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Dependence of the Sputtering Yield on the Angle of Ion Incidence on the

Target Surface
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We investigated the behavior of sputtering yield for oblique angles of ion incidence on the target surface.

The range of incidence angles varied from 0◦ (normal incidence) to almost 90◦ (limiting grazing incidence).
Computer simulation was performed by the program PAOLA. Theoretical analysis included numerical solution of

the Chandrasekhar integral equation. The results obtained are compared with the results of other authors
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Introduction

Sputtering of hards under ion bombardment plays an

important role in design of fusion reactors, thin film

production, development of surface analysis methods, and

ion implantation. Recently a significant array of experi-

mental data has been accumulated for various sputtering

parameters [1,2]. One important characteristic is sputtering

yield, i.e., the ratio of sputtered atoms to number of ions

incident on a target. Dependence of sputtering yield on

incidence angle for heavy ions is non-monotone. First,

sputtering yield Y grows from its value at normal incidence

Y (0◦) to the maximum value, and then decreases to the

value Y (90◦) at sliding incidence. Calculations using code

SRIM-2013 [3] provide finite values Y (90◦), but in paper [4]
the calculations using OKSANA code provided zero values

of Y (90◦) when modelling silicon sputtering by ions of

noble gases.

Measurement of sputtering yield under sliding incidence

of ions on a target surface is a complex experimental

problem. In the literature [2] there are known measurement

results for incidence angles only that do not exceed

85◦ . Therefore, additional research of the phenomenon is

necessary and very desirable. In this paper the problem

of sputtering yield dependence on ion incidence angle

is considered by methods of computer modelling and

theoretically. We generalize our previous results for normal

incidence [5] for the case of oblique ion incidence.

1. Computer simulation

Computer simulation was performed using PAOLA

code based on the binary collision approximation and

the screened Coulomb potential [5]. PAOLA contains

considerably fewer adjustable parameters than SRIM-2013

and is capable of simulating various limit modes, such as the

case of particle interaction under the law of hard spheres.

Before each elastic collision, three random numbers

R1, R2, R3 are generated in the range from 0 to 1.

These numbers define particle path between collisions

λ = λ0 ln(1/R1), polar angle of scattering ω in the system

of center of mass

cosω =
2(1 + ε)R2 − 1

1 + 2R2ε
(1)

and azimuthal angle of scattering ϕ = 2πR3, where λ0
means average length of free path, and ε — reduced energy.

Angles of scattering of oncoming particle �1 and knocked-

on atom �2 in the laboratory system of coordinates are

produced from equations

cos�1 =
A + cosω

√
1 + 2A cosω + A2

, A =
M1

M2

, (2)

cos�2 =

√

1− cosω

2
, (3)

where M1 and M2 — masses of ion and atom of the target,

respectively. If oncoming particle energy before collision is

E , then after collision this particle and the knocked-on atom

will have energies of

E1 = E(1− γ cos2 �2), (4)

E2 = γE cos2 �2, (5)

where γ = 4A/(1 + A)2.
It should be noted that equations (1)−(5) are universal

and are valid for both light ions (A ≤ 1) and heavy ions

(A ≥ 1).
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Statistics of cascade atoms is accounted for as follows.

Each knocked-on atom is characterized by two integers:

number of a generation in a cascade and an order number

within that generation. Cascade registration involves sequen-

tial consideration of primary knocked-on atoms, secondary

knocked-on atoms, and further generations of the atomic

cascade. The cascade stops when the particle leaves the

target, or its energy is reduced to cutoff energy Emin

insufficient to knock the target atom out of its equilibrium

position.

2. Theoretical analysis

Theoretical review of cascading particle multiplication

within sputtering phenomenon is usually conducted under

some form of simplifying assumptions. In theory [6]
isotropic angular distribution approximation of sputtered

atoms is used. In theories [7–9] angular distribution is rep-

resented as a sum of several spherical functions. However,

delta-type surface boundary condition describing ion entry

into a target may not be accurately enough described by

two or three spherical functions. In theory [10], the method

of discrete streams has solved the boundary condition

problem, but three discrete streams are sufficient only to

consider normal ion incidence. In case of inclined incidence,

the number of discrete streams must be increased, and

the theoretical solution is transformed from analytical to

numerical.

In the general case, the sputtering theory considers a

system of two transport equations: one equation for ions,

the other — for cascade atoms. To illustrate the method, we

will consider a case of self-sputtering, where ions and atoms

of the target have equal masses and are indistinguishable

from each other. The distribution function of self-sputtered

atoms remove the word f (x , µ, u) depends on normalized

depth of the target x , cosine of angle θ between the velocity

of atom and internal normal to the surface, µ = cos θ,

and relative energy u = E/E0, where E0 — energy of

bombarding ions.

Mellin transform by energy variable

F(x , µ, s) =

1
∫

0

us−1 f (x , µ, u)du (6)

reduces transport equation to one-velocity equation of

transfer

µ
∂F(x , µ, s)

∂x
+ F(x , µ, s) =

1
∫

−1

σ (µ, µ′)F(x , µ′, s)dµ′.

(7)

Delta-type boundary condition for equation (7) takes the

form F(0, µ) = δ(µ − µ0) and means that ion incidence

angle is equal to θ0, µ0 = cos θ0. Function σ (µ, µ′) means

weighted cross section of scattering averaged over represents

angle

σ (µ, µ′) =
2

π

π
∫

0

σ (cos�)(cos2s � + sin2s �)dϕ, (8)

where � — angle of scattering in the laboratory system of

coordinates,

cos� = µµ′ +
√

1− µ2

√

1− µ′2 cosϕ. (9)

The collision integrals (8) summed in brackets mean

that an elastic collision produces two atoms moving in two

mutually perpendicular directions. If we substitute s = 1,

the equation in brackets turns to one in remove the word

agreement with the energy conservation law.

The atomic potential choice is an important problem

for any theoretical study. The ZBL [1] potential used

in SRIM-2013 code contains too many parameters and

cannot be used for analytical investigation. Paper [11]
proposed potential based on calculation of atomic state

density (potential DFT), but authors specify no analytical

formulae. In this paper we use screened Coulomb potential,

for which differential cross section of scattering in the

laboratory system of coordinates may be recorded in

analytical form [12]

σ (cos�) =







2η(1+η) cos�
(1+η−cos2 �)2

f or cos ≥ 0

0 f or cos� ≤ 0
, (10)

through η = [4ε(1 + ε)]−1 specifies the screening param-

eter. At low energies (η ≫ 1) the scattering cross sec-

tion (10) complies with scattering on a potential of hard

spheres, at high energies (η ≪ 1) — Rutherford scattering

on a Coulomb potential.

One of the possible methods to solve the equation of

transfer (7) is to divide the integration interval into N
equal parts and to calculate values of unknown distribution

function in N + 1 discrete point. To find these values, the

solution is decomposed into series of functions exponen-

tially reducing in depth, and eigenvalues and eigenvectors of

square matrix of size N × N are defined to describe angular

distribution. Decomposition constants are determined from

boundary condition after solving the system of N algebraic

equations. The disadvantage to the method consists in the

fact that the solution contains additional information that

we do not need: we receive the values of the distribution

function in all depths of the target, while we are interested

only in the values of the function on the surface.

The alternative method consists in a solution for a non-

linear integral equation obtained by Chandrasekar after

applying the principle of invariance to equation (7) [13,14].
This method contains no distribution of atoms in depth of

the target and reviews only their angular distribution on

the surface. In Chandrasekar method the reflection function

R(µ0, µ1, s) depends only on two variables — ion incidence

angle θ0 and angle of sputtered atom exit from the target θ1,
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µ1 = cos θ1. Integration over all exit angles gives sputtering

yield as function of parameter s :

Y (µ0, s) =

1
∫

0

µ1R(µ0, µ1, s)dµ1, (11)

and inverse transformation results in energy distribution of

sputtered atoms. Integration of energy distribution provides

sputtering yield.

To apply Chandrasekar method, let us divide differential

cross section of scattering (8) into two parts

p(µ, µ′) = σ (µ, µ′) for µµ′ < 0,

q(µ, µ′) = σ (µ, µ′) for µµ′ > 0. (12)

Scattering cross section p(µ, µ′) relates to atoms, speed

of which as a result of collision changed its direction from

inside the target to outside, and vice versa. Scattering cross

section q(µ, µ′) relates to atoms, whose speed after collision

preserved its direction either inside the target or outside.

We divided integration interval [0,1] into N equal parts and

substituted the integral with finite sums. If we specify the

reflection function and both cross sections of scattering by

two indices only R01, p01, q01, then integral equation of

Chandrasekar may be written in tensor form

(µ0 + µ1)R01 = p01 + µ0R02q21

+ q02R21µ1 + µ0µ1R02p23R31, (13)

where it is suggested to sum up using matching indices.

The integral equation (13) was solved by the method of

successive iterations.

Inverse Mellin transformation may be performed by two

methods. The first method consists in reviewing only real

values of parameter s in equation (6) and adjustment of the

produced numerical values for one of the known table func-

tions [15]. Accuracy of such method is unpredictable and

requires additional justification. The other method consists

in review of complex values of parameter s = 1 + iω and

integration on a complex plane. Besides, this complicates

solution to integral equation (13), which shall be recorded

both for real and imaginary parts of the reflection function.

But as a result the inverse Mellin transformation results

in calculation of the only integral, and the accuracy of

the solution depends only on the number of divisions N
in integration interval. Convergence of the solution was

monitored by increasing number N, the maximum value of

which made N = 500. Validity of the method was checked

using some test problems, which had analytical solution, and

also using PAOLA code.

3. Results and discussion

Fig. 1 and 2 show the simulation results using PAOLA

program presented in the form of smoothened curves.
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Figure 1. Dependence of sputtering yield Y on ion incidence

angle θ0 for various mass ratios M1/M2 = 1 (curve 1), 5 (curve 2),
10 (curve 3), 15 (curve 4) at E0/Emin = 1000.

Theoretical results produced by solving an integral equation

differ from the simulation results by not more than 2%.

Fig. 1 shows the dependence of the sputtering yield on the

ion incidence angle with fixed energy of ions and various

ratios of masses of target ion and atom A = M1/M2. All

coefficients are normalized to values at normal incidence.

If A = 1, sputtering yield monotonously decreases with

increase of ion incidence angle. If ion mass (A > 1)
increases, a maximum appears in the angular curve in the

region of incidence angles from 70◦ to 80◦, the maximum

height increases with growth of ratio A. In the limit case

of incidence angles close to 90◦, all distributions take finite,

and not zero values.

Fig. 2 shows the dependence of sputtering yield on the ion

incidence angle with fixed mass and various energies of ions.

We can see that height of distribution maximum decreases

as energy increases. In case of limit grazing incidence angles

the sputtering yield still takes finite values.
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Figure 2. Dependence of sputtering yield Y on ion incidence

angle θ0 for different ion energies E0/Emin = 100 (curve 1), 200
(curve 2), 1000 (curve 3) at M1/M2 = 10.

The produced results are agreeable with the results

of calculations from SRIM program, but are opposite to

calculations using OKSANA program. In paper [4] it is

specified that difference in results is related to different

interpretation of the first ion collision after entry into the

target. In SRIM-2013 code the first collision occurs at the

depth equal to the length of free path λ0. In OKSANA code

the first collision occurs in the depth equal to the radius of

atomic potential exposure d . In case of a silicon target,

we have d < λ0, which results in reduction of sputtering

yield. In PAOLA code the first collision occurs at depth

λ = λ0 ln(1/R1) cos θ0, which may be less or more than

depth λ0. This prevents from conclusions in favor of this

or that approach, but quite definitely indicates finite values

of sputtering yield with grazing ion incidence angles.

4. Conclusion

With ion incidence angles close to 90◦, sputtering yield

takes finite values for any ion-target combinations and any

ion energies. This result is produced by two independent

methods — by simulation in PAOLA program and using

numerical solution of the Chandrasekar integral equation.

Conclusion on zero value of sputtering yield for grazing ion

incidence may be related to inaccurate interpretation of the

first collision of ion entering the target.
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