08.1;13.1

Тонкие пленки оксинитрида титана для сенсоров широкого диапазона температур

© Ф.А. Барон¹, Л.В. Шанидзе¹, М.В. Рауцкий¹, Ю.Л. Михлин², А.В. Лукьяненко¹, С.О. Коновалов³, Ф.В. Зеленов³, П.В. Швец⁴, А.Ю. Гойхман⁴, Н.В. Волков¹, А.С. Тарасов¹

¹ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия

² Институт химии и химической технологии ФИЦ КНЦ СО РАН, Красноярск, Россия

³ Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева, Красноярск, Россия ⁴ Научно-образовательный центр "Функциональные наноматериалы" Балтийского федерального университета им. И. Канта, Калининград, Россия

E-mail: baron@iph.krasn.ru

Поступило в Редакцию 28 июня 2022 г. В окончательной редакции 19 августа 2022 г. Принято к публикации 3 сентября 2022 г.

Исследована температурная зависимость удельного сопротивления тонких пленок оксинитрида титана TiN_xO_y с различным содержанием азота и кислорода, полученных методом атомно-слоевого осаждения. Обнаружено, что сопротивление всех пленок монотонно убывает с ростом температуры и меняется в широких пределах в зависимости от химического состава и толщины пленки. Представлена технология получения компактного температурного сенсора широкого диапазона температур (от гелиевых до комнатных) на основе $TiN_{0.87}O_{0.97}$ толщиной 40 nm. Данный сенсор может быть легко интегрирован в современные изделия микроэлектроники.

Ключевые слова: оксинитрид титана, температурные сенсоры, тонкие пленки, атомно-слоевое осаждение, элементы интегральных схем.

DOI: 10.21883/PJTF.2022.20.53695.19292

Тонкопленочный оксинитрид титана TiN_xO_y находит широкое применение в различных приборах, таких как интегральные резисторы [1], конденсаторы со структурой металл-изолятор-металл (МИМ-конденсаторы) [2], фотокатализаторы [3,4], солнечные селективные поглощающие покрытия [5,6] и эффективные фотоэлектрические преобразователи энергии [7]. Использование пленок TiN_xO_y в качестве температурных сенсоров широкого диапазона является новой областью применения данного материала. Известным решением здесь являются сенсоры CernoxTM на основе оксинитрида циркония [8], углеродных стекол, оксида рутения и германиевых туннельных диодов [9]. В настоящей работе предложена новая технология изготовления подобных сенсоров с использованием тонких пленок TiN_xO_y , полученных посредством атомно-слоевого осаждения (АСО). Широко распространена технология получения оксинитрида титана методом реактивного магнетронного распыления [10]. Однако АСО имеет существенное преимущество по однородности толщины выращиваемых пленок и более низкому удельному сопротивлению [7,11].

Выращивание пленок проводилось в установке SUNALETM R-200 ADVANCED (Рісоѕип Оу, Финляндия) без шлюзовой камеры загрузки при температуре 420°С. Были получены пленки двух видов: с повышенным (G1) и пониженным (G2) содержанием кислорода. В качестве источников титана, азота и кислорода исполь-

зовались жидкий тетрахлорид титана (TiCl4 чистотой 5N), газообразный аммиак (NH₃, 6N) и остаточный кислород в камере АСО соответственно. В качестве подложек использовались пластины ситалла СТ-32-1 толщиной 500 μ m и (100)-кремния ($\rho > 0.1 \, \mathrm{k}\Omega \cdot \mathrm{m}$) толщиной 720 µm. TiCl₄ и NH₃ циклически подавались в камеру поочередными импульсами по 0.1 и 1 s соответственно. В каждом цикле осаждения TiCl₄ продувался потоком азота (7N) $2.5 \cdot 10^{-6} \, \text{m}^3 \cdot \text{s}^{-1}$ в течение 2 s, а NH_3 — потоком $1.7 \cdot 10^{-6} m^3 \cdot s^{-1}$ в течение 4 s. Базовое давление составляло 500-700 Pa. Максимальное давление импульсов TiCl₄ и NH₃ достигало 2500-3000 и 4000-4500 Ра соответственно. Перед ростом пленок TiN_xO_y исследуемых образцов камеру реактора АСО продували чистым азотом (8N), отжигали при 420°C в течение 4 h и затем пассивировали 2000 циклов роста TiN_xO_y при 420°C. Снижение доли кислорода в пленках G2 производилось посредством продувки камеры АСО формовочным газом (ФГ) $(N_2(5N): H_2(6N) = 97:3)$ непосредственно перед началом роста пленок. ФГ подавался импульсами длительностью 15 s в течение 900 s без продувки азотом. Детали технологического процесса роста TiN_xO_y были описаны ранее [12].

Толщина пленок измерялась с помощью просвечивающего электронного микроскопа (ПЭМ) Hitachi HT7700 при напряжении 100 kV и токе эмиссии $8 \mu A$ (рис. 1, *a*). На рис. 1 представлено изображение поперечного сече-

b a Weight G1-SIT-2000 800 20 700 15 10 600 TiN0.5500.95 Quantity 500 400 -10 SiO₂ 300 2 µm 200 Si 100 10 0 140 150 160 170 180 190 Mean grain size, nm С 140 G2-SIT-2000 20 120 15 10 100 5 Quantity 0 IIII 80 _5 60 -10 -15 40 -2.0 μm 20 0 124 128 132 136 140 148 144 152 Mean grain size, nm

Рис. 1. a — ПЭМ-изображение образца G2-Si-638 тонкопленочного TiN_{0.55}O_{0.95} на SiO₂/Si, полученного по технологии ACO. b, c — данные ACM поверхности пленок оксинитрида титана на ситалле и гистограммы распределения размера зерен: b — TiN_{0.46}O_{1.52} с высоким относительным содержанием кислорода, c — TiN_{0.87}O_{0.97} с низким относительным содержанием кислорода.

Образец	Ti, at.%	N, at.%	O, at.%	Формула	Толщина пленки, nm	ρ, Ω · m (при 300 К
G2-Si-638	40	22	38	TiN _{0.55} O _{0.95}	11	$7.8 \cdot 10^{-5}$
G1-Si-2000	33	16	51	TiN _{0.48} O _{1.56}	20	$(7.7 - 16) \cdot 10$
G1-SIT-2000	34	15	51	TiN _{0.46} O _{1.52}	20	$(3.3 - 10) \cdot 10$
G2-Si-4000	36	29	35	TiN _{0.81} O _{0.98}	90	$1.0 \cdot 10^{-5}$

TiN0.87O0.97

34

Химический состав и удельное сопротивление пленок TiN_xO_y

ния пленки TiN_{0.55}O_{0.95}, полученное с помощью ПЭМ. Слой SiO₂ под TiN_{0.55}O_{0.95} сформировался в результате окисления кремния во время закладки пластины в горячую камеру ACO и откачки до базового вакуума. С помощью атомно-силовой микроскопии (ACM) для образцов групп G1 и G2 измерялись шероховатость S_q (среднеквадратичная высота) и максимальный перепад высот S_z текстуры полученных пленок (рис. 1, *b*, *c*). Типичные значения S_q для пленок G1 и G2 на ситалле составляют 4.1 и 3.0 nm, а S_z — 52 и 34 nm соответственно. В пленках на кремнии эти значения ниже: $S_q = 2.9$ nm, $S_z = 22$ nm. Снижение концентрации

35

G2-SIT-4000

31

кислорода в пленках TiN_xO_y улучшает качество их поверхности, уменьшая ее шероховатость.

90

Транспортные свойства пленок были получены четырехзондовым методом в криогенной зондовой станции LakeShore EMPX-H2. Измерения проводились с помощью двухканального источника-измерителя Kiethley 2634В на постоянном токе. Таким образом были получены зависимости удельного сопротивления пленок TiN_xO_y от температуры. Состав пленок и химическое состояние элементов определялись методом рентгеновской фотоэлектронной спектроскопии на спектрометре SPECS (Германия) с полусферическим анализатором

 $9.0\cdot 10^{-6}$

РНОІВОЅ 150 MCD 9 после очистки поверхности ионным травлением. В таблице представлены данные о составе и удельном сопротивлении нескольких типовых образцов. Наименования образцов содержат обозначение группы по уровню содержания кислорода (G1 или G2), материала подложки (кремний или ситалл) и количество циклов АСО-роста. Химический состав пленок был уточнен на предмет содержания в них меди методом резерфордовского обратного рассеяния ионов гелия ${}^{4}\text{He}^{+}$, ускоренных до 1.5 MeV, с использованием ускорителя Ван де Граафа AN2500 (производитель High Voltage Engineering Europa B.V., Амерсфорт, Нидерланды). Полученные спектры обрабатывались с помощью программного пакета SIMNRA (версия 7.03) [13]. Несмотря на наличие латунного вентиля в газовой линии подачи ФГ, в отличие от предыдущих экспериментов [12] пленки TiN_xO_y не были загрязнены медью. Содержание меди не превышало 0.02 at.%. Скорость роста пленок группы G1 составляла 0.11 Å/cycle, а для группы G2 — 0.22 Å/cycle. Повышенное содержание кислорода в камере существенно замедляет скорость роста пленок.

На рис. 2 представлены температурные зависимости удельного сопротивления исследуемых пленок TiN_xO_y . Все образцы демонстрируют строго монотонное поведение сопротивления, которое уменьшается с увеличением температуры. Измерения пленок при температурах выше комнатной показали, что монотонное убывание сопротивления продолжается до 260°С. При более высоких температурах пленки группы G1 претерпевают скачкообразное необратимое повышение сопротивления. Пленки G1 имеют приблизительно обратно квадратичную, а G2 — гиперболическую зависимость сопротивления от температуры. Диапазон изменения сопротивления для различных пленок зависит от их толщины, содержания кислорода и шероховатости подложки. Следует отметить, что пленки, полученные на кремниевой подложке, имеют более резкую температурную зависимость в низкотемпературной области, что, вероятно, связано с разным размером кристаллитов для пленок на кремниевой и ситалловой подложках (рис. 1). Анализ гистограмм распределения размеров кристаллитов показал, что средний размер зерен в пленках, выращенных на подложках ситалла, составляет 140 nm для образцов G1 и 120 nm для образцов G2, а для образцов G1 на кремнии — 155 nm. Влияние шероховатости подложки на сопротивление существенно (разница на порядок) для тонких пленок (11 nm) и менее выражено (разница на 50-100%) для толстых (90 nm). Шероховатость S_q исходных подложек по данным ACM для кремния составила 0.28 nm, для ситалла — 16.76 nm. Увеличение (снижение) содержания кислорода (азота) и уменьшение толщины пленки существенно (на одиндва порядка) повышают удельное сопротивление. Действительно, из таблицы видно, что образцы G2-Si-638 и G2-Si-4000 имеют очень близкие значения концентрации кислорода, но в ~ 8.2 раза различаются по толщине, что приблизительно равно обратному отношению их удель-

Рис. 2. Температурные зависимости удельного сопротивления пленок TiN_xO_y , осажденных методом ACO на пластины ситалла (SIT) и кремния (Si). В образцах G1 более высокое отношение кислорода к азоту (в 2–3 раза), чем в образцах G2. Числа указывают количество циклов ACO-роста.

ных сопротивлений ~ 7.8 . В свою очередь сравнение образцов G2-Si-4000 и G2-SIT-4000, имеющих одинаковую толщину пленки, но разную долю кислорода, показывает, что снижение концентрации кислорода на 1% приводит к снижению удельного сопротивления на 10%.

На рис. З представлены температурная зависимость сопротивления и микрофотография типового TiN_xO_y -сенсора с разводкой и контактными площадками с золотым покрытием. Тело сенсора выполнено из низкоомной пленки G2 $TiN_{0.87}O_{0.97}$ толщиной 40 nm, осажденной на ситалл. Технологический процесс получения данной структуры был описан ранее для резистивных элементов на основе пленки G1 $TiN_{0.82}O_{1.43}$ [14]. Активная область (тело) сенсора была сформирована из пленки $TiN_{0.87}O_{0.97}$ с помощью оптической литографии на установке EVG 610 с последующим плазменным травлением в установке RIE-1701 Nordson MARCH в газовой смеси CF_4 ($2.5 \cdot 10^{-7}m^3 \cdot s^{-1}$)/ O_2 ($5 \cdot 10^{-8}m^3 \cdot s^{-1}$) при высокочастотной мощности 250 W и давлении 33 Pa в течение 120 s. Электрические контакты и разводка сенсора были

Рис. 3. Температурная зависимость сопротивления и микрофотография (на вставке) сенсора на основе пленки $TiN_{0.87}O_{0.97}$ толщиной 40 nm.

сформированы вторым слоем с помощью совмещенной оптической литографии с использованием негативного фоторезиста AZ nLOF-2035 и электронно-лучевого напыления Ni (5 nm)/Cu $(1 \mu \text{m})/\text{Ni}$ (5 nm)/Au (50 nm) с последующим взрывным снятием фоторезиста в ацетоне.

Данный метод изготовления температурных сенсоров позволяет изменять их сопротивление в широком диапазоне $0.01-100 \,\mathrm{k}\Omega$ путем точного контроля толщины $\mathrm{TiN}_x \mathrm{O}_y$ в процессе роста по технологии ACO, геометрических размеров с помощью литографии и варьирования концентрации кислорода. Контроль за последним параметром планируется установить. Полученный сенсор использует стандартные процессы кремниевой микроэлектроники и может быть интегрирован в современные интегральные микросхемы.

Благодарности

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования КНЦ СО РАН за предоставление оборудования.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 20-42-240013. Исследование образцов методом резерфордовского обратного рассеяния, проведенное в Научно-образовательном центре "Функциональные наноматериалы" Балтийского федерального университета, осуществлено при финансовой поддержке Министерства науки и высшего образования РФ (проект FZWN-2020-0008).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N.D. Cuong, D.J. Kim, B.D. Kang, S.G.J. Yoon, Electrochem. Soc., 153, G856 (2006). DOI: 10.1149/1.2219707
- [2] S. Iwashita, S. Aoyama, M. Nasu, K. Shimomura, N. Noro, T. Hasegawa, Y. Akasaka, K. Miyashita, J. Vac. Sci. Technol. A, 34, 01A145 (2016). DOI: 10.1116/1.4938106
- [3] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 293, 269 (2001). DOI: 10.1126/science.1061051
- [4] E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, C. Sanchez, Adv. Funct. Mater., 17, 3348 (2007). DOI: 10.1002/adfm.200700396
- [5] M. Lazarov, P. Raths, H. Metzger, W. Spirkl, J. Appl. Phys., 77, 2133 (1995). DOI: 10.1063/1.358790
- [6] A. Rizzo, M.A. Signore, L. Tapfer, E. Piscopiello, A. Cappello,
 E. Bemporad, M. Sebastiani, J. Phys. D: Appl. Phys., 42, 115406 (2009). DOI: 10.1088/0022-3727/42/11/115406
- [7] X. Yang, Y. Lin, J. Liu, W. Liu, Q. Bi, X. Song, J. Kang, F. Xu, L. Xu, M.N. Hedhili, D. Baran, X. Zhang, T.D. Anthopoulos, S. De Wolf, Adv. Mater., **32**, 2002608 (2020). DOI: 10.1002/adma.202002608
- [8] S.S. Courts, P.R. Swinehart, AIP Conf. Proc., 684, 393(2003).
 DOI: 10.1063/1.1627157
- [9] C.J. Yeager, S.S. Courts, IEEE Sensors J., 1, 352 (2001).
 DOI: 10.1109/7361.983476
- [10] Е.С. Киселева, Физико-механические свойства и структура пленок диоксида и оксинитрида титана, осажденных методом реактивного магнетронного распыления, автореф. канд. дис. (Нац. исслед. Томск. политехн. ун-т, Томск, 2016).
- [11] J.-M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, J. Takadoum, Appl. Surf. Sci., 253, 5312 (2007). DOI: 10.1016/j.apsusc.2006.12.004
- [12] F.A. Baron, Y.L. Mikhlin, M.S. Molokeev, M.V. Rautskiy, I.A. Tarasov, M.N. Volochaev, L.V. Shanidze, A.V. Lukyanenko, T.E. Smolyarova, S.O. Konovalov, F.V. Zelenov, A.S. Tarasov, N.V. Volkov, ACS Appl. Mater. Interfaces, 13, 32531 (2021). DOI: 10.1021/acsami.1c08036
- [13] M. Mayer, AIP Conf. Proc., 475, 541 (1999).
 DOI: 10.1063/1.59188
- [14] L.V. Shanidze, A.S. Tarasov, M.V. Rautskiy, F.V. Zelenov, S.O. Konovalov, I.V. Nemtsev, A.S. Voloshin, I.A. Tarasov, F.A. Baron, N.V. Volkov, Appl. Sci., 11, 7498 (2021).
 DOI: 10.3390/app11167498

