11

Рентгенолюминесцентные свойства пленок оксида цинка на М- и А-плоскостях сапфира

© И.Д. Веневцев¹, А.Э. Муслимов², А.П. Тарасов², Л.Л. Эмирасланова³, А.М. Исмаилов³, В.М. Каневский²

¹ Санкт-Петербургский Политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

² Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН,

119333 Москва, Россия

³ Дагестанский государственный университет,

367000 Махачкала, Республика Дагестан, Россия

e-mail: Venevtsev.lvan@gmail.com

Поступила в редакцию 20.06.2022 г. В окончательной редакции 19.07.2022 г. Принята к публикации 05.09.2022 г.

> Представлены результаты сравнительных исследований процессов высокотемпературного синтеза, люминесцентных и сцинтилляционных характеристик пленок ZnO на подложках сапфира M(100)- и A(110)ориентаций. Показано, что использование метода магнетронного осаждения позволяет формировать на фоне сплошной пленки ансамбли индивидуальных [001]-микрокристаллов ZnO с выраженными рентгенолюминесцентными свойствами. Кинетика рентгенолюминесценции характеризуется двумя компонентами: быстрой компонентой со временем спада порядка наносекунды и длинным плечом медленной люминесценции. Исследование пленок методом фотолюминесцентной спектроскопии выявило особенности спектров краевой люминесценции образцов, в частности присутствие различных экситонных каналов излучения. Обнаружены и интерпретированы различия в спектральных параметрах полосы краевой люминесценции в случае оптического и рентгеновского типов возбуждения.

> Ключевые слова: пленки, микрокристаллы, оксид цинка, рентгенолюминесценция, фотолюминесценция, экситонное излучение.

DOI: 10.21883/OS.2022.11.53780.3845-22

Введение

Радиационно-стойкие сцинтилляционные материалы на основе оксидов могут использоваться в качестве перспективных детекторов различных видов излучения. С точки зрения доступности исходных компонентов и получения высоких сцинтилляционных характеристик детектора наиболее перспективными часто считаются структуры на основе ZnO [1,2]. ZnO характеризуется присутствием краевой (380-400 nm, с характерным временем высвечивания менее 1 ns [3]) и зеленой дефектной (максимум в области 450-650 nm, характерное время высвечивания порядка $1 \mu s$ [4]) компонент люминесценции. Из-за отсутствия коммерчески доступной технологии изготовления монокристаллов ZnO [5,6] наибольший интерес сегодня представляют керамика, пленочные технологии, ансамбли микро- и нанокристаллов различной морфологии. В нашей недавней работе [7] были представлены результаты исследования оптических и люминесцентных свойств материалов на основе ZnO различной микроструктуры и морфологии. Наилучшими сцинтилляционными характеристиками (кинетика спада менее 1 ns) обладали легированная галлием керамика ZnO и ансамбли нано- и микроструктур ZnO. При этом

керамические материалы ZnO демонстрировали наибольшую прозрачность (> 50%) при толщине 0.5 mm.

Одной из основных задач, связанной с использованием ZnO в сцинтилляционных детекторах, является повышение разрешающей способности. Разрешающая способность сцинтиллятора резко снижается при низкой оптической гомогенности и однородности материала, большой зернограничной поверхности. Ансамбли микрокристаллов ZnO не отличаются высокой однородностью и прозрачностью. В числе прочих факторов повышения разрешающей способности монокристаллического или керамического сцинтиллятора ZnO возможно добиться путем снижения толщины образца до нескольких десятков микрометров, однако это технологически сложно реализовать. В этой связи весьма перспективными являются пленки ZnO толщиной до нескольких десятков микрометров с высоким кристаллическим качеством. Преимуществом использования таких пленок является технологическая возможность нанесения непосредственно на фотодетектор, а также высокая степень прозрачности к собственному излучению. Ограничивающим для массового использования пленок ZnO фактором является их низкая скорость роста. Использованная в [8,9] методика "неохлаждаемой мишени" с увеличенной до 16 nm/s скоростью роста не позволила получить результат: пленки росли дефектными, на спектрах рентгенолюминесценции (РЛ) наблюдалась преимущественно зеленая люминесценция (ЗЛ). Рекристаллизационный отжиг на воздухе при 1000°С в течение 10 h приводил только к усилению ЗЛ за счет генерации дополнительного количества кислородных вакансий.

Известно, что плоскость (001) в кристаллической структуре ZnO обладает наименьшей поверхностной энергией [10]. Благодаря этому нашла широкое применение технология изготовления прозрачных электродов на основе ZnO, которые представляют собой плотный массив [001]-ориентированных кристаллитов ZnO [11]. Традиционно прозрачные электроды формируются при низких температурах, и нет практической необходимости выращивать пленки толщиной свыше нескольких микрометров. Для высокой чувствительности рентгеновского детектора необходима минимальная толщина слоя сцинтиллятора в несколько десятков микрометров. При использовании стандартной технологии нанесения прозрачных электродов пленки являются высокодефектными и по мере разрастания отслаиваются от подложки. Решить проблему отслаивания пленки ZnO при сохранении высокой скорости роста и кристаллического качества предлагается с использованием высокотемпературного синтеза на подложках сапфира небазисной ориентации. В процессе роста пленок ZnO неполярных и полуполярных ориентаций было замечено следующее: ориентированные вдоль [100], [110], [103] эпитаксиальные пленки ZnO по мере разрастания трансформируются в [001]-текстурированные. В силу структурногеометрического соответствия решеток на межфазной границе в процессе роста пленок ZnO на А- и Мплоскостях сапфира реализуются следующие ориентационные соотношения: (001)-ZnO|| (110)-Al₂O₃ [12], (103)-ZnO || (100)-Al₂O₃ [13]. С научной и технологической точек зрения весьма интересна эволюция структуры в процессе синтеза "толстых" пленок ZnO и ее влияние на скорость роста и свойства. В настоящей работе представлены результаты сравнительных исследований процессов высокотемпературного синтеза, люминесцентных и сцинтилляционных характеристик "толстых" пленок ZnO на подложках сапфира M(100)- и A(110)ориентаций.

Материалы и методы

Пластины сапфира М- и А-ориентаций обрабатывались химико-механическим способом. На поверхность пластин наносились пленки ZnO (далее М-тип и А-тип) с использованием традиционной "охлаждаемой" мишени на автоматизированном магнетронном комплексе "ВАТТ АМК-МИ" (ООО "ФерриВатт", Казань). Перед каждым распылением вакуумная камера откачивалась до остаточного давления ~ 9 · 10⁻⁵ Ра. Давление рабочего газа (кислород) регулировали с помощью РРГ-10 (ООО "Элточприбор", Россия) и измеряли широкодиапазон-

Рис. 1. Картины РД образцов пленок ZnO на сапфире А-типа (кривая *1*) и М-типа (кривая *2*). Обозначения: * — сапфир. JCPDS: 043-0002.

ным вакуумметром TELEVAC CC-10 (США). Температура подложки 750°С. Нагрев подложки осуществлялся резистивным нагревателем (нихром). Время осаждения 2h. С целью релаксации микронапряжений и повышения кристаллического качества образцы проходили постростовый отжиг в открытой атмосфере при 800°С в течение 2h.

Исследования рентгеновской дифракции (РД) проводили на дифрактометре X'PERT PRO (PANalytical, Нидерланды) в геометрии "на отражение" методом Брэгга-Брентано, излучение CuK_{α} ($\lambda = 1.5418$ Å) с использованием Ni β -фильтра. Микроскопические исследования проводились на растровом электронном микроскопе Jeol Neoscope 2 (JCM-6000). Толщины пленок определялись исследованием поперечных срезов пленок методом электронной микроскопии.

Измерения спектров РЛ производились в геометрии "на отражение" под непрерывным рентгеновским возбуждением (40 kV, 10 mA, вольфрамовый анод). Для регистрации оптического излучения использовался монохроматор МДР-2 и система счета фотонов Hamamatsu H8259-01. Спектр излучения снимался в диапазоне 350-650 nm. При этом производилась корректировка на спектральную чувствительность установки.

Фотолюминесценция (ФЛ) пленок возбуждалась излучением 3-й гармоники Nd: YAG-лазера (длина волны 355 nm, частота повторения 15 Hz, длительность импульсов ≈ 10 ns) и регистрировалась с помощью охлаждаемой ПЗС-камеры, совмещенной с монохроматором МДР-206. Размер лазерного пятна на образцах составлял около 200 μ m.

Исследования кинетик РЛ производились при импульсном рентгеновском возбуждении методом однофотонного счета при помощи установки, описанной в [14].

Рис. 2. РЭМ-изображения поверхности пленок ZnO: тип M (a), тип A (b). Типичные изображения [001]-микрокристаллов ZnO (c).

Все исследования проводились при комнатной температуре.

Результаты и обсуждение

Рентгенодифракционные и микроскопические исследования образцов

Образцы пленок ZnO полученные как на А-плоскости сапфира, так и на М-плоскости сапфира по данным РД были преимущественно текстурированы вдоль [001] (рис. 1). Кроме основного 002-рефлекса на картинах РД образцов выделяются 101-рефлексы и близкие им 102и 103-рефлексы. Ориентированные [103]-кристаллиты традиционно наблюдаются в тонких пленках ZnO [13] и изоструктурных с ними нитридах [14]. На картинах РД пленок (103)-ZnO зачастую отмечается наличие близких к ним 102-рефлексов [15]. Что касается включений [101]кристаллитов в пленках, их присутствие отмечалось и ранее [16], а возникновение связано с генерацией дислокаций на этапе зародышеобразования. Следует отметить, что все рефлексы пленок ZnO были сдвинуты в область больших углов в сравнении с данными для стандартного образца (JCPDS: 043-0002). Кроме того, для пленки Атипа явно выражен рефлекс подложки (рис. 1, кривая 1), что говорит о меньшей толщине пленки.

Толщины образцов по результатам исследования срезов методом растровой электронной микроскопии (РЭМ) существенно различались: порядка $11\,\mu$ m для М-типа и $6\,\mu$ m для А-типа. Поверхность образцов по данным РЭМ (рис. 2) представляла собой сплошной слой, на котором формировались ярко выраженные [001]-микрокристаллы ZnO (рис. 2, *c*). Латеральный размер [001]-микрокристаллов достигал $10\,\mu$ m. При

Оптика и спектроскопия, 2022, том 130, вып. 11

этом в образце М-типа плотность распределения [001]микрокристаллов была многократно выше, чем в образце А-типа (на площади $100 \times 100 \,\mu$ m наблюдалось более 20 микрокристаллов). Также в образце М-типа преобладал и средний размер микрокристаллов.

На основании полученных результатов можно предположить модель роста толстых пленок ZnO на М- и А-сапфире. На начальном этапе в соответствии с классическими представлениями о структурно-геометрическом соответствии решеток на подложке М- и А-сапфира формируются пленки (103)-ZnO и (001)-ZnO соответственно. Пленки ZnO формируются в условиях недостатка кислорода в газовой фазе, поэтому растут аниондефицитными, со сжатой кристаллической решеткой. С этим связано смещение всех рефлексов пленки в сторону больших углов (уменьшение параметров кристаллической ячейки). Судя по данным РД (рис. 1) и РЭМ (рис. 2), в процессе разрастания осуществляется переход от сплошной пленки к зарождению и разрастанию индивидуальных [001]-микрокристаллов ZnO. Основным условием непрерывного роста структур ZnO является избыток цинка в приростовой зоне. Ориентационная эволюция связана с преобладанием нормальной составляющей роста микрокристаллов ZnO при одновременном снижении латеральной составляющей диффузии адатомов цинка. В этом случае, согласно моделям, предложенным в [17,18], при снижении латеральной составляющей диффузии осуществляется переход к столбчатой структуре осадка. При достаточно высокой температуре пористая столбчатая структура может трансформироваться в индивидуальные микрокристаллы. Снижение латеральной составляющей диффузии адатомов связано как с увеличением шероховатости ростовой поверхности ZnO, так и с особенностями магнетронного распыления. Известно, что образец в плазме разряда находится под так называемым "плавающим потенциалом" [19]. Диэлектрическая подложка, как и растущая пленка, заряжается отрицательно, и ионизированные положительные атомы цинка, распыляемые с мишени, приобретают составляющую скорости v_{Zn} в направлении подложки. При этом диффузионная активность вдоль растущей поверхности снижается, и реализуются условия перехода к зарождени [001]-микрокристаллов. Подтверждением является переход к росту индивидуальных [001]-микрокристаллов на поверхности сплошной (001)пленки ZnO при использовании А-подложки сапфира. Этот переход отражается на кривой РД в виде уширения 002-рефлекса в сторону больших углов и уменьшения параметра ячейки пленки ZnO, растущей в условиях избытка цинка. Переход от сплошной пленки (001)-ZnO к индивидуальным [001]-микрокристаллам ZnO затруднен, поскольку энергия гомогенного зародышеобразования выше потенциального барьера встраивания диффундирующих адатомов в изломы ступеней и другие дефекты ростовой поверхности. Отсюда следует низкая плотность распределения и малые размеры [001]-микрокристаллов ZnO в А-типа пленке (рис. 2, b). В случае образца Мтипа из-за высокой поверхностной энергии плоскости (103) ZnO переход к [001]-микрокристаллам осуществляется на более ранних стадиях. Следствием более раннего перехода является плотная структура и значительно большие размеры [001]-микрокристаллов.

Таким образом, наблюдаемое на РЭМ-изображении различие толщин пленок связано с более ранним переходом к росту индивидуальных [001]-микрокристаллов ZnO в образце М-типа.

Рентгено- и фотолюминесцентные свойства образцов

На рис. 3 изображены спектры РЛ пленок ZnO на подложках А- и М-сапфира до и после отжига. Спектр излучения неотожженных пленок содержит слабую полосу краевой люминесценции (КрЛ) с максимумами около 388 и 390 nm для образца А- и М-типа соответственно. Интенсивность РЛ неотожженных пленок относительно невысокая, что затрудняет определение положения максимумов. Это может являться следствием малой толщины. Широкая полоса люминесценции в области 500-650 nm (ЗЛ) соответствует излучению собственных дефектов ZnO. Небольшая толщина пленки приводит к тому, что при облучении также возбуждается люминесценция материала подложки — некоторая доля излучения в красной области и узкие полосы в районах 550, 590 и 620 nm (для сравнения на рис. 3 добавлен спектр РЛ самой подложки). Видно, что интенсивность излучения образца ZnO М-типа примерно в 2 раза больше, чем образца А-типа, что может быть следствием различия в толщинах пленок, а также плотности распределения образовавшихся микрокристаллов.

Рис. 3. Спектры РЛ пленок ZnO: 1 — неотожженная пленка А-типа, 2 — неотожженная пленка М-типа, 3 — отожженная пленка А-типа, 4 — отожженная пленка М-типа, 5 — сапфировая подложка.

Рис. 4. Кривая спада РЛ пленки ZnO М-типа.

Отжиг привел к увеличению интенсивности РЛ обоих образцов. При этом, однако, различные части спектра изменились неодинаково. У обоих образцов примерно в 2.5 раза выросла интенсивность КрЛ (соотношение интенсивностей осталось прежним). При этом более выраженным стало отличие в положении максимума полос КрЛ. У образца А-типа максимум интенсивности пришелся на длину волны 386 nm, а у образца Мтипа — на 388 nm. Интенсивность ЗЛ также возросла у обоих образцов, однако преимущественно изменения произошли в красной области спектра. В зеленой области интенсивность люминесценции выросла только у образца А-типа.

Для отожженной пленки ZnO М-типа, имевшей наибольшую интенсивность РЛ, была измерена кинетика РЛ во временном диапазоне 0–20 ns (рис. 4). Видно, что

Рис. 5. Спектры ФЛ пленок А-типа (1) и М-типа (2), зарегистрированные при плотности мощности 80 kW/cm^2 : (a) ближний УФ и частично видимый диапазоны, (b) ближний УФ диапазон (только КрЛ). На вставке (b) — зависимость интегральной интенсивности КрЛ от уровня фотовозбуждения для пленки М-типа.

основная компонента люминесценции лежит в диапазоне 0-3 ns и имеет время спада (без учета ширины возбуждающего импульса) порядка 0.9-1.1 ns, что соответствует КрЛ ZnO.

Поскольку отжиг привел к усилению люминесценции пленок, и в целом образцы, особенно пленка М-типа, демонстрируют неплохие сцинтилляционные свойства, в частности быстрый спад РЛ, представляло интерес изучить также и их ФЛ-свойства. Сравнение спектров ФЛ и РЛ способствует интерпретации природы излучения, в частности, полученного при рентгеновском возбуждении [20].

На рис. 5, а показаны спектры ФЛ отожженных пленок А- и М-типов в УФ и видимом диапазонах длин волн, зарегистрированные при плотности мощности возбуждения 80 kW/cm². Оба спектра демонстрируют полосы КрЛ с максимумами 380.5 и 379 nm в случае пленок А- и М-типа соответственно. Видимое излучение пленок достаточно слабо проявлялось в виде плеча КрЛ в диапазоне 420–570 nm в спектре пленки М-типа и полосы в диапазоне 450–600 nm в спектре пленки А-типа.

Более детально спектры КрЛ пленок можно рассмотреть на рис. 5, *b*. Полоса КрЛ обеих пленок состоит из нескольких компонент, в частности наблюдается отчетливое длинноволновое плечо основного максимума. В случае пленки М-типа оно проявляется особенно явно, его максимум соответствует длине волны примерно 391 nm.

Более ранние исследования тонких пленок ZnO, полученных в схожих условиях, показали, что концентрация свободных носителей в них составляет $\sim 10^{15}-10^{16}$ cm⁻³ [21]. Эти данные позволяют ожидать участия экситонных механизмов в люминесценции пленок при условии использования достаточно невысоких уровней возбуждения, при которых порог Мотта еще не превышен. Оценка создаваемой фотовозбуждением плотности электрон-дырочных пар с учетом их диффузии [20,22,23] дает значения, не превышающие по порядку величины 10^{17} cm⁻³, т.е. не выше пороговой плотности Мотта для ZnO, лежащей по разным данным в диапазоне $5 \cdot 10^{17} - 4 \cdot 10^{19}$ cm⁻³ [23–25].

Зависимость интегральной интенсивности КрЛ от уровня фотовозбуждения пленок, измеренная в диапазоне $10-80 \text{ kW/cm}^2$, демонстрирует линейный характер (на вставке рис. 5, *b* приведена зависимость для пленки М-типа). Такое поведение свойственно рекомбинационному излучению экситонов в отличие от люминесценции, возникающей, например, при переходах в донорноакцепторных парах или с участием мелкого уровня дефекта, где эта зависимость часто сублинейная [26–28].

Достаточно большая ширина полосы КрЛ (например, в случае пленки М-типа полуширина полосы составляет $\sim 185 \, {\rm meV}$) говорит о присутствии нескольких каналов излучения. Помимо излучения, обусловленного рекомбинацией свободных экситонов, можно предположить участие его фононных повторений (энергия LO-фонона в ZnO составляет 72 meV). Разность между основным максимумом (379 nm) и его плечом (~ 391 nm) в спектре КрЛ пленки М-типа составляет около 100 meV, а учитывая взаимное перекрытие спектральных компонент, это расстояние на самом деле еще больше. Это позволяет предположить, что длинноволновое плечо обусловлено в основном вторым фононным повторением излучения свободного экситона. Стоить отметить, что при относительно небольших плотностях мощности возбуждения в этой спектральной области в пленках и микрокристаллических структурах ZnO сообщалось также и о других типах экситонного излучения, в частности об излучении, обусловленном рассеянием экситонов на свободных электронах [29,30]. Для прояснения возможности участия этого и других типов излучения необходимы дальнейшие исследования. В целом, достаточно высокая интенсивность КрЛ исследуемых пленок, наблюдаемой при оптическом возбуждении, а также явный экситонный

Рис. 6. Спектры КрЛ отожженных пленок А-типа (a) и Мтипа (b), зарегистрированные при оптическом (1) и рентгеновском (2) типах возбуждения. Плотность мощности фотовозбуждения 80 kW/cm^2 . Спектры РЛ представлены экспериментальными точками и сглаженными кривыми (взвешенное усреднение по соседним точкам, 4 точки).

характер этого излучения говорят о высоком качестве образцов.

На рис. 6 приведено сравнение спектров КрЛ отожженных пленок А-типа (рис. 6, a) и М-типа (рис. 6, b), зарегистрированных при рентгеновском и оптическом типах возбуждения. Спектры нормированы на максимум, а в случае РЛ дополнительно к экспериментальным спектрам, показанным точками, для удобства сравнения приведены сглаженные спектры (взвешенное усреднение по соседним точкам, 4 точки). Видно, что разница в положении максимумов полосы КрЛ в спектрах РЛ и ФЛ составляет около 6 nm в случае А-пленки и 9 nm в случае М-пленки, что сравнимо с величиной энергии LO-фонона в ZnO. Помимо этого, наблюдаются также разные форма и ширина полос КрЛ при различных типах возбуждения. В частности, полосы КрЛ пленок в случае РЛ не содержат явных особенностей, связанных со вкладами различных типов излучения, как наблюдается

в спектрах ФЛ — это особенно видно в случае пленки М-типа (рис. 6, *b*).

При однофотонном возбуждении за счет сильного поглощения УФ света в ZnO (коэффициент поглощения УФ фотонов в ZnO составляет $\sim (1-2) \cdot 10^5 \, \mathrm{cm}^{-1}$ [25]) ФЛ пленок в отличие от РЛ возбуждается в узком (до нескольких сотен nm) приповерхностном слое. Рентгеновские кванты проникают гораздо глубже в пленку на микрометры, вплоть до подложки (рис. 3 и комментарии выше). Это отличает микропленки от случая структур ZnO с наноразмерными или субмикронными кристаллитами, где доля объема материала, участвующего как в ФЛ, так и в РЛ, может быть достаточно большой, а спектры ФЛ и РЛ могут быть схожи [7,20]. В случае микропленки спектр РЛ фактически отображает суперпозицию излучений со всей толщины пленки, сглаживается, скрывая особенности излучения отдельных слоев пленки, в том числе кристаллитов различных типов и ориентаций. Спектры ФЛ при однофотонном возбуждении характеризуют в основном однотипные микрокристаллы, расположенные в приповерхностном слое пленки, и поэтому сохраняют многие особенности излучения таких микрокристаллов.

Сильное отличие в положениях максимума полосы КрЛ в случае РЛ и ФЛ пленок (рис. 6), по-видимому, связано с определяющим вкладом в РЛ излучения, возбуждаемого в объеме пленок (в сравнении с излучением приповерхностных областей, доминирующим при ФЛ). Такое излучение прежде чем покинуть пленку проходит в материале значительный путь, что приводит к его сильному поглощению. При этом более интенсивно поглощается свет с длинами волн, лежащими ближе к фундаментальному краю поглощения материала. Это приводит к относительному уменьшению интенсивности коротковолнового края полосы КрЛ и, как следствие, к красному смещению ее максимума.

Заключение

Представлены результаты сравнительных исследований процессов высокотемпературного синтеза, люминесцентных и сцинтилляционных характеристик пленок ZnO на подложках сапфира M(100)- и A(110)ориентаций. Показано, что использование метода магнетронного осаждения позволяет формировать на M(100)и A(110)-подожках сапфира (на фоне сплошной пленки) ансамбли индивидуальных [001]

В случае пленки на М-сапфире плотность ансамбля [001]-микрокристаллов ZnO оказалась значительно выше, а их линейные размеры больше, чем в случае пленки на А-сапфире, в связи с ранним переходом от роста сплошной пленки к индивидуальным микрокристаллам. В спектре РЛ образцов наблюдается интенсивная полоса КрЛ, которая отсутствовала при использовании метода "горячего" магнетронного распыления с неохлаждаемой мишенью. Кинетика РЛ (полоса КрЛ) характеризуется двумя компонентами — быстрой компонентой со временем спада порядка наносекунды и длинным плечом медленной люминесценции. Исследование пленок методом ФЛ-спектроскопии выявило особенности спектров КрЛ образцов, в частности присутствие различных экситонных каналов излучения. Помимо рекомбинационного излучения свободных экситонов предположен значительный вклад в УФ излучение образцов фононных повторений излучения свободных экситонов, в частности второго фононного повторения. Достаточно высокая интенсивность краевого излучения исследованных пленок, наблюдаемая при оптическом возбуждении, а также явный экситонный характер этого излучения подтверждают высокое качество образцов. Сравнение спектров РЛ- и ФЛ пленок позволило выявить их значительные отличия. В частности, обнаружены различия в форме полосы КрЛ и положении ее максимума. При интерпретации наблюдаемых различий учтены факты различной глубины проникновения УФ фотонов и рентгеновских квантов в ZnO, а также поглощение собственного излучения ZnO в пленке.

Таким образом, предложенная методика, включающая осаждение с помощью классического магнетрона с охлаждаемой мишенью и использование ориентационной зависимости скорости роста структур ZnO, является весьма перспективной в развитии сцинтилляционной техники рентгеновского диапазона.

Благодарности

Авторы благодарят ИРЭ им. В.А. Котельникова РАН, в частности лаб. 195, за предоставление экспериментального оборудования (договор об НТС от 14.02.2018).

Финансирование

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН в части "микроскопии пленок" и в части "получения, структурной диагностики и сцинтилляции пленок" (Соглашение № 075-15-2021-1362), а также при поддержке гранта Президента Российской Федерации (МК-3140.2022.1.2) в части исследования экситонного излучения микроструктур ZnO.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 B.H. Lin, H.Y. Chen, S.C. Tseng, J.X. Wu, B.Y. Chen, C.Y. Lee, G.C. Yin, S.H. Chang, M.T. Tang, W.F. Hsieh. Appl. Phys. Lett., 109, 192104 (2016). DOI: 10.1063/1.4967743

- [2] B.H. Lin, X.Y. Li, D.J. Lin, B.L. Jian, H.C. Hsu, H.Y. Chen, S.C. Tseng, C.Y. Lee, B.Y. Chen, G.C. Yin, M.Y. Hsu, S.H. Chang, M.T. Tang, W.F. Hsieh. Sci. Rep., 9, 207 (2019). DOI: 10.1038/s41598-018-36764-8
- [3] M.R. Wagner, G. Callsen, J.S. Reparaz, J.H. Schulze, R. Kirste, M. Cobet, I.A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A.V. Rodina, M.R. Phillips, S. Lautenschläger, S. Eisermann, B.K. Meyer. Phys. Rev. B, 84, 035313 (2011). DOI: 10.1103/PhysRevB.84.035313
- [4] П.А. Родный, К.А. Черненко, И.Д. Веневцев. Опт. и спектр., 125 (3), 357 (2018).
 DOI: 10.21883/OS.2022.11.53780.3845-22 [P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev. Opt. Spectrosc., 125, 372 (2018). DOI: 10.1134/S0030400X18090205].
- [5] K. Oka, H. Shibata, S. Kashiwaya. J. Cryst. Growth., 237 (1), 509 (2002). DOI: 10.1016/S0022-0248(01)01953-4
- [6] F. Huang, Z. Lin, W. Lin, J. Zhang, K. Ding, Y. Wang, Q. Zheng, Z. Zhan, F. Yan, D. Chen, P. Lv, X. Wang. Chin. Sci. Bull., **59** (12), 1235 (2014). DOI: 10.1007/s11434-014-0154-4
- [7] I.D. Venevtsev, A.P. Tarasov, A.E. Muslimov, E.I. Gorokhova, L.A. Zadorozhnaya, P.A. Rodnyi, V.M. Kanevsky. Materials, 14 (8), 2001, (2021). DOI: 10.3390/ma14082001
- [8] И.Д. Веневцев, П.А. Родный, А.Э. Муслимов, В.М. Каневский, В.А. Бабаев, А.М. Исмаилов. Опт. и спектр., 127 (12), 981 (2019). DOI: 10.21883/OS.2022.11.53780.3845-22 [I.D. Venevtsev, P.A. Rodnyi, A.E. Muslimov, V.M. Kanevskii, V.A. Babaev, A.M. Ismailov. Opt. Spectrosc., 127, 1075 (2019). DOI: 10.1134/S0030400X19120282].
- [9] А.Э. Муслимов, В.М. Каневский, И.Д. Веневцев, А.М. Исмаилов. Кристаллография, 65 (5), 798 (2020).
 DOI: 10.31857/S0023476120050148 [A.E. Muslimov, V.M. Kanevsky, I.D. Venevtsev, A.M. Ismailov. Cryst. Rep., 65, 766 (2020). DOI: 10.1134/S1063774520050144].
- [10] K. Tsunekawa. J. Vac. Soc. Japan., 53, 486 (2010).
 DOI: 10.3131/jvsj2.53.486
- [11] M. Podlogar, J.J. Richardson, D. Vengust, N. Daneu,
 Z. Samardžija, S. Bernik, A. Rečnik. Adv. Funct. Mater., 22 (15), 3136 (2012). DOI: 10.1002/adfm.201200214
- M. Madel, G. Neusser, U. Simon, B. Mizaikoff, K. Thonke.
 J. Cryst. Growth, **419**, 128 (2015).
 DOI: 10.1016/j.jcrysgro.2015.03.020
- [13] А.Э. Муслимов, А.М. Исмаилов, Ю.В. Григорьев, В.М. Каневский. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, **2021** (11), 90 (2021). DOI: 10.31857/S1028096021110145 [A.E. Muslimov, A.M. Ismailov, Yu.V. Grigoriev, V.M. Kanevsky. J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques., 15, 1195 (2021). DOI: 10.1134/S1027451021060148].
- [14] P.A. Rodnyi, S.B. Mikhrin, A.N. Mishin, A.V. Sidorenko. IEEE Trans. Nucl. Sci., 48 (6), 2340 (2001).
 DOI: 10.1109/23.983264
- [15] L. Zhang, J. Wu, T. Han, F. Liu, M. Li, X. Zhu, Q. Zhaoa, T. Yu. Cryst. Eng. Commun., 23 (18), 3364 (2021).
 DOI: 10.1039/d1ce00040c
- [16] E. Chubenko, V. Bondarenko, A. Ghobadi, G. Ulusoy,
 K. Topalli, A.K. Okyay. MRS Advances, 2 (14), 799 (2017).
 DOI: 10.1557/adv.2017.150
- [17] J. Thornton. Annu. Rev. Mater. Sci., 7, 239 (1977).
 DOI: 10.1146/annurev.ms.07.080177.001323
- P.B. Barna, M. Adamik. Thin Solid Films., 317, 27 (1988).
 DOI: 10.1016/S0040-6090(97)00503-8

- [19] A.M. Ismailov, L.L. Emiraslanova, M.K. Rabadanov, M.R. Rabadanov, I.Sh. Aliev. Tech. Phys. Lett., 44, 528 (2018). DOI: 10.1134/S1063785018060202
- [20] А.П. Тарасов, И.Д. Веневцев, А.Э. Муслимов. Л.А. Задорожная, П.А. Родный, В.М. Каневский. Квант. электрон., 51 (5), 366 (2021). [А.Р. Тагазоv, I.D. Venevtsev, А.Е. Muslimov, L.A. Zadorozhnaya, P.A. Rodnyi, V.M. Kanevsky. Quantum Electron., 51 (5), 366 (2021). DOI: 10.1070/QEL17534].
- [21] А.Э. Муслимов, М.Х. Рабаданов, А.М. Исмаилов. Прикладная физика, 3, 72 (2017).
- [22] C.F. Klingshirn. Semiconductor Optics, 4th ed. (Springer, Berlin, 2012).
- [23] C. Klingshirn, R. Hauschild, J. Fallert, H. Kalt. Phys. Rev. B, 75, 1 (2007). DOI: 10.1103/PhysRevB.75.115203
- M.A. Versteegh, T. Kuis, H.T.C. Stoof, J. I. Dijkhuis. Phys. Rev. B, 84, 035207 (2011).
 DOI: 10.1103/PhysRevB.84.035207
- [25] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, A.H. Morkoç. J. Appl. Phys., 98, 11 (2005). DOI: 10.1063/1.1992666
- [26] S.A. Studenikin, M. Cocivera. J. Appl. Phys., 91 (8), 5060 (2002). DOI: 10.1063/1.1461890
- [27] М.В. Рыжков, С.И. Румянцев, В.М. Маркушев, Ч.М. Брискина, А.П. Тарасов. Журн. прикл. спектр., 81, 805 (2014).
 [M.V. Ryzhkov, S.I. Rumyantsev, V.M. Markushev, Ch.M. Briskina, A.P. Tarasov. J. Appl. Spectrosc., 81, 877 (2014). DOI: 10.1007/s10812-014-0021-8].
- [28] S. Rumyantsev, A. Tarasov, C. Briskina, M. Ryzhkov, V. Markushev, A. Lotin. J. Nanophotonics, 10, 016001 (2016). DOI: 10.1117/1.JNP.10.016001
- [29] M. Nakayama, Y. Nakayama. J. Phys. Soc. Japan., 88 (8), 083706 (2019). DOI: 10.7566/JPSJ.88.083706
- [30] А.П. Тарасов, Л.А. Задорожная, А.Э. Муслимов, Ч.М. Брискина, В.М. Каневский. Письма в ЖЭТФ, 114 (9), 596 (2021). DOI: 10.31857/S1234567821210035 [А.Р. Тагаsov, L.A. Zadorozhnaya, А.Е. Muslimov, Ch.M. Briskina, V.M. Kanevsky. JETP Lett., 114, 517 (2021). DOI: 10.1134/S0021364021210116].