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1. Introduction

Unlike germanium and tin carbides, the silicon carbide
has been intensely studied for a long time [1], whereas
there is no information on GeC and SnC even in a
reference book [2] for promising semiconductor materials.
The theoretical interest in the properties and the possible
existence of the bulk (3D) single crystals of these com-
pounds has arisen only in the beginning of the current
century [3-8]. Special attention was paid to stability of
some or other crystal structures, a band spectrum and
elasticity. After the advent of graphene topics and search
of new monolayer materials occurred thereafter, there were
studies for two-dimensional (2D) compounds XC, where
X = Si, Ge and Sn [9-12]. All the cited papers are numerical
calculations. Here, we will consider elastic properties
of the 3D and 2D compounds XC using the models of
Keating [13—15] and Harrison [16,17], which are well proven
for description of the semiconductors.

2. Keating’s model of force constants

2.1. 3D structures

For description of the elastic constants of the bulk crystals
with a diamond structure, Keating proposed a simple
model [13], containing two ,,force constants* @ and 8.! The
first constant describes the central interaction of the adjacent
neighbors, while the second one — non-central interaction
of the second neighbors. The second-order elastic constants

1 Here we use quotes, as in this study the constants @ and 8 are given
in units of GPa, while the units N/m are usually used.
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take the following form:

a+38 a—f op
Ci1 = , Cp= , Caq= . 1
11 7 12 7 “= iR (1)
From the expressions (1) the identity follows:
~ ca(crr +cC12) —1, 2)

~ cs(Ci1 +3¢2)

where Cs = (C11—C12)/2 is the shear modulus. The
Kleinman’s parameter of internal displacements is
¢ =(a—B)/(a+pB). The Martin’s study [15] generalized
the model [13] on a sphalerite structure and applied it
to describe the crystal elasticity of AyBg_n. Therefore
, the model exhibits effective charges of the atoms A
and B and corresponding interatomic Coulomb forces to
be neglected here by us due to small polarity of the bonds
X—C (see Section 3.1). Thus, the formulas (1) and (2) can
be applied to the calculation of elasticity of the cubic (3C)
compounds XC.

The relationships between the elastic constants of the
structures of sphalerite and wurtzite were proposed in
the paper [18] and applied to the Keating’s model in the
paper [19], in accordance with which we have for wurtzite:
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Note that Ces = (C;1—C12)/2. Further on, in order to
determine the constants @ and B, we will use experi-
mentally measured elastic constants Cy; and cj, of the
cubic crystals or elastic constants numerically calculated
by other authors, so that @ = ¢;; + 3¢ and 8 = €11 —Cy2.
Values of ,force constants“ and elastic constants of the
cubic crystals XC, as determined in this way, are given
in Table 1. It also contains the values of the bulk
moduli B = (cj; +2¢12)/3 and the anisotropy factors

Table 1. Keating’s model, the sphalerite structure: values of
,elastic constants™ @ and B, the Kleinman’s parameter £, the elastic
constants Cij, the ratio R, the bulk compression modulus B and
the anisotropy factors A’ and A (a, 8, Cij and B are given in units
of GPa). The upper row of the values the initial values Cj; from
the papers specified in the extreme left column, the lower row the
results of the Keating calculations, only the values different from
the initial ones

Calculati
aoi)‘iiiti"“ 3DXC |cnlcnl|cu| R| B | A | A
1 SiC 400|100 | 250 | 1.19 | 200 | 1.50 | 0.60
8] a =700 210 1 071
B =300
£ =0.40
GeC  |300|100 200|133 166|167 050
a = 600 150 1 067
B = 200
£ =10.50
SnC {200 80 |120|1.17 | 120|180 |0.50
a = 440 94 | 1 0.64
B =120
£=0.57
2 SiC 329165163 1.19 220 | 200 | 0.50
5] a =824 133] 1 0.60
B =164
£ =067
GeC  |297|124| 141|103 |188 | 184|061
a = 669 137] 1 0.63
B =173
£ =035
3 SiC |385|135|257| 135|218 | 1.69 | 0.49
20,21] | a =790 190 1 0.66
B =250
£=052
4 SIC | 411|164 |194|1.00 | 246 | 1.80 | 0.64
2221] | =903 1
B =247
£=0.57
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Table 2. Keating’s model, wurtzite structure: the values of the
parameter D and elastic constants Cij (in units of GPa). The upper
row of the values results of the calculations by the formulas of the
Keating’s model, in brackets the calculation results of the paper [8]
for option 1 and the paper [20] for option 2

Calculati

aocpliiz;on BDXC| ci1 | €33 | C4 | Cos | Ci2 | Ci3
1 SiC 456 | 481 166 | 185 | 85 | 60
8] D =5 (523)|(558) | (156)|(215) | (93) | (44)

GeC | 343 | 365 | 113 | 132 | 89 | 65
D =5 | (441) | (488) | (137) | (181) | (79) | (37)

SnC | 229 | 245 | 68 79 | 73 | 58

D=4
2 SiC | 378 | 403 | 88 | 111 | 153|128
5] D=7
GeC | 343 | 366 | 85 | 123 [ 112 90
D=6
3 SiIC | 446 | 474 | 141 | 162 | 119 91
[2021] |D=6
4 SiC | 471 | 502 | 141 | 163 | 149 | 118
[2221] |D=9

A’ = (c1; +2c12)/c11 [7) and A = cs/Cyq [22].2 The values
of the elastic constants of the compounds XC with the
wurtzite structure (2H) are given in Table 2.

Analysis of the obtained results shows that all the elastic
constants of the SiC — GeC — SnC row are decreasing. The
exception is the value €13 for 2H-GeC when calculating as
per the option 1 using the results of the paper [8] (see
Table 2). Note that for this case the value R = 1.33, which
is a considerable deviation from the value R=1 of the
Keating’s model. The seems strange result is Cijp > Caq
obtained for 3C-SiC in [5] (Table 1, option 2), as in all
other studied cases C1y < Ca4. It is also necessary to indicate
significant spread of values of the elastic characteristics for
fairly well studied silicon carbide (except for the values Cjj
given in Tables 1 and 2, see, for example, [2,23]). Despite
the mentioned spread of the absolute values cjj, their
relative values Ci*j = Cjj/C11, shown in the Figures 1 and 2,
exhibit common features for all the compounds XC and all
the calculation options. The exclusions are correlated again
to the according to the calculation option 2. Variations of
the anisotropy factors A’ and A are insignificant for all the
calculation options. Note that the experimental values Cjj

2 All the values of the elastic constants and the bulk moduli (including
those from the papers of other authors) were rounded by us to integer
values. For the elastic constant ¢y; of the paper [8] we (fairly arbitrarily)
accepted the value of 300 GPa (Table 1). The thing is that according to [§]
there is an approximate equality C;; ~ C44 ~ 200 GPa. This result seems
erroneous to us, as the equality of these elastic constants can not be found
anywhere else (as far as we know).



610

S.Yu. Davydov

1.0
Keatig model, ZB

s 0.8 |
&
]
Q
.8
< 0.6F
(]
2
=
]
a4

04

0.2

‘n €12 C44

Figure 1. Keating’s model, the sphalerite structure, or that of zinc
blende (ZB): values of the relative elastic constants ¢{j = Cij/Ci1,
calculated by the formulas (1). The designations are shown in
the figure, the digit near the chemical formula corresponds to the
calculation option of Table 1. The thin straight lines are used for
clarity.
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Figure 2. Keating’s model, the wurtzite structure (W): values
of the relative elastic constants Cj = Cij/Cu1, calculated by the
formulas (3). Designations are the same as in the Fig. 1. The thin
straight lines are used for clarity.

for 3C-SiC, used in the option 4 and given in Table 4.6 of
the paper [22], are almost exactly described by the Keating’s
model.

In the paper [15] (see also [22]) Martin showed that
in the cubic crystals of the AyBs_n compounds the ratio

X =pB/a tends to decrease with increase in ionicity fi
as per Philips [24]. From the calculation as per the
option 1 for SiC, GeC and SnC, we obtain X = (.42,
0.33 and 0.27, respectively; in the calculation as per the
option 2, for SiC and GeC we have x = 0.20 and 0.26,
thereby doubting results of the study [5]. An issue of the
ionicity of the compounds XC will be studied by us in
Section 3.1.

Now, we study the dependences of the elastic constants
on the pressure p, by replacing, as in [21], a and S with
@ =a-+apand 8 =f + bp, where a and b dimensionless
coefficients (hereinafter the tilde indicates that the corre-
sponding value depends on the pressure). Then, instead
of (1) we get:

Cii=c¢y1 + [(a+ 3b)/4]p, Ch=Cpp+ [(a — b)/4]p,

ab+aB —af(a+b)/(a+p)
«ip p. (4

where the expression for €44 (in contrast to [21]) is
linearized by p. From (4) for the bulk compression modulus
we find B = B + (a + b)p/6. The expressions (3) can be
converted similarly.

As per data of the paper [3], for the cubic crystals SiC,
GeC and SnC we have B =206, 181, 119GPa and
B'=0B/dp=15.3, 42 and 43. As per data of the
paper [5], for 3C-SiC and 3C-GeC we have B’ =3.90
and 3.45, respectively. Analysis of the dependences Cjj
on p, shown in the Fig. 4—6 of the paper [7], for
3C—XC provides ¢}, ~ €1, ~ 4, B’ ~ 4 and €}, ~ 1, where
C{j = 0Cij/ap, so that a ~ 5b ~ 10. Based on the results
of the paper [20], for 3C-SiC in [21] we have €}, = 3.49,
¢}, = 4.06, wherefrom B’ = 3.87, a =15.7, b = —0.6. To
obtain order evaluations, we assume that a = 16 and b = 0.
Then,

4x 16x
&~ 41 (14—
Cu ( +1+x>’ €3 ( +3(1+x))’

4x 8x
A1 — a1 22
c ( 3(1+x))’ 1 ( 3<1+x>>’

~/ ~/
Cyuy =0, Cu=0,

Ca4 = Caq +

where, as above, X = /a. It is easy to see that all the
derivatives C{; are smooth functions of the parameter X.
The results of the order evaluations C{; are given in Table 3.

Let us come to evaluations of the sound velocities
ve(q) = \/Ci(q)/pas, where the index & corresponds
to polarization of the acoustic wave propagating in the
direction q in the crystal AB with the density pag, Co (q)
a combination of the relevant elastic constants. In case of
the cubic crystals we have [20,21]: for the three longitudinal
acoustic waves (LA)

C[lo()]([loo]) =Ci11, C[ll()]([llo]) = (011 + 2C1p + 2044)/2,

Cuiyy([111]) = (c11 + 2C12 + 4C4)/3; (6)

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 3. Keating’s model, the wurtzite structure: the order
evaluations of the dependence of the elastic constants on the
pressure (Cf; = 3€ij/0p)

Calculation o o o o
option 3D XC Cii C33 Ci2 Ci3
1 SiC 9.1 10.8 23 0.6
8] x =0.43
GeC 8.0 93 2.6 1.35
x=0.33
SnC 74 8.5 29 1.7
x =0.27
2 SiC 6.7 7.6 3.1 22
5] X = 0.20
GeC 7.3 8.4 29 1.8
x = 0.26
3 SiC 7.9 9.2 2.7 14
[20,21] x =0.32
4 SiC 74 8.5 29 1.7
[21,22] x =0.27
Table 4. Keating’s model, the sphalerite structure: sound
velocities v[L ]) (in units of km/s)
Calculation 100] | o) |y | ooy | o) | i
option 3D XC UI[_A ] UI[_A : UI[_A : U[TA ] U[TA ] U'[I'A :
1 SiC 112|126 | 122 | 81 | 6.8 | 73
8] GeC 72| 83| 80| 51 | 42 | 45
SnC 56| 65| 62| 38 | 3.0 | 33
2 SiC 101 | 118 | 116 | 64 | 51 | 56
[5] GeC 72| 84| 79| 49 | 39 | 42

Table 5. Keating’s model, the sphalerite structure: the order
evaluations of the parameter ng (q) (in units of GPa™"')

Calculation 100 110 111 100 110 111
option 3D XC nl[-A] nl[_A] ’7|[_A] n'[I'A] n'[I'A n'[I'A]

[5,7] Sic | 45| 4|1 |=2]=2

GeC 4 5 4 0 | -3 | -2

for the three transverse acoustic waves (TA)

Cio10([100]) = Cy011([100]) = Cyo01)([110]) = Caa,
Chio ([110]) = cs,
Cpig([111]) = Cpy3([111]) = (2¢s +caa)/3,  (7)

where, as above, the shear modulus cs = (C;1—C12)/2.
Taking into account that the constants of the cubic lattices

2*  Physics of the Solid State, 2022, Vol. 64, No. 6
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Figure 3. Keating’s model, the sphalerite structure or that

of zinc blende (ZB): wvalues of the relative elastic constants
(100]

(UE(JIE])A)* = 1)|_'<J$)A/vLA , calculated by the formulas (6) and (7).
Designations are the same as in the Fig. 1. The thin straight lines

are used for clarity.

SiC, GeC and SnC are equal to 4.36, 4.59 and 511A [7],
respectively, so that psic = 3.21 g/cm3, 0Gec = 5.77 g/cm3
and psnc = 6.47 g/cm3, and using the values Cj;j calculated
by us (Table 1), we will get the results of Table 4,
which quite satisfactorily agree with available experimental
data [2]. Tt is obvious that the sound velocity diminishes
when transferring from 3C-SiC to 3C-SnC. The Fig. 3 shows
the relative sound velocities (vl[_'#]) A= ['Jk T)a/V ng() As in
the case of elastic constants (Figures 1 and 2), the values
(vl[lgf% )* show the relatively weak dependence on the X
element and the calculation method.

Influence of the pressure on the sound velocity n,(q) =
= v, (q)/dp may be presented as:

LoD o @ne(a ) =5 (2B - 5 ). ®

where C/.(q) = 3C,(q)/dp [20]. For the cubic carbides of
silicon and germanium, the values of the parameter 7, (q)
are shown in Table 5. Since, in doing so Cjj were taken
from data processing of the paper [5], and ¢j; — from data
processing of the paper [7], the given values 7,(q) should
be considered to be order evaluations.

2.2. 2D structures

For graphene, the expressions for the elastic constants
of the second Cij and third Cjjx orders, as well as the
dependences Cjj on the two-dimensional pressure p were
obtained in the papers [25-27], respectively, and take the
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Table 6. Keating’s model, 2D: values of the elastic constants of
the second Cij and third Cijk orders (in units of N/m), the sound
velocities (in units of km/s) and the pressure derivatives of the
elastic constants of the second order C] i

2D XC | €11 | Ci2| —Cin1 | —Ca22 | —Cri2| Vp | Us

Q
o
N
8]
o
I~}

SiC |184|53| 1748 | 1827 | 331 |16.5|8.1(8.7|76| 1.4
GeC |[158|53| 929 | 971 | 176 |156|58|52(4.6| 0.8
SnC |117|48| 628 | 657 | 119 [10.7(49|4.5|40] 0.7
27]

SiC [177]56| 1391 | 1181 | 392 |16.6(83|7.6|5.1|1.68
[11] |156|44 | 1413 | 1186 | 155 [13.9|53|7.8(59| 0.8
GeC
(10]

following form:

_ 1 aB
011——ﬁ(4a+ﬂ+184&+ﬂ),
_ 1 ap

Cin = (16y/V3)[(1.5 - £)* + 427,
Coox = (16p/V3)[(0.5+£)° +4(1 - £)*],

Ciiz = (16p/3V3)[(1.5 — £)(0.5+ &) +4£%(1 - &),

(10)
81120_11—(0_1114-0_112) E P,
- _ _ l1—-0c _ - _ _ 1- E_
Cxn =C11 —Co2 P, Ci2 =Ci2 —Cin2 p.
(11)

Here, a and B the harmonic force constants of central and
noncentral interaction, » the anharmonic constant of the
central interaction, £ = (2a—B)/(4a +[3) the Kleinman’s
parameter of internal displacements, ¢ = C;/C1; the Pois-
son ratio, E = (¢},—C%,)/C11 the Young modulus. The
overline of the symbol means referring to the 2D structure,
for which all the elastic constants and the force constants
are expressed in N/m. The paper [27] applies the ex-
pressions (9)—(11) to graphene-like compounds AyBg_n:.
For 2D compounds XC under our study, the following
values of the parameters are obtained: «, 3,7 (in units
of N/m), X=a/B and ¢: 44, 29, 63, 0.67 and 0.28
for SiC; 40, 23, 44, 0.59 and 0.31 for GeC; 32, 15, 30,
047 and 0.34 for SnC. The results of calculation of the
elastic constants of the second and third orders and the
dependences of the elastic constants of the second order
on the pressure Cjj = dCij/dp are provided in Table 6.
At this, determining the force constants @ and S, we
proceeded from the numerical calculations of [9], whereas
for evaluation of y we used graphene data and lattice

constants’ scaling (see [27] for more details). It follows
from Table 6 that when transferring from SiC to SnC, all
the values of the elastic characteristics diminish. So, does
the ratio X = a/p.

Table 6 also shows the results of the numerical calcu-
lations [10,11]. The biggest divergence with our results
is for the elastic constants Cjj.. This is not surprising
since we have determined the values p quite approximately.
Moreover, in order to describe the diamond structure,
Keating used 3 anharmonic force constants — a central
one and two noncentral ones [14], whereas we used
only the central force constant. That is why we obtain
G| < |Eanal.

The sound velocities in the graphene-like compounds are

E(1-0)

determined by the expressions:
Ci2

vp = \/ﬁ(1+5)(1 “3%) T \E 12)
where Up the velocity of the compression wave causing the
two- -axis deformation, vs the velocity of the shear wave,
= 2Mcei/3v/30? the density of the 2D structure, Mgy the
welght of the lattice cell atoms, d the distance between the
adjacent neighbors, Whlch is equal, for SiC, GeC and SnC,
to 1.77, 186 and 2.05A, respectively [9]. From here
we have: E = 169 GPa, ¢ = 0.29, p = 0.82-10~ 6kg/m
for SiC; E = 140 GPa, o = 0.335, p =1.55-10" 6kg/m
for GeC; E =97GPa, & = 0.41, p = 1.9810~%kg/m?
for SnC, which well agrees with the results of the pa-
pers [10,11]. The results of calculation of the sound
velocities shown in Table 6 show decrease in the values
of vp and vs in the SiC— SnC row. We underline that
our model evaluations well agree with the results of the

numerical calculations [19,11].

3. Model of Harrison’s bonding orbitals

3.1. 3D structures

The Harrison’s model for the tetrahedral semiconduc-
tors [16,17,28] is a simplified option of the LCAO method,
wherein all the necessary matrix elements are specified by
simple and physically transparent analytical expressions. As
per [16,29], for the cubic crystals, the elastic constants take
the following form:

2V/3(1+2) V3(2-1)
Cu = — s W Ci2 = —3 ¥
3[/1
R B i (13)

Here, w = alV,/d3, V, = 3. 22(?12 /md?) the covalence en-
ergy of the o-bond of the sp*-orbitals of the X and C atoms,
h the reduced Planck constant, m the mass of free electron,
d=agV3 /4 the distance between adjacent neighbors, ag
the lattice constant, 4 = 0.85 the constant describing the
change of the energy V, in misorientation of the sp-orbitals,

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 7. Harrison’s model, the sphalerite structure: the values
of the covalence V, and polar V3 energies (in eV), the covalence
of the bonds «c, the elastic constants Cij, the bulk compression
module B and the shear module ¢y (all the elastic characteristics
are given in units of GPa). The upper row of the values
corresponds to using the tables of the Mann atomic terms [29], the
lower row — using the tables of the Hermann-Skillman atomic
terms [16]

3D XC \V, Vs Qc Ci1 Ci2 Cy4 B Cs

SiC 6.87 | 1.88 | 096 | 308 | 96 | 135 | 166 | 106
142 | 098 | 328 | 102 | 144 | 177 | 113

GeC | 620|193 1095|229 | 71 | 101|124 | 79
137 {098 | 253 | 79 | 111 | 137 | &7

SnC | 502 | 241 | 090 | 116 | 36 51| 64| 40
1.77 | 094 | 133 | 41 59 72| 46

forming the o-bond, ac = V,//V; + V7 the covalency of
the X—C bond, V5 = |eX—¢&F|/2 the bond polar energy,
8;( © = (eé( © 4 38%(((:)) /4 the energies of the sp’-orbitals
and e;(((;i) the energy of the s(p)-state of the X(C) atom.
From the expressions (13) we find:

Con/Cit = (2—2)/2(1 +1) = 0.31,
Cas/Cri = 92/2(1 + 1) (3 + 21) = 0.44,
R=(4+1)/(8—1) = 0.68,
£=(1-2/3)/(1421/3) =0.47,

A=3/1+1)=162, A= (3+21)/6=0.78.
The results of calculation of the elastic characteristics
are given in Table 7, wherein we assumed that a = 4.36,
459 and 5.11 A respectively for 3D SiC, GeC [7] and SnC
and used the tables of the Mann atomic terms [28] and
the Hermann-Skillman atomic terms [16]. First of all, we
note a high degree of covalence of the bonds X—C. This
makes it possible to apply the Keating’s model [13,14],
neglecting corrections [15], correlated to presence of the
charge in the X and C atoms. Secondly, the covalence
of the bonds a; reduces in the SiC — SnC row, and
their polarity @p = (1—a2)!? and ionicity as per Philips
fi = 1—a? increase. And, finally, all the elastic charac-
teristics diminish with increase in the polarity within the
SiC—SnC row. The comparison of the values of Cjj
obtained here for 3C-SiC with results of calculation as
per Keating (Table 1) show good numerical consistence
for c1; and Ca4, obtained by using the Hermann—Skillman
tables in the calculation option 2, whereas the values Cj»
differ in 1.5 times (see Table 1). Here, we shall again
doubt the results of the study [5]. Additional argument in
favor of such doubts is that the universal ratio obtained
as per Harrison Cq1:Cj2:Cqq = 1:0.31:0.44 qualitatively

Physics of the Solid State, 2022, Vol. 64, No. 6

corresponds to all the calculation options as per Keating.
The only exclusion the SiC-2 curve, which is marked in the
Fig. 1 by black squares and based on using the date from
the paper [5]. Next, as per Harrison we have A’ = 1.62
and A= 0.78, whereas as per Keating the average values
of Table 1 are A’ = 1.76 and A= 0.65. It also means the
vicinity of the results provided by the two models under
study.

Now, let us come to the hexagonal compounds. As
per [18,30], the elastic constants take the following form:

W =w 2 =W W =W
Ci1 =Cyp —A7/Cyy, C33 =C33,

W A2 W W GW A2 aW
C44 = Cyq — A%/Cgs>  Cgs = Cos — A7/Cyys

W =W 22w W =W
Ciy =Cjp +A7/Chy,  Cj3 =Cy3s (14)

where A = (1/3v/2)(c11—C12—2C44)?B and
i = (c11 + Ci2 + 2c44)8 /2,
CP5 = (C11 + 2C12 + 4cus)™P /3,
Cy = (C11 — C12 + Caq)?B/3,
Ceg = (C11 — C12 + 4c4s)B /6,
¢ = (C11 + 5C12 — 2¢44)?B /6,

E\g = (C11 + 2C12 — 2¢44)?B/3. (15)

Note that the correction for the internal stresses A%/Cly
is similar to the correction D in the formulas (3), while
the correction A%/Cly corresponds to the second summand
in the expression for €44 in (3). The calculation results
are shown in Table 8, from which it follows, firstly, that
all the elastic constants diminish in the SiC — SnC row,
as in the cubic compounds. Secondly, the relationships
C\i"j’/ C\l"{ are universal, i.e. they do not depend on a specific

Table 8. Harrison’s model, the wurtzite structure: the values of
the elastic constants C\i’\jl (in units of GPa) and the relative elastic
constants C}’}'/C‘l’\{. The upper row of the values corresponds to
using the tables of the Mann atomic terms [29], the lower row —
using the tables of the Hermann—Skillman atomic terms [16]

W w w W W w
3D XC Cii C33 Cys4 Ce6 Ciz Ci3

SiC 337 347 116 125 86 77
359 369 123 134 92 81

GeC 251 258 86 94 64 56
277 285 95 103 71 63

SnC 127 131 44 47 35 29
146 150 50 55 37 32

clf /ey 1 103 | 034 | 037 | 026 | 023
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compound and the used tables of the atomic terms, (which
follows from the formulas (13)—(15)). Moreover, the
obtained values of c/¥/cf{ quantitatively agree with the
calculation results as per Keating (Fig. 2). Again, the
only deviation the calculation results as per the option 2.
Unfortunately, direct comparison with the experimental
values C\i’\j’ is excluded even for the silicon carbide, since,
as it is known to the author, the 2H-SiC single crystals
are still not produced. In connection therewith, invariants
may turn out to be useful combinations of the elastic
constants, whose value does not change when transferring
from the sphalerite to wurtzite, to be constant for all the
hexagonal polytypes NH, where N is equal, for example, to
2,4,6,8 [30]:

(c11 + i)™ = 2(cy1 + 212 + €44)?B/3,
M = (11 + 2c12 + 4c44)7B/3,

c® = (c1a + 2¢12 — 2¢44)/3. (16)

Thus, for example, taking up the experimental values
cfB =390, c/P =142 and cf? =256 GPa [23], we ob-
tain (ci1 4 C12)N" =620, ¢l =566 and c)i' = 54 GPa.
However, the invariants (16) are insufficient to determine
a full set of the values c}.

The sound velocities v[ijk] and their relative values

- L(T)A
vl[_'(% N vl[_l,go] calculated by the formulas (6) and (7) for the

cubic crystals are given in Table 9. Comparison with the
calculations as per Keating (see Table 4 and Fig. 3) shows
practical identity of the results obtained.

Now, let us consider the evaluations of the anharmonic
properties of the cubic crystals XC. As it is shown in [31],
the dependences of the bulk moduli on the pressure B’ and
the temperature T and the thermal expansion coefficient at

Table 9. Harrison’s model, the sphalerite structure: the sound

velocities vEgﬁ)A (in units of km/s) and the relative velocities

(vl[_igﬁ)A)* = vl[_igﬁ)A/vl[_lXO]. The upper row corresponds to using the
tables of the Mann atomic terms [29], the lower row — using the

tables of the Hermann-Skillman atomic terms [16]

100 110 111 100 110 111
3D XC UI[_A : UI[_A ! UI[_A : U'[I'A : U[TA ! U'[I'A :

SiC 9.8 11.0 104 6.5 5.7 6.0
10.1 113 10.7 6.7 59 6.2

GeC 6.3 7.0 6.7 42 3.7 39
6.6 74 7.0 44 39 4.1

SnC 42 4.7 45 2.8 25 2.6
45 5.1 48 30 2.7 2.8

(v )" 1 112 | 106 | 067 | 059 | 06l

Table 10. Harrison’s model, the sphalerite structure: the
Griineisen constant p*, the dependences of the compression
module on the pressure B’ = 3B/dp, the linear coefficient of
thermal expansion ar (in units of 107®K™') and the dependence
of the bulk compression module on the temperature dB(T)/dT
and B~'8B(T)/aT (in unis of 10~* GPa/K and 10~*K™1)

3DXC| y* | B | ar | —3B(T)/dT | —B~'3B(T)/aT
SiC | 158|316 63 110 0.66
1.54 | 3.08 | 58 103 0.58
GeC | 160|320 73 97 0.78
1.54 | 3.08 | 64 88 0.64
SnC | 1.69 | 337 | 11.2 81 1.27
162|323 | 94 73 1.01

are specified by the following expressions:

B/ =2p*, 9B(T)/dT = —3v/3ksQ/32d>,
ar = 9%kpy*/32Vha?, (17)
where kg the Boltzmann constant,

y* = (3 —a} —2a})/2a; the Griineisen constant and
Q= (29 — 6a} — Tlay + 44ad + 4a)/ai. Note that the
expressions for dB(T)/0T and «@r are obtained in the
high-temperature limit. Results of the calculation are
summarized in Table 10. For 3C-SiC the evaluations [32,33]
provide y* ~ 1, which in 1.5 times lower than our result.
On the other hand, the experimental values B’ = 3.57 [34]
and 2.9-4.0 [33,35] for 3C-SiC well agree with our
evaluation. The same refers to the thermal expansion,
too: for the high temperatures the experiment provides
ar ~5-107°K™" [2,35-37].  As per [32] and [38],
for 3C-SiC we have, respectively, 9B(T)/0T ~ —250
and ~ —290 (in units of 10~* GPa/K), which significantly
exceeds the value obtained by us. This situation may be
corrected by inputting interatomic short-range repulsion
into the Harrison’s model [39,40]. At this, however, the
universal dependences annihilate and the formulas are
somewhat complicated. That is why we have neglected this
correction, so have we taking into account metallicity of the
interatomic bonds [16,17].

3.2. 2D structures

The elastic properties of the graphene-like compounds
in the Harrison’s model are described in the paper [27].
Besides the crystallography, the 3D and 2D compounds
differ in bond hybridization: the first case includes usage
of the sp*-orbitals, while the second one — the sp*-orbitals.
For the sp*-hybridization the covalence energy is equal to
V, = 3.26(h2/md?) [17], where d = 1.77, 1.86 and 2.05A
for 2D SiC, GeC and SnC [9], while the polar energy
Vs = [eX—€C|/2, where ;@) = (1) 4 265©)/3 (as in
the item 2.2, all the 2D characteristics will be provided
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Table 11. Harrison’s model, 2D: the covalence \72 and polar Vs
energies (in units of eV), the band covalence ac, kg — the force
constant of the central interaction (in units of eV/AZ), the linear
coefficient of thermal expansion a7 (in units of 107®*K~') and
the dependence of the compression module on the temperature

dB(T)/dT (in units of 10~* GPa/K)

A N I ko |ar | —0B(T)/0T
3D XC V2 V3 Ac k0
ac=1
SiC | 793|193 |097 | 8661012 |11 0.66

148 | 0.99 | 9.62

GeC | 718 195|097 (710 | 830 |12 0.72
1.39 1 0.99 | 7.89

SnC | 5912241093 |392| 563 |15 0.90
1.85] 095 | 430

with the overline). The numerical values of the energies
V,, V3 and the bond covalences a are give in Table 11. By
neglecting the metallicity of bonds in [27,41], we obtain
the force constants of the central kg and noncentral k;
interactions in Ko = 4acVa(2a2—1)/d?, ki = AKo/3, where
the constant 1 = 0.66 is the 2D analog of the 3D constant
A [42]. The values Ko, diminishing in the SiC — SnC row,
are given in Table 11.

Turning to the evaluations of the anharmonic character-
istics, we assume for all the compounds that ¢ = 1. Such
simplification is similar to usage of the Keating’s model [13]
instead of the Martin’s model [15]. As per [41], we will
obtain p* =2 and B’ = 2py* =4 for all the graphene-like
compounds. Further on, we have:

ar = 4kp/Va, B_l(aB(T)/E)T) = —24kg/V,.  (18)
The numerical values ar and B~!(dB(T)/dT) are given
in Table 11. Thus, for the 2D structure a7 is in two
times bigger than for 3D. According to our evaluations [41]
based on the results of the paper [43], within the
temperature range 900—2100K for graphene the middle
value B~1(dB(T)/dT) ~ —0.5-10~*K ", which perfectly
agrees with our results. The value |B~!(0B(T)/9T)| is
growing when transferring from SiC to SnC. The same
dependence is for the 3D compounds, too (see Table 10).
Note the vicinity of the values B~!(dB(T)/dT) for 2D
and 3D structures.

4. Concluding remarks

The Keating’s model quite adequately describes the
elastic properties of the tetrahedral crystals, as meant by an
approximate fulfilment of the condition (2) for a number of
the AyBg_n semiconductor compounds. A weak side of this
model is that it is necessary to determine a value of the force
constants by the experimental values C;j (which refers to all

Physics of the Solid State, 2022, Vol. 64, No. 6

the models with force constants). The Harrison’s model
somewhat more poorly describes the AyBg_n elasticity,
but has only three parameters (the lattice constant and the
energy terms of the s- and p-states of the A and B atoms),
with neither of them being adjustable. Furthermore, the
Harrison’s model allows evaluating the temperature impact
on the elasticity. The present study shows that both the
models are quite suitable for describing the elasticity of
the XC compounds.

The principle difference of the Keating and Harrison
approaches is correlated to modeling the noncentral forces.
In the Keating’s model, the force constant S corresponds to
a crystal reaction to the change of the angle between the
two neighboring o-bonds (an angular stiffness) belonging
to one atom. In the Harrison’s model, the angles between
the neighboring sp*-orbitals centered at the same atom, are
considered to be fixes ones (a rigid tetrahedron), while the
shear deformation is contributed by misorientation of the
spk-orbitals of the neighboring atoms making up the o-bond.

We have had to make several simplifications in the present
study. Thus, for heteropolar compounds, the Keating’s
model is used, so not the Martin’s. The Harrison’s model
neglects the metallicity of bonds and short-range repulsion.
Such simplifications allowed us obtaining simple analytical
expressions for the elastic and thermoelastic characteristics,
which are convenient for usage by experimenters and
technologists. By using the obtained results, it is easy,
in principle, to evaluate the characteristics of the ternary
semiconductor compounds Sij_xGe,C [44].

The 3D and 2D compounds of SnC and, above all, GeC,
studied by us, are of both a theoretical and application
interest. Besides the elasticity, there is a study of the
electron spectrum [3,4,6-9,44,45], the magnetic properties
being doped by chromium [46], thermal conductivity [8],
the GeC/SiC, SnC/SiC, SnC/GeC [47] and GeC/GaN [48]
superlattices are created, and application of 2D GeC in
lithium batteries is under consideration [49,50].

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] A.A. Lebedev, PA. Ivanov, M.E. Levinstein, EN. Mokhov,
S.S. Nagalyuk, A.N. Anisimov, P.G. Baranov. UFN 189, 803
(2019) (in Russian).

[2] M.E. Levinshtein, SL. Rumyantsev, M.S. Shur. Properties of
Advanced Semiconductor Materials: GaN, AIN, InN, BN,
SiC, SiGe. Wilay, N.Y. (2001).

[3] R. Pandey, M.C. Darrigan, M. Causa. J. Appl. Phys. 88, 6462
(2000).

[4] A.Benzair, H. Aourag. Phys. Status Solidi B 231, 411 (2002).

5] W Sekkal, A Zaoui. New J. Phys. 4, 9, 1 (2002).

[6] A. Mahmood, L.E. Sansores. J. Mater. Res. 20, 1101 (2005).

[7] A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, R. Liu. J. Appl.
Phys. 108, 063531 (2010).

[8] R. Muthaiah, J. Garg. arXiv: 2107.04596.



616

S.Yu. Davydov

[9] H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Ak-
turk, R.T. Senger, S. Ciraci. Phys. Rev. B 80, 155453 (2009).

10] Q. Peng, C.W. Ji, S. De. Mechan. Mater. 64, 135 (2013).

11] Q. Peng. Mechan. Mater. 148, 103473 (2020).

2] W. Zhang, C. Chai, Q. Fan, M. Sun, Y. Song, Y. Yang,
U. Schwingenschlog. ACS Appl. Mater. Interfaces 13, 14489
(2021).

| PN. Keating. Phys. Rev. 145, 637 (1966).

] PN. Keating. Phys. Rev. 149, 674 (1966).

] RM. Martin. Phys. Rev. B 1, 4005 (1970).

| W. Harrison. Elektronnaya struktura i svoistva tverdykh tel.

Mir, M. (1983) (in Russian).

[17] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).

[18] R.M. Martin. Phys. Rev. B 6, 4546 (1972).

[19] S.Yu. Davydov, A.V. Solomonov. Pis’'ma v ZhTF 25, 15, 23

(1999) (in Russian).
[20] M. Prikhodko, M.S. Miao, W.R.L. Lambrecht. Phys. Rev. B
66, 125201 (2002).

[21] S.Yu. Davydov. Physics of the Solid State 46, 1169 (2004).

[22] S.P. Nikanorov, B.K. Kardashov. Uprugost’ i dislokatsionnaya

neuprugost” kristallov. Nauka, M. (1985) (in Russian).

[23] M. Jiang, J.W. Zheng, H.Y. Xiao, ZJ. Liu, X.T. Zu. Sci. Rep.

7, 9344 (2017).

] 1.C. Phillips. Rev. Mod. Phys. 42, 317 (1970).

] S.Yu. Davydov. Physics of the Solid State 52, 756 (2010).

| S.-Yu. Davydov. Physics of the Solid State 53, 617 (2011).

] SYu. Davydov, O.V. Posrednik. Physics of the Solid State 63,

304 (2021).
[28] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
[29] S.Yu. Davydov. FTP 54, 1177 (2021) (in Russian).
[30] S.Yu. Davydov, SK. Tikhonov. Physics of the Solid State 37,
2221 (1995).

[31] S.Yu. Davydov, SK. Tikhonov. Physics of the Solid State 30,
968 (1996).

[32] D. Varshni, S. Shriya, M. Varshni, N. Singh, R. Khemata.
J. Theor. Appl. Phys. 9, 221 (2015).

[33] C. Nist, Y. Meng, A.A. MacDowell, J. Yan, V. Prakapenka,
S-H. Shim. J. Geophys. Res. Planets 122, 124 (2017).

[34] LV. Alexandrov, A.F. Goncharov, SM. Stishov, E.V. Yakoven-

ko. Pis’ma v ZhETF 50, 116 (1989) (in Russian).

[35] K. Daviau, KK.M. Lee. Crystals 8, 217 (2018).

[36] DN. Talwar, J.C. Sherbondy. Appl. Phys. Lett. 67, 3301

(1995).
[37] Z. Li, R.C. Dradt. J. Mater. Sci. 21, 4366 (1985).
[38] D. Leisen, R. Rusanov, F. Rohlfing, T. Fuchs, C. Eberl,
H. Riesch-Oppermann, O. Kraft. Rev. Sci. Instruments 86,
055104 (2015).
9] W.A. Harrison, E.A. Kraut. Phys. Rev. B 37, 8244 (1988).
0] F. Bechstedt, W.A. Harrison. Phys. Rev. B 39, 5041 (1989).
1] S.Yu. Davydov, O.V. Posrednik. Physics of the Solid State 57,
819 (2015).
[42] S.Yu. Davydov. Physics of the Solid State 51, 2041 (2009).
[43] KV. Zakharchenko, M.L. Katsnelson, A. Fasolino. Phys. Rev.
Lett. 102, 046808 (2009).

[44] M. Manikandan, A. Amudhavalli, R. Rajeswarapalanichamy,
K. Iyakutti. Phil. Mag. (2019).
DOL: 10.1080/14786435.2018.1563310

[45] T-Y. Liu, X-X. Liao, H-Q. Wang, J.-C. Zheng. J. Mater. Chem.,
22, 10062 (2012).

[46] N. Mediane, F. Goumrhar, L.B. Drissi, K. Htoutou,
R. Ahl Laamara. J. Supercond. Novel Magn. (2020).
DOIL: https://doi.org/10.1007/s10948-019-05397-x

[47) YuM. Basalayev, EN. Malysheva. FTP 51, 647 (2017) (in
Russian).

[48] P. Lou, JY. Lee. ACS Appl. Mater. Interfaces 12, 14289
(2020).

[49] Y. Ji, H. Dong, T. Hou, Y. Li. J. Mater. Chem. A. Issue 5.
2018. DOL: 10.1039/C7TA10118J

[50] N. Khossossi, A. Banerjee, 1. Essaoudi, A. Ainane, P. Jena,
R. Ahuja. J. Power Sources 485, 229318 (2021).

Physics of the Solid State, 2022, Vol. 64, No. 6



