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1. Introduction

Unlike germanium and tin carbides, the silicon carbide

has been intensely studied for a long time [1], whereas

there is no information on GeC and SnC even in a

reference book [2] for promising semiconductor materials.

The theoretical interest in the properties and the possible

existence of the bulk (3D) single crystals of these com-

pounds has arisen only in the beginning of the current

century [3–8]. Special attention was paid to stability of

some or other crystal structures, a band spectrum and

elasticity. After the advent of graphene topics and search

of new monolayer materials occurred thereafter, there were

studies for two-dimensional (2D) compounds XC, where

X = Si, Ge and Sn [9–12]. All the cited papers are numerical

calculations. Here, we will consider elastic properties

of the 3D and 2D compounds XC using the models of

Keating [13–15] and Harrison [16,17], which are well proven

for description of the semiconductors.

2. Keating’s model of force constants

2.1. 3D structures

For description of the elastic constants of the bulk crystals

with a diamond structure, Keating proposed a simple

model [13], containing two
”
force constants“ α and β .1 The

first constant describes the central interaction of the adjacent

neighbors, while the second one — non-central interaction

of the second neighbors. The second-order elastic constants

1 Here we use quotes, as in this study the constants α and β are given

in units of GPa, while the units N/m are usually used.

take the following form:

c11 =
α + 3β

4
, c12 =

α − β

4
, c44 =

αβ

α + β
. (1)

From the expressions (1) the identity follows:

R =
c44(c11 + c12)

cs(c11 + 3c12)
= 1, (2)

where cs = (c11−c12)/2 is the shear modulus. The

Kleinman’s parameter of internal displacements is

ζ = (α−β)/(α + β). The Martin’s study [15] generalized

the model [13] on a sphalerite structure and applied it

to describe the crystal elasticity of ANB8−N . Therefore

, the model exhibits effective charges of the atoms A
and B and corresponding interatomic Coulomb forces to

be neglected here by us due to small polarity of the bonds

X−C (see Section 3.1). Thus, the formulas (1) and (2) can

be applied to the calculation of elasticity of the cubic (3C)
compounds XC .

The relationships between the elastic constants of the

structures of sphalerite and wurtzite were proposed in

the paper [18] and applied to the Keating’s model in the

paper [19], in accordance with which we have for wurtzite:

c11 =
α + β

4
+

αβ

α + β
− D, c33 =

3α + β

12
+

4αβ

3(α + β)
,

c44 = β
2α + β

3(α + β)
− β

(α − β)2

3(α + β)(5α + β)
,

c66 = β
5α + β

6(α + β)
− D,
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c12 =
3α − β

12
− αβ

3(α + β)
+ D, c13 =

3α + β

12
− 2αβ

3(α + β)
,

D = β
(α − β)2

6(α + β)(2α + β)
. (3)

Note that c66 = (c11−c12)/2. Further on, in order to

determine the constants α and β, we will use experi-

mentally measured elastic constants c11 and c12 of the

cubic crystals or elastic constants numerically calculated

by other authors, so that α = c11 + 3c12 and β = c11−c12.

Values of
”
force constants“ and elastic constants of the

cubic crystals XC, as determined in this way, are given

in Table 1. It also contains the values of the bulk

moduli B = (c11 + 2c12)/3 and the anisotropy factors

Table 1. Keating’s model, the sphalerite structure: values of

”
elastic constants“ α and β, the Kleinman’s parameter ζ , the elastic

constants c i j , the ratio R, the bulk compression modulus B and

the anisotropy factors A′ and A (α, β, c i j and B are given in units

of GPa). The upper row of the values the initial values c i j from

the papers specified in the extreme left column, the lower row the

results of the Keating calculations, only the values different from

the initial ones

Calculation
3D XC c11 c12 c44 R B A′ A

option

1 SiC 400 100 250 1.19 200 1.50 0.60

[8] α = 700 210 1 0.71

β = 300

ζ = 0.40

GeC 300 100 200 1.33 166 1.67 0.50

α = 600 150 1 0.67

β = 200

ζ = 0.50

SnC 200 80 120 1.17 120 1.80 0.50

α = 440 94 1 0.64

β = 120

ζ = 0.57

2 SiC 329 165 163 1.19 220 2.00 0.50

[5] α = 824 133 1 0.60

β = 164

ζ = 0.67

GeC 297 124 141 1.03 188 1.84 0.61

α = 669 137 1 0.63

β = 173

ζ = 0.35

3 SiC 385 135 257 1.35 218 1.69 0.49

[20,21] α = 790 190 1 0.66

β = 250

ζ = 0.52

4 SiC 411 164 194 1.00 246 1.80 0.64

[22,21] α = 903 1

β = 247

ζ = 0.57

Table 2. Keating’s model, wurtzite structure: the values of the

parameter D and elastic constants c i j (in units of GPa). The upper
row of the values results of the calculations by the formulas of the

Keating’s model, in brackets the calculation results of the paper [8]
for option 1 and the paper [20] for option 2

Calculation
3D XC c11 c33 c44 c66 c12 c13

option

1 SiC 456 481 166 185 85 60

[8] D = 5 (523) (558) (156) (215) (93) (44)

GeC 343 365 113 132 89 65

D = 5 (441) (488) (137) (181) (79) (37)

SnC 229 245 68 79 73 58

D = 4

2 SiC 378 403 88 111 153 128

[5] D = 7

GeC 343 366 85 123 112 90

D = 6

3 SiC 446 474 141 162 119 91

[20,21] D = 6

4 SiC 471 502 141 163 149 118

[22,21] D = 9

A′ = (c11 + 2c12)/c11 [7] and A = cs/c44 [22].2 The values

of the elastic constants of the compounds XC with the

wurtzite structure (2H) are given in Table 2.

Analysis of the obtained results shows that all the elastic

constants of the SiC→GeC→ SnC row are decreasing. The

exception is the value c13 for 2H-GeC when calculating as

per the option 1 using the results of the paper [8] (see
Table 2). Note that for this case the value R = 1.33, which

is a considerable deviation from the value R = 1 of the

Keating’s model. The seems strange result is c12 > c44

obtained for 3C-SiC in [5] (Table 1, option 2), as in all

other studied cases c12 < c44. It is also necessary to indicate

significant spread of values of the elastic characteristics for

fairly well studied silicon carbide (except for the values c i j

given in Tables 1 and 2, see, for example, [2,23]). Despite

the mentioned spread of the absolute values c i j , their

relative values c∗

i j = c i j/c11, shown in the Figures 1 and 2,

exhibit common features for all the compounds XC and all

the calculation options. The exclusions are correlated again

to the according to the calculation option 2. Variations of

the anisotropy factors A′ and A are insignificant for all the

calculation options. Note that the experimental values c i j

2 All the values of the elastic constants and the bulk moduli (including
those from the papers of other authors) were rounded by us to integer

values. For the elastic constant c11 of the paper [8] we (fairly arbitrarily)
accepted the value of 300GPa (Table 1). The thing is that according to [8]
there is an approximate equality c11 ≈ c44 ≈ 200GPa. This result seems

erroneous to us, as the equality of these elastic constants can not be found

anywhere else (as far as we know).
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Figure 1. Keating’s model, the sphalerite structure, or that of zinc

blende (ZB): values of the relative elastic constants c∗

i j = c i j/c11,

calculated by the formulas (1). The designations are shown in

the figure, the digit near the chemical formula corresponds to the

calculation option of Table 1. The thin straight lines are used for

clarity.
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Figure 2. Keating’s model, the wurtzite structure (W): values
of the relative elastic constants c∗

i j = c i j/c11 , calculated by the

formulas (3). Designations are the same as in the Fig. 1. The thin

straight lines are used for clarity.

for 3C-SiC, used in the option 4 and given in Table 4.6 of

the paper [22], are almost exactly described by the Keating’s

model.

In the paper [15] (see also [22]) Martin showed that

in the cubic crystals of the ANB8−N compounds the ratio

x = β/α tends to decrease with increase in ionicity f i

as per Philips [24]. From the calculation as per the

option 1 for SiC, GeC and SnC, we obtain x = 0.42,

0.33 and 0.27, respectively; in the calculation as per the

option 2, for SiC and GeC we have x = 0.20 and 0.26,

thereby doubting results of the study [5]. An issue of the

ionicity of the compounds XC will be studied by us in

Section 3.1.

Now, we study the dependences of the elastic constants

on the pressure p, by replacing, as in [21], α and β with

α̃ = α + a p and β̃ = β + bp, where a and b dimensionless

coefficients (hereinafter the tilde indicates that the corre-

sponding value depends on the pressure). Then, instead

of (1) we get:

c̃11 = c11 + [(a + 3b)/4]p, c̃12 = c12 + [(a − b)/4]p,

c̃44 ≈ c44 +
αb + aβ − αβ(a + b)/(α + β)

α + β
p, (4)

where the expression for c̃44 (in contrast to [21]) is

linearized by p. From (4) for the bulk compression modulus

we find B̃ = B + (a + b)p/6. The expressions (3) can be

converted similarly.

As per data of the paper [3], for the cubic crystals SiC,

GeC and SnC we have B = 206, 181, 119GPa and

B̃ ′ ≡ ∂B̃/∂ p = 5.3, 4.2 and 4.3. As per data of the

paper [5], for 3C-SiC and 3C-GeC we have B ′ = 3.90

and 3.45, respectively. Analysis of the dependences c̃ i j

on p, shown in the Fig. 4−6 of the paper [7], for

3C−XC provides c̃ ′

11 ∼ c̃ ′

12 ∼ 4, B̃ ′ ∼ 4 and c̃ ′

44 ∼ 1, where

c̃ ′

i j ≡ ∂ c̃ i j/∂ p, so that a ∼ 5b ∼ 10. Based on the results

of the paper [20], for 3C-SiC in [21] we have c̃ ′

11 = 3.49,

c̃ ′

12 = 4.06, wherefrom B ′ = 3.87, a = 15.7, b = −0.6. To

obtain order evaluations, we assume that a = 16 and b = 0.

Then,

c̃ ′

11 ≈ 4

(

1 +
4x

1 + x

)

, c̃ ′

33 ≈ 4

(

1 +
16x

3(1 + x)

)

,

c̃ ′

12 ≈ 4

(

1− 4x
3(1 + x)

)

, c̃ ′

13 ≈ 4

(

1− 8x
3(1 + x)

)

,

c̃ ′

44 ≈ 0, c̃ ′

66 ≈ 0,

where, as above, x = β/α. It is easy to see that all the

derivatives c̃ ′

i j are smooth functions of the parameter x .
The results of the order evaluations c̃ ′

i j are given in Table 3.

Let us come to evaluations of the sound velocities

vσ (q) =
√

C i(q)/ρAB , where the index σ corresponds

to polarization of the acoustic wave propagating in the

direction q in the crystal AB with the density ρAB , Cσ (q)
a combination of the relevant elastic constants. In case of

the cubic crystals we have [20,21]: for the three longitudinal

acoustic waves (LA)

C [100]([100]) = c11, C [110]([110]) = (c11 + 2c12 + 2c44)/2,

C [111]([111]) = (c11 + 2c12 + 4c44)/3; (6)

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 3. Keating’s model, the wurtzite structure: the order

evaluations of the dependence of the elastic constants on the

pressure (c̃′

i j = ∂ c̃ i j/∂ p)

Calculation
3D XC c̃′

11 c̃′

33 c̃′

12 c̃′

13option

1 SiC 9.1 10.8 2.3 0.6

[8] x = 0.43

GeC 8.0 9.3 2.6 1.35

x = 0.33

SnC 7.4 8.5 2.9 1.7

x = 0.27

2 SiC 6.7 7.6 3.1 2.2

[5] x = 0.20

GeC 7.3 8.4 2.9 1.8

x = 0.26

3 SiC 7.9 9.2 2.7 1.4

[20,21] x = 0.32

4 SiC 7.4 8.5 2.9 1.7

[21,22] x = 0.27

Table 4. Keating’s model, the sphalerite structure: sound

velocities v
[i jk]

L(T )A (in units of km/s)

Calculation
3D XC v

[100]
LA v

[110]
LA v

[111]
LA v

[100]
TA v

[110]
TA v

[111]
TAoption

1 SiC 11.2 12.6 12.2 8.1 6.8 7.3

[8] GeC 7.2 8.3 8.0 5.1 4.2 4.5

SnC 5.6 6.5 6.2 3.8 3.0 3.3

2 SiC 10.1 11.8 11.6 6.4 5.1 5.6

[5] GeC 7.2 8.4 7.9 4.9 3.9 4.2

Table 5. Keating’s model, the sphalerite structure: the order

evaluations of the parameter ησ (q) (in units of GPa−1)

Calculation
3D XC η

[100]
LA η

[110]
LA η

[111]
LA η

[100]
TA η

[110]
TA η

[111]
TAoption

[5,7] SiC 4 5 4 1 −2 −2

GeC 4 5 4 0 −3 −2

for the three transverse acoustic waves (TA)

C [010]([100]) = C [001]([100]) = C [001]([110]) = c44,

C [11̄0]([110]) = cs ,

C [11̄0]([111]) = C [112̄]([111]) = (2cs + c44)/3, (7)

where, as above, the shear modulus cs = (c11−c12)/2.
Taking into account that the constants of the cubic lattices
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Figure 3. Keating’s model, the sphalerite structure or that

of zinc blende (ZB): values of the relative elastic constants

(v
[i jk]

L(T )A)
∗ = v

[i jk]

L(T )A/v
[100]
LA , calculated by the formulas (6) and (7).

Designations are the same as in the Fig. 1. The thin straight lines

are used for clarity.

SiC, GeC and SnC are equal to 4.36, 4.59 and 5.11 Å [7],
respectively, so that ρSiC = 3.21 g/cm3, ρGeC = 5.77 g/cm3

and ρSnC = 6.47 g/cm3, and using the values c i j calculated

by us (Table 1), we will get the results of Table 4,

which quite satisfactorily agree with available experimental

data [2]. It is obvious that the sound velocity diminishes

when transferring from 3C-SiC to 3C-SnC. The Fig. 3 shows

the relative sound velocities (v
[i jk]
L(T )A)∗ = v

[i jk]
L(T)A/v

[100]
LA . As in

the case of elastic constants (Figures 1 and 2), the values

(v
[i jk]
L(T)A)∗ show the relatively weak dependence on the X

element and the calculation method.

Influence of the pressure on the sound velocity ησ (q) =
= ∂vσ (q)/∂ p may be presented as:

∂vσ (q)

∂ p
= vσ (q)ησ (q), ησ (q) =

1

2

(

C′

σ
(q)

Cσ (q)
− 1

B

)

, (8)

where C′

σ
(q) = ∂Cσ (q)/∂ p [20]. For the cubic carbides of

silicon and germanium, the values of the parameter ησ (q)
are shown in Table 5. Since, in doing so c i j were taken

from data processing of the paper [5], and c ′

i j — from data

processing of the paper [7], the given values ησ (q) should

be considered to be order evaluations.

2.2. 2D structures

For graphene, the expressions for the elastic constants

of the second c̄ i j and third c̄ i jk orders, as well as the

dependences ˜̄c i j on the two-dimensional pressure p̄ were

obtained in the papers [25–27], respectively, and take the

2∗ Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 6. Keating’s model, 2D: values of the elastic constants of

the second c̄ i j and third c̄ i jk orders (in units of N/m), the sound

velocities (in units of km/s) and the pressure derivatives of the

elastic constants of the second order c̄′

i j

2D XC c̄11 c̄12 −c̄111 −c̄222 −c̄112 v p vs ˜̄c′

11
˜̄c′

22
˜̄c′

12

SiC 184 53 1748 1827 331 16.5 8.1 8.7 7.6 1.4

GeC 158 53 929 971 176 15.6 5.8 5.2 4.6 0.8

SnC 117 48 628 657 119 10.7 4.9 4.5 4.0 0.7

[27]

SiC 177 56 1391 1181 392 16.6 8.3 7.6 5.1 1.68

[11] 156 44 1413 1186 155 13.9 5.3 7.8 5.9 0.8

GeC

[10]

following form:

c̄11 =
1√
3

(

4ᾱ + β̄ + 18
ᾱβ̄

4ᾱ + β̄

)

,

c̄12 =
1√
3

(

4ᾱ + β̄ − 18
ᾱβ̄

4ᾱ + β̄

)

, (9)

c̄111 = (16γ̄/
√
3)[(1.5− ζ̄ )3 + 4ζ̄ 3],

c̄222 = (16γ̄/
√
3)[(0.5 + ζ̄ )3 + 4(1− ζ̄ )3],

c̄112 = (16γ̄/3
√
3)[(1.5 − ζ̄ )2(0.5 + ζ̄ ) + 4ζ̄ 2(1− ζ̄ )],

(10)

˜̄c11 = c̄11 − (c̄111 + c̄112)
1− σ̄

Ē
p̄,

˜̄c22 = c̄11 − c̄222

1− σ̄

Ē
p̄, ˜̄c12 = c̄12 − c̄112

1− σ̄

Ē
p̄.

(11)

Here, ᾱ and β̄ the harmonic force constants of central and

noncentral interaction, γ̄ the anharmonic constant of the

central interaction, ζ̄ = (2ᾱ−β̄)/(4ᾱ + β̄) the Kleinman’s

parameter of internal displacements, σ̄ = c̄12/c̄11 the Pois-

son ratio, Ē = (c̄2
11−c̄2

12)/c̄11 the Young modulus. The

overline of the symbol means referring to the 2D structure,

for which all the elastic constants and the force constants

are expressed in N/m. The paper [27] applies the ex-

pressions (9)−(11) to graphene-like compounds ANB8−N .

For 2D compounds XC under our study, the following

values of the parameters are obtained: ᾱ, β̄, γ̄ (in units

of N/m), x̄ = ᾱ/β̄ and ζ̄ : 44, 29, 63, 0.67 and 0.28

for SiC; 40, 23, 44, 0.59 and 0.31 for GeC; 32, 15, 30,

0.47 and 0.34 for SnC. The results of calculation of the

elastic constants of the second and third orders and the

dependences of the elastic constants of the second order

on the pressure ˜̄c i j = ∂ ˜̄c i j/∂ p̄ are provided in Table 6.

At this, determining the force constants ᾱ and β̄, we

proceeded from the numerical calculations of [9], whereas

for evaluation of γ̄ we used graphene data and lattice

constants’ scaling (see [27] for more details). It follows

from Table 6 that when transferring from SiC to SnC, all

the values of the elastic characteristics diminish. So, does

the ratio x̄ = ᾱ/β̄ .

Table 6 also shows the results of the numerical calcu-

lations [10,11]. The biggest divergence with our results

is for the elastic constants c̄ i jk . This is not surprising

since we have determined the values γ̄ quite approximately.

Moreover, in order to describe the diamond structure,

Keating used 3 anharmonic force constants — a central

one and two noncentral ones [14], whereas we used

only the central force constant. That is why we obtain

|c̄111| < |c̄222|.
The sound velocities in the graphene-like compounds are

determined by the expressions:

v p =

√

Ē(1− σ̄ )

ρ̄(1 + σ̄ )(1− 2σ̄ )
, vs =

√

c̄12

ρ̄
, (12)

where v p the velocity of the compression wave causing the

two-axis deformation, vs the velocity of the shear wave,

ρ̄ = 2M̄cell/3
√
3d̄2 the density of the 2D structure, M̄cell the

weight of the lattice cell atoms, d̄ the distance between the

adjacent neighbors, which is equal, for SiC, GeC and SnC,

to 1.77, 1.86 and 2.05 Å, respectively [9]. From here

we have: Ē = 169GPa, σ̄ = 0.29, ρ̄ = 0.82 · 10−6 kg/m2

for SiC; Ē = 140GPa, σ̄ = 0.335, ρ̄ = 1.55 · 10−6 kg/m2

for GeC; Ē = 97GPa, σ̄ = 0.41, ρ̄ = 1.98 · 10−6 kg/m2

for SnC, which well agrees with the results of the pa-

pers [10,11]. The results of calculation of the sound

velocities shown in Table 6 show decrease in the values

of v p and vs in the SiC→ SnC row. We underline that

our model evaluations well agree with the results of the

numerical calculations [19,11].

3. Model of Harrison’s bonding orbitals

3.1. 3D structures

The Harrison’s model for the tetrahedral semiconduc-

tors [16,17,28] is a simplified option of the LCAO method,

wherein all the necessary matrix elements are specified by

simple and physically transparent analytical expressions. As

per [16,29], for the cubic crystals, the elastic constants take

the following form:

c11 =
2
√
3(1+λ)

2
w, c12 =

√
3(2−λ)

3
w,

c44 =
3
√
3λ

3 + 2λ
w. (13)

Here, w = α3
cV2/d3, V2 = 3.22(~2/md2) the covalence en-

ergy of the σ -bond of the sp3-orbitals of the X and C atoms,

~ the reduced Planck constant, m the mass of free electron,

d = a0

√
3/4 the distance between adjacent neighbors, a0

the lattice constant, λ = 0.85 the constant describing the

change of the energy V2 in misorientation of the sp3-orbitals,

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 7. Harrison’s model, the sphalerite structure: the values

of the covalence V2 and polar V3 energies (in eV), the covalence

of the bonds αc , the elastic constants c i j , the bulk compression

module B and the shear module cx (all the elastic characteristics

are given in units of GPa). The upper row of the values

corresponds to using the tables of the Mann atomic terms [29], the
lower row — using the tables of the Hermann–Skillman atomic

terms [16]

3D XC V2 V3 αc c11 c12 c44 B cs

SiC 6.87 1.88 0.96 308 96 135 166 106

1.42 0.98 328 102 144 177 113

GeC 6.20 1.93 0.95 229 71 101 124 79

1.37 0.98 253 79 111 137 87

SnC 5.02 2.41 0.90 116 36 51 64 40

1.77 0.94 133 41 59 72 46

forming the σ -bond, αc = V2/

√

V 2
2 + V 2

3 the covalency of

the X−C bond, V3 = |εX
h −εC

h |/2 the bond polar energy,

ε
X(C)
h = (ε

X(C)
s + 3ε

X(C)
p )/4 the energies of the sp3-orbitals

and ε
X(C)
s(p) the energy of the s(p)-state of the X(C) atom.

From the expressions (13) we find:

c22/c11 = (2− λ)/2(1 + λ) = 0.31,

c44/c11 = 9λ/2(1 + λ)(3 + 2λ) = 0.44,

R = (4 + λ)/(8− λ) = 0.68,

ζ = (1− λ/3)/(1 + 2λ/3) = 0.47,

A′ = 3/(1 + λ) = 1.62, A = (3 + 2λ)/6 = 0.78.

The results of calculation of the elastic characteristics

are given in Table 7, wherein we assumed that a = 4.36,

4.59 and 5.11 Å respectively for 3D SiC, GeC [7] and SnC

and used the tables of the Mann atomic terms [28] and

the Hermann–Skillman atomic terms [16]. First of all, we

note a high degree of covalence of the bonds X−C . This

makes it possible to apply the Keating’s model [13,14],
neglecting corrections [15], correlated to presence of the

charge in the X and C atoms. Secondly, the covalence

of the bonds αc reduces in the SiC→ SnC row, and

their polarity αp = (1−α2
c )

1.2 and ionicity as per Philips

f i = 1−α3
c increase. And, finally, all the elastic charac-

teristics diminish with increase in the polarity within the

SiC→ SnC row. The comparison of the values of c i j

obtained here for 3C-SiC with results of calculation as

per Keating (Table 1) show good numerical consistence

for c11 and c44, obtained by using the Hermann–Skillman

tables in the calculation option 2, whereas the values c12

differ in 1.5 times (see Table 1). Here, we shall again

doubt the results of the study [5]. Additional argument in

favor of such doubts is that the universal ratio obtained

as per Harrison c11 : c12 : c44 = 1 : 0.31 : 0.44 qualitatively

corresponds to all the calculation options as per Keating.

The only exclusion the SiC-2 curve, which is marked in the

Fig. 1 by black squares and based on using the date from

the paper [5]. Next, as per Harrison we have A′ = 1.62

and A = 0.78, whereas as per Keating the average values

of Table 1 are A′ = 1.76 and A = 0.65. It also means the

vicinity of the results provided by the two models under

study.

Now, let us come to the hexagonal compounds. As

per [18,30], the elastic constants take the following form:

cW
11 = c̄W

11 − 12/c̄W
44, cW

33 = c̄W
33,

cW
44 = c̄W

44 − 12/c̄W
66, cW

66 = c̄W
66 − 12/c̄W

44,

cW
12 = c̄W

12 + 12/c̄W
44, cW

13 = c̄W
13, (14)

where 1 = (1/3
√
2)(c11−c12−2c44)

ZB and

c̄W
11 = (c11 + c12 + 2c44)

ZB/2,

c̄W
33 = (c11 + 2c12 + 4c44)

ZB/3,

c̄W
44 = (c11 − c12 + c44)

ZB/3,

c̄W
66 = (c11 − c12 + 4c44)

ZB/6,

c̄W
12 = (c11 + 5c12 − 2c44)

ZB/6,

c̄W
13 = (c11 + 2c12 − 2c44)

ZB/3. (15)

Note that the correction for the internal stresses 12/c̄W
44

is similar to the correction D in the formulas (3), while

the correction 12/c̄W
66 corresponds to the second summand

in the expression for c44 in (3). The calculation results

are shown in Table 8, from which it follows, firstly, that

all the elastic constants diminish in the SiC→ SnC row,

as in the cubic compounds. Secondly, the relationships

cW
i j/cW

11 are universal, i.e. they do not depend on a specific

Table 8. Harrison’s model, the wurtzite structure: the values of

the elastic constants cW
i j (in units of GPa) and the relative elastic

constants cW
i j/cW

11 . The upper row of the values corresponds to

using the tables of the Mann atomic terms [29], the lower row —
using the tables of the Hermann–Skillman atomic terms [16]

3D XC cW
11 cW

33 cW
44 cW

66 cW
12 cW

13

SiC 337 347 116 125 86 77

359 369 123 134 92 81

GeC 251 258 86 94 64 56

277 285 95 103 71 63

SnC 127 131 44 47 35 29

146 150 50 55 37 32

cW
i j /cW

11 1 1.03 0.34 0.37 0.26 0.23

Physics of the Solid State, 2022, Vol. 64, No. 6



614 S.Yu. Davydov

compound and the used tables of the atomic terms, (which

follows from the formulas (13)−(15)). Moreover, the

obtained values of cW
i j/cW

11 quantitatively agree with the

calculation results as per Keating (Fig. 2). Again, the

only deviation the calculation results as per the option 2.

Unfortunately, direct comparison with the experimental

values cW
i j is excluded even for the silicon carbide, since,

as it is known to the author, the 2H-SiC single crystals

are still not produced. In connection therewith, invariants

may turn out to be useful combinations of the elastic

constants, whose value does not change when transferring

from the sphalerite to wurtzite, to be constant for all the

hexagonal polytypes NH , where N is equal, for example, to

2, 4, 6, 8 [30]:

(c11 + c12)
NH = 2(c11 + 2c12 + c44)

ZB/3,

cNH
33 = (c11 + 2c12 + 4c44)

ZB/3,

cNB
13 = (c12 + 2c12 − 2c44)/3. (16)

Thus, for example, taking up the experimental values

cZB
11 = 390, cZB

12 = 142 and cZB
44 = 256GPa [23], we ob-

tain (c11 + c12)
NH = 620, cNH

33 = 566 and cNH
13 = 54GPa.

However, the invariants (16) are insufficient to determine

a full set of the values cW
i j .

The sound velocities v
[i jk]
L(T)A and their relative values

v
[i jk]
L(T)A/v

[100]
LA calculated by the formulas (6) and (7) for the

cubic crystals are given in Table 9. Comparison with the

calculations as per Keating (see Table 4 and Fig. 3) shows

practical identity of the results obtained.

Now, let us consider the evaluations of the anharmonic

properties of the cubic crystals XC . As it is shown in [31],

the dependences of the bulk moduli on the pressure B̃ ′ and

the temperature T and the thermal expansion coefficient αT

Table 9. Harrison’s model, the sphalerite structure: the sound

velocities v
[i jk]

L(T )A (in units of km/s) and the relative velocities

(v
[i jk]

L(T )A)∗ = v
[i jk]

L(T)A/v
[100]
LA . The upper row corresponds to using the

tables of the Mann atomic terms [29], the lower row — using the

tables of the Hermann–Skillman atomic terms [16]

3D XC v
[100]
LA v

[110]
LA v

[111]
LA v

[100]
TA v

[110]
TA v

[111]
TA

SiC 9.8 11.0 10.4 6.5 5.7 6.0

10.1 11.3 10.7 6.7 5.9 6.2

GeC 6.3 7.0 6.7 4.2 3.7 3.9

6.6 7.4 7.0 4.4 3.9 4.1

SnC 4.2 4.7 4.5 2.8 2.5 2.6

4.5 5.1 4.8 3.0 2.7 2.8

(v
[i jk]

L(T )A)∗ 1 1.12 1.06 0.67 0.59 0.61

Table 10. Harrison’s model, the sphalerite structure: the

Grüneisen constant γ∗, the dependences of the compression

module on the pressure B̃ ′ = ∂B̃/∂ p, the linear coefficient of

thermal expansion αT (in units of 10−6 K−1) and the dependence

of the bulk compression module on the temperature ∂B(T)/∂T
and B−1∂B(T )/∂T (in unis of 10−4 GPa/K and 10−4 K−1)

3D XC γ∗ B̃ ′ αT −∂B(T)/∂T −B−1∂B(T )/∂T

SiC 1.58 3.16 6.3 110 0.66

1.54 3.08 5.8 103 0.58

GeC 1.60 3.20 7.3 97 0.78

1.54 3.08 6.4 88 0.64

SnC 1.69 3.37 11.2 81 1.27

1.62 3.23 9.4 73 1.01

are specified by the following expressions:

B̃ ′ = 2γ∗, ∂B(T )/∂T = −3
√
3kBQ/32d3,

αT = 9kB γ
∗/32V2α

3
c , (17)

where kB the Boltzmann constant,

γ∗ = (3− α2
p − 2α4

p)/2α
2
c the Grüneisen constant and

Q = (29− 6α2
p − 71α4

p + 44α6
p + 4α8

p)/α
4
c . Note that the

expressions for ∂B(T )/∂T and αT are obtained in the

high-temperature limit. Results of the calculation are

summarized in Table 10. For 3C-SiC the evaluations [32,33]
provide γ∗ ≈ 1, which in 1.5 times lower than our result.

On the other hand, the experimental values B̃ ′ = 3.57 [34]
and 2.9−4.0 [33,35] for 3C-SiC well agree with our

evaluation. The same refers to the thermal expansion,

too: for the high temperatures the experiment provides

αT ∼ 5 · 10−6 K−1 [2,35–37]. As per [32] and [38],
for 3C-SiC we have, respectively, ∂B(T )/∂T ∼ −250

and ∼ −290 (in units of 10−4 GPa/K), which significantly

exceeds the value obtained by us. This situation may be

corrected by inputting interatomic short-range repulsion

into the Harrison’s model [39,40]. At this, however, the

universal dependences annihilate and the formulas are

somewhat complicated. That is why we have neglected this

correction, so have we taking into account metallicity of the

interatomic bonds [16,17].

3.2. 2D structures

The elastic properties of the graphene-like compounds

in the Harrison’s model are described in the paper [27].
Besides the crystallography, the 3D and 2D compounds

differ in bond hybridization: the first case includes usage

of the sp3-orbitals, while the second one — the sp2-orbitals.

For the sp2-hybridization the covalence energy is equal to

V̄2 = 3.26(~2/md̄2) [17], where d̄ = 1.77, 1.86 and 2.05 Å
for 2D SiC, GeC and SnC [9], while the polar energy

V̄3 = |ε̄X
h −ε̄C

h |/2, where ε̄
X(C)
h = (ε

X(C)
s + 2ε

X(C)
p )/3 (as in

the item 2.2, all the 2D characteristics will be provided
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Table 11. Harrison’s model, 2D: the covalence V̄2 and polar V̄3

energies (in units of eV), the band covalence ᾱc , k̄0 — the force

constant of the central interaction (in units of eV/Å2), the linear

coefficient of thermal expansion αT (in units of 10−6 K−1) and

the dependence of the compression module on the temperature

∂B(T)/∂T (in units of 10−4 GPa/K)

3D XC V̄2 V̄3 ᾱc k̄0

k̄0 ᾱT −∂B̄(T )/∂T

αc = 1

SiC 7.93 1.93 0.97 8.66 10.12 11 0.66

1.48 0.99 9.62

GeC 7.18 1.95 0.97 7.10 8.30 12 0.72

1.39 0.99 7.89

SnC 5.91 2.24 0.93 3.92 5.63 15 0.90

1.85 0.95 4.30

with the overline). The numerical values of the energies

V̄2, V̄3 and the bond covalences ᾱc are give in Table 11. By

neglecting the metallicity of bonds in [27,41], we obtain

the force constants of the central k̄0 and noncentral k̄1

interactions in k̄0 = 4ᾱcV̄2(2α
2
c−1)/d̄2, k̄1 = λ̄k̄0/3, where

the constant λ̄ = 0.66 is the 2D analog of the 3D constant

λ [42]. The values k̄0, diminishing in the SiC→ SnC row,

are given in Table 11.

Turning to the evaluations of the anharmonic character-

istics, we assume for all the compounds that ᾱc = 1. Such

simplification is similar to usage of the Keating’s model [13]
instead of the Martin’s model [15]. As per [41], we will

obtain γ̄∗ = 2 and ˜̄B ′ = 2γ̄∗ = 4 for all the graphene-like

compounds. Further on, we have:

ᾱT = 4kB/V̄2, B̄−1
(

∂B̄(T )/∂T
)

= −24kB/V̄2. (18)

The numerical values ᾱT and B̄−1
(

∂B̄(T )/∂T
)

are given

in Table 11. Thus, for the 2D structure ᾱT is in two

times bigger than for 3D. According to our evaluations [41]
based on the results of the paper [43], within the

temperature range 900−2100K for graphene the middle

value B̄−1
(

∂B̄(T )/∂T
)

∼ −0.5 · 10−4 K−1, which perfectly

agrees with our results. The value |B̄−1
(

∂B̄(T )/∂T
)

| is

growing when transferring from SiC to SnC. The same

dependence is for the 3D compounds, too (see Table 10).
Note the vicinity of the values B̄−1

(

∂B̄(T )/∂T
)

for 2D

and 3D structures.

4. Concluding remarks

The Keating’s model quite adequately describes the

elastic properties of the tetrahedral crystals, as meant by an

approximate fulfilment of the condition (2) for a number of

the ANB8−N semiconductor compounds. A weak side of this

model is that it is necessary to determine a value of the force

constants by the experimental values c i j (which refers to all

the models with force constants). The Harrison’s model

somewhat more poorly describes the ANB8−N elasticity,

but has only three parameters (the lattice constant and the

energy terms of the s - and p-states of the A and B atoms),
with neither of them being adjustable. Furthermore, the

Harrison’s model allows evaluating the temperature impact

on the elasticity. The present study shows that both the

models are quite suitable for describing the elasticity of

the XC compounds.

The principle difference of the Keating and Harrison

approaches is correlated to modeling the noncentral forces.

In the Keating’s model, the force constant β corresponds to

a crystal reaction to the change of the angle between the

two neighboring σ -bonds (an angular stiffness) belonging

to one atom. In the Harrison’s model, the angles between

the neighboring spk -orbitals centered at the same atom, are

considered to be fixes ones (a rigid tetrahedron), while the

shear deformation is contributed by misorientation of the

spk -orbitals of the neighboring atoms making up the σ -bond.

We have had to make several simplifications in the present

study. Thus, for heteropolar compounds, the Keating’s

model is used, so not the Martin’s. The Harrison’s model

neglects the metallicity of bonds and short-range repulsion.

Such simplifications allowed us obtaining simple analytical

expressions for the elastic and thermoelastic characteristics,

which are convenient for usage by experimenters and

technologists. By using the obtained results, it is easy,

in principle, to evaluate the characteristics of the ternary

semiconductor compounds Si1−xGexC [44].
The 3D and 2D compounds of SnC and, above all, GeC,

studied by us, are of both a theoretical and application

interest. Besides the elasticity, there is a study of the

electron spectrum [3,4,6–9,44,45], the magnetic properties

being doped by chromium [46], thermal conductivity [8],
the GeC/SiC, SnC/SiC, SnC/GeC [47] and GeC/GaN [48]
superlattices are created, and application of 2D GeC in

lithium batteries is under consideration [49,50].
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