system

order with the linear dimension L. The expressions (8)
and (9) allow determining the temperature Tl(p) with a

high accuracy in the phase transitions of the first and second

order, respectively. It should be noted that the use of the

Binder cumulants also allows good determination of the PT

order in the system. The phase transitions of the second

order are characterized by the following features [20]: the

averaged value VL(T, p) tends to a definite value V ∗ as per

the expression:

V (T, p) = V ∗ + bL−d (10)
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Figure 2. Temperature magnetization dependence for the pure

Potts model.
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Figure 3. Temperature magnetization dependence for the diluted

Potts model.
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Figure 4. Temperature susceptibility dependence of the pure

Potts model.
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Figure 5. Temperature heat capacity dependence for the pure

Potts model.
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Figure 6. Temperature susceptibility dependence for the diluted

Potts model.
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Figure 7. Temperature heat capacity dependence for the diluted

Potts model.
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Figure 8. Temperature dependence of the Binder cumulants

VL(T ) for the two-dimensional pure Potts model with the number

of the spin states q = 3.
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Figure 9. Temperature dependence of the Binder cumulants

UL(T ) for the two-dimensional pure Potts model with the number

of the spin states q = 3.

at L → ∞ and T = Tl(L), where V ∗ = 2/3, and the curves

of the temperature dependence of the Binder cumulants

UL(T, p) will have a distinct intersection point. The said

features for the Binder cumulants of the fourth order

VL(T, p) and UL(T, p) are shown in the Figures 8 and 9,

respectively, for the ferromagnetic Potts model with the

q = 3 on the square lattice with no structural disorder

p = 1.00. The similar picture is also observed when adding

a non-magnetic disorder of the concentration c = 0.2,

c = 1− p (see the Figures 10 and 11). The procedure

to determine a PT order by this method is described in

detail in the papers [21–23]. It should be noted that the

PT temperature Tl = 0.994(1) obtained for the pure spin

system at p = 1.0 agrees fairly well with an analytical value

as obtained by Baxter [12] by the formula:

kBTl

|J| =
1

ln(1 +
√
3)

= 0.99497 . . . .

Regardless of the method of Binder cumulants of the

fourth order, we have also carried out a histogram data

analysis for the two-dimensional Potts model with the

number of the spin states q = 3 on the square lattice. The

histogram data analysis includes the following probability of

the system under consideration having the energy U and the
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Figure 10. Temperature dependence of the Binder cumulants

VL(T ) for the two-dimensional diluted Potts model with the

number of the spin states q = 3.
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Figure 11. Temperature dependence of the Binder cumulants

UL(T ) for the two-dimensional diluted Potts model with the

number of the spin states q = 3.
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Figure 12. Energy distribution histogram for the two-dimensional

pure Potts model with the number of the spin states q = 3 on the

square lattice at T = Tl .
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Figure 13. Energy distribution histogram for the two-dimensional

diluted Potts model with the number of the spin states q = 3 on

the square lattice at T = Tl .

magnetization m is [24]

P(U, m) =
1

Z(K)
W (U, m) exp[KU ], (11)

where Z(K) — an energy distribution function of the whole

system, and K — reverse temperature, W (U, m) — a

number of configurations with energy U and the order

parameter m.

The histogram data analysis, which we have carried out

for the two-dimensional ferromagnetic Potts model with the

number of the spin states q = 3 in the pure at (p = 1.00)
and diluted mode at p = 0.80 on the square lattice, also

means the presence of the phase transition of the second

order. It is shown in the Figures 12 and 13 for the

spin system with the linear dimension L = 160. These

figures show the energy distribution histograms for the three

different temperature values near Tl for the pure and diluted

Potts model with the number of the spin states q = 3. As it

is clear from these figures, for all the considered systems the

dependences of probability P on the system energy U have

a prominent maximum for all the considered temperature

values. This behavior is also typical for the PT of the second

order.

Thus, the paper in question has shown that the order

of the phase transition is not affected by the presence

of the non-magnetic disorder in the spin system under

consideration, which is described by the Potts model with

the number of the spin states q = 3.

5. Conclusion

By following a single procedure based on the

Monte-Carlo method, the present paper has studied the

phase transitions in the two-dimensional ferromagnetic Potts

model with the number of the spin states q = 3 on the

square lattice. The data obtained from our studies confirm

that in the Potts model under consideration the square

lattice has the phase transition of the second order in accor-

dance with the predictions of the analytic theories [10,11].
Addition of the non-magnetic impurities stabilizes the phase

transition of the second order in the Potts model under

consideration.
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