10,11

Динамика решетки и фазовые переходы в кристалле Ba₂ZnTeO₆

© В.И. Зиненко, А.С. Шинкоренко¶

Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск,Россия [¶] E-mail: shas@iph.krasn.ru

Поступила в Редакцию 20 июля 2022 г. В окончательной редакеции 20 июля 2022 г. Принята к публикации 21 июля 2022 г.

Выполнены исследования динамики решетки двойного перовскита Ba_2ZnTeO_6 в трех фазах. Вычислены колебательные спектры, динамические заряды. В ромобоэдрической фазе $R\bar{3}m$ были обнаружены мягкие моды, после их конденсации была получена фаза C2/m, что согласуется с экспериментом. Была проведена оценка зависимости энтальпии разных фаз от давления, она показала, что моноклинная фаза более выгодна при 0 давлении, но при увеличении давления до 2.9 GPa, становится выгодна кубическая фаза $Fm\bar{3}m$.

Ключевые слова: динамика решетки, фазовые переходы, двойные перовскиты.

DOI: 10.21883/FTT.2022.12.53656.445

1. Введение

Двойные перовскиты с общей формулой A₂BB'O₆ исследуются в течение нескольких десятилетий из-за наблюдаемых в них структурных фазовых переходах и разнообразия физических свойств, которые зависят как от химического состава катионов A, B и B', так и от различных типов и степени упорядочения катионов в структуре [1]. Большинство этих соединений в высоко симметричной кубической фазе (с пространственной группой симметрии $Fm\bar{3}m$) обладают структурой эльпасолита, в которой октаэдры ВО6 и В'О6 соединены кислородами в вершинах октаэдра. В большинстве двойных перовскитов со структурой эльпасолита (за редким исключением) вне зависимости от степени упорядочения катионов в кубической фазе имеются неустойчивости, связанные с модами колебаний решетки либо в центре, либо в граничной точке Х зоны Бриллюэна гранецентрированной кубической решетки, собственные векторы этих "мягких" мод соответствуют "поворотам" октаэдров ВО₆. В более редких случаях при большом ионном радиусе катиона А двойные перовскиты могут обладать другими типами структур, в частности с гексагональной или ромбоэдрической симметрией [2-4]. В таких структурах октаэдры BO_6 и $B'O_6$ имеют общие не только вершины, но ребра и грани. Эти двойные перовскиты с общими ребрами и гранями октаэдров BO₆ и B'O₆ менее изучены как с точки зрения их физических свойств, так и с точки зрения неустойчивости их структур.

Двойной перовскит Ba_2ZnTeO_6 обладает ромбоэдрической симметрией с пространственной группой $R\bar{3}m$ и с двумя молекулами в элементарной ячейке.

Результаты исследования рамановских и ИК-спектров Ва₂ZnTeO₆ опубликованы в работах [5,6]. В данных работах обнаружен структурный фазовый переход $(R\bar{3}m \rightarrow C2/m)$ при температуре 140 K, связанный с "мягкой" модой колебания. Также авторы получили ча-

стоты колебаний кристаллической решетки и классифицировали их. В работе [7] было исследовано поведение Ba_2ZnTeO_6 при воздействии гидростатического давления и было установлено, что при давлениях выше Ba_2ZnTeO_6 обладает структурой эльпасолита с симметрией $Fm\bar{3}m$.

Целью настогящей работы является вычисление частот колебаний решетки, и исследование фазовых переходов в соединении Ba_2ZnTeO_6 с использованием первопринципных методов расчета, реализованных в программном пакете Crystal [8,9].

2. Структурные характеристики и метод расчета

Кристаллическая структура соединения Ba_2ZnTeO_6 представлена на рис. 1. В структуре можно выделить несколько типов октаэдров. Первый тип — это октаэдры TeO_6 , расположенные слоями в плоскости *ab*, связаны с октаэдрами ZnO_6 кислородами в вершинах октаэдра. Второй тип — октаэдры TeO_6 расположенные в столбцах вдоль оси *c*, они связаны гранями с октаэдрами ZnO_6 . Третий тип — октаэдры ZnO_6 , располагаются в столбцах вдоль оси *c*, с одной стороны имеют общую грань с октаэдром TeO_6 второго типа, с другой связаны вершинами с октаэдрами TeO_6 первого типа. Так же стоит отметить смещение вдоль оси *c* атома Zn из центра октаэдра.

В настоящей работе расчеты были выполнены с помощью пакета CRYSTAL. В вычислениях методом DFT использовался гибридный метод B3LYP [10]. Выбранные базисы для атома бария (HAYWSC-31(2df)G), для атома цинка (Zn_pob_TZVP_rev2), для атома теллура (Te_POB_TZVP_2018) и для атома кислорода (O_8-411d11G_valenzano_2006) [11].

Рис. 1. Кристаллическая структура соединения Ba₂ZnTeO₆ в ромбоэдрической фазе с пространственной группой $R\bar{3}m$: *a* — элементарная и *b* — примитивная ячейка.

3. Результаты

Вычислены равновесные параметры решетки и координаты атомов в структуре с группой симметрии $R\bar{3}m$, которые вместе с экспериментальными приведены в табл. 1. Разложение колебательного представления в центре зоны Бриллюэна по неприводимым представлениям точечной группы D_{3d} имеет вид $\Gamma = 7A_{1g} + 2A_{2g} + 9E_g + 2A_{1u} + 9A_{2u} + 11E_u$. Вычисленные частоты колебаний атомов в центре зоны Бриллюэна приведены в табл. 2 вместе с экспериментальными данными [5,6]). Величины динамических зарядов ионов приведены в табл. 3.

Из табл. 2 видно, что в основном вычисленные частоты колебаний хорошо согласуются с экспериментальными значениями, однако имеются некоторые расхождения в величинах частот колебаний как между экспериментом и расчетом, так и между экспериментальными данными. В частности, в обоих экспериментальных спектрах присутствует высокочастотное колебание E_g с частотой 767 сm⁻¹, но в вычисленном спектре колебания с такой частотой отсутствуют.

В вычисленных частотах колебаний соединения ВZTO в структуре с группой симметрии $R\bar{3}m$ присутствуют две

Таблица 1. Вычисленные и экспериментальные (*) [7] параметры решетки и координаты атомов соединения Ba_2ZnTeO_6 в ромбоэдрической фазе с пространственной группой $R\bar{3}m$

Π	C	С	
параметры решетки Å	5.9	29.13	
pomorni, m	(5.82	25*)	(28.69*)
Атом	x	у	z
Ba ₁	0	0	0.6274
Ba ₂	0	0	0.7815
Zn	0	0	-0.0963
Te ₁	0	0	0.5
Te ₂	0	0	0
O_1	0.8199	0.1800	0.2931
O_2	0.1783	0.8216	0.1272

мягкие моды колебаний. Одна двукратно вырожденная мода E_g с частотой $-67 \,\mathrm{cm}^{-1}$ и невырожденная мода A_{2g} с частотой $-53 \,\mathrm{cm}^{-1}$. Наблюдаемый структурный фазовый переход $R\bar{3}m \rightarrow C2/m$ связан с нестабильной модой E_g .

Рис. 2. Собственный вектор одной компоненты двукратной моды E_g соединения Ba₂ZnTeO₆ в ромбоэдрической фазе с пространственной группой $R\bar{3}m$.

Рассмотрим смещения атомов в собственном векторе мнимой моды колебания E_g , которые показаны стрелками на рис. 2, *а*. Как можно увидеть из этого рисунка смещения ионов кислорода в вершинах октаэдров TeO₆ как первого, так и второго типа, соответствуют "повороту" этих октаэдров, как и в двойных перовскитах со структурой эльпасолита, где октаэдры соединены вершинами. Однако октаэдры ZnO₆, в отличии от структуры эльпасолита, в данном случае искажаются.

Искажение структуры высоко симметричной фазы $R\bar{3}m$ по собственным векторам двукратной моды E_g приводит к структуре с группой симметрии C2/m. Следует отметить, что искажение структуры по одной компоненте или по двум равным по величине компонентам собственного вектора моды E_g приводит к той же самой структуре (Разложение термодинамического потенциала по параметру порядка, преобразующегося по представлению E_g содержит единственный инвариант четвер-

той степени). Зависимость полной энергии кристалла от амплитуды смещения атомов по одной компоненте собственного вектора представлено на рис. 3.

Оптимизированные параметры решетки и координаты атомов структуры с группой C2/m приведены табл. 4. Там же приведены экспериментальные данные. Следует отметить, что наблюдается расхождение с экспериментальными данными по параметру решетки, а именно параметра a — разница между вычисленным и экспериментальным значением составляет $\approx 10\%$.

Вычисленные частоты колебаний в центре зоны Бриллюэна искаженной структуры приведены в табл. 5. Разложение по неприводимым представлениям в центре зоны Бриллюэна для группы симметрии C2/m $\Gamma = 16A_g + 11B_g + 13A_u + 20B_u$. Там же приведены экспериментальные частоты. Как можно видеть наблюдается хорошее согласие с экспериментом. В вычисленных частотах колебаний соединения ВZTO в структуре с

	E_{g}			A_{1g}			A_{2g}	
Вычисл.	Эксп.*	Эксп.**	Вычисл.	Эксп.*	Эксп.**	Вычисл.	Эксп.*	Эксп.**
-67.2	28.8	31	84.5	86.0	87.0	-53.7		
79.3	121.4	103	116.2	104.3	110.0	130.9	185	185.0
95.6	382.7	120	219.1	109.7	405.0			
122.7	395.5	153	392.3	142.5	470.0			
205.0	406.2	382	440.9	153.7	689.0			
365.3	572.0	394	665.3	471.3	736.0			
384.2	616.0	573	760.0	756.1				
555.5	690.8	616						
629.2	767.7	766						
E_8	2	Α	1 <i>g</i>	A ₂	2g			
Вычисл.	Эксп.*	Вычисл.	Эксп.*	Вычисл.	Эксп.*			
0.0	67.1	200.8	231.0	0.0	99			
52.9	109.6	233.3	331.5	101.3	141.6			
116.9	124.5			106.3	182.2			
122.3	135.2			173.1	192.1			
208.2	259.5			220.2	200.6			
234.8	312.1			357.0	437.5			
282.4	361.2			438.4	475.4			
345.4	388.4			650.7	755.3			
367.0	619.2			756.9				
595.1	660.4							
664.6								

Таблица 2. Вычисленные и экспериментальные [5*, 6**] частоты колебаний (cm⁻¹) соединения Ba₂ZnTeO₆ в ромбоэдрической фазе с пространственной группой $R\bar{3}m$

Таблица 3. Вычисленные динамические заряды соединения Ba₂ZnTeO₆ в ромбоэдрической фазе с пространственной группой *R*3*m*

Атом	Z_{xx}	Z_{yy}	Z_{zz}
Ba ₁	2.8	2.8	2.7
Ba_2	2.8	2.8	2.7
Ba ₃	2.9	2.9	2.71
Ba ₄	2.9	2.9	2.71
Zn_1	2.37	2.37	2.71
Zn_2	2.37	2.37	2.71
Te ₁	5.05	5.05	4.92
Te ₁	4.29	4.29	5.23
O_1	-2.63	-1.79	-1.98
O_2	-2.63	-1.79	-1.98
O_3	-2.63	-1.98	-1.79
O_4	-2.63	-1.98	-1.79
O_5	-2.63	-1.79	-1.98
O_6	-2.63	-1.79	-1.98
O_7	-3.14	-1.73	-1.67
O_8	-3.14	-1.73	-1.67
O9	-3.14	-1.67	-1.73
O ₁₀	-3.14	-1.67	-1.73
O ₁₁	-3.14	-1.73	-1.67
O ₁₂	-3.14	-1.73	-1.67

Рис. 3. Зависимость полной энергии кристалла ВZTO в моноклинной фазе от амплитуды смещения.

группой симметрии C2/m присутствует мягкая мода колебаний B_g с частотой $-57.3 \,\mathrm{cm}^{-1}$. При искажении структуры кристалла по собственному вектору данного колебания симметрия понижается до группы $P\bar{1}$. По

	а	b	с
Параметры решетки, Å	10.185 9.0228*	5.9186 5.8236*	10.289 10.086*
1 ,	90	109.08 109.36*	90
Атом	x	у	z
Ba ₁	0.1258	0	0.3853
Ba ₂	0.2870	0	0.8453
Zn	0.3975	0	0.2102
Te ₁	0	0	0
Te ₂	0	0.5	0.5
O_1	0.3815	0.2303	0.3821
O_2	0.6081	0	0.3741
O_3	0.5587	0.2658	0.8956
O_4	0.8154	0	0.8610

Таблица 4. Вычисленные и экспериментальные [10] параметры решетки и координаты атомов соединения Ba₂ZnTeO₆ в моноклинной фазе с пространственной группой *C*2/*m*

литературным данным такой переход в кристалле ВZTO не наблюдается, однако есть экспериментальные указания [12], что изоморфное соединение Ba₂CuTeO₆ при температуре 290 К испытывает переход $C2/m \rightarrow P\bar{1}$.

Величины динамических зарядов ионов в фазе C2/m приведены в табл. 6.

Как уже отмечалось во введении, в работе [7] в кристалле ВZTO при воздействии гидростатического давления был обнаружен фазовый переход в структуру эльпасолита с пространственной симметрией *Fm*3*m*. Мы

Рис. 4. Зависимость энтальпии ΔH соединения ВZTO в фазах C2/m и $Fm\bar{3}m$ от приложенного давления.

оптимизировали структуру ВZТО по параметрам решетки и по координатам атомов в фазе $Fm\bar{3}m$. Результаты приведены в табл. 7. Для этой оптимизированной были вычислены частоты колебаний в центре зоны Бриллюэна и динамические заряды Борна. Результаты приведены в табл. 7, 8. Следует подчеркнуть, что в кристалле ВZTО в структуре эльпасолита неустойчивые моды колебаний отсутствуют, то есть эта структура остается стабильной при всех температурах.

Зависимость энтальпии $\Delta H = E_{\text{full}} - PV$ соединения ВZTO в фазах C2/m и $Fm\bar{3}m$ от приложенного давления

Таблица 5. Вычисленные и экспериментальные [5] частоты колебаний ω , сm⁻¹ соединения Ba₂ZnTeO₆ в моноклинной фазе с пространственной группой C2/m

Вычисл.		ИК		Вычисл.	Вычис.	Раман			Вычисл.
A_u	A_u	$A_u + B_u$	B_u	B_u	A_g	A_g	$A_g + B_g$	B_{g}	B_{g}
38.4 119.6 135.1 184.4 209.3 224.9 235.1 291.5 344.5 369.5 593.2 647.5	331.5	63 71.7 105 109.6 122 128.2 133.7 139.2 251 266 310 314.5 358.9 386.9 613 621.3 660 664 3	100.4 143 183.7 193.4 201 438.5 476 761 5	68.3 90.6 99.1 122.1 135.8 179.7 208.0 220.4 279.6 300.8 343.8 362.6 367.3 449.1 589.9 640.8 647.8 734.2	72.8 77.2 96.9 103.5 124.6 153.0 206.3 232.1 367.8 384.2 414.6 450.8 555.5 609.3 660.7 737.8	92.6 99.4 108.7 140.6 166 469.8 756.1 773.3	37.3 50.7 119.1 125.9 379.2 382.2 397.9 399.9 404.6 406.6 574.2 577.6 615.9 621.8 693.6 695.7 770.9	184.8	-57.3 47.8 89.2 113.9 126.9 144.6 195.9 358.4 380.9 551.6 609.2

C2/m			
Атом	Z_{xx}	Z_{yy}	Z_{zz}
Ba ₁	2.89	2.61	2.76
Ba_2	2.89	2.61	2.76
Ba ₃	2.73	2.92	2.95
Ba ₄	2.73	2.92	2.95
Zn_1	2.74	2.37	2.37
Zn_2	2.74	2.37	2.37
Te ₁	4.94	4.94	5.18
Te ₂	4.31	5.19	4.27
O_1	-2.57	-1.79	-2.01
O_2	-2.57	-1.79	-2.01
O_3	-2.68	-1.95	-1.79
O_4	-2.68	-1.95	-1.79
O_5	-2.57	-1.79	-2.01
O_6	-2.57	-1.79	-2.01
O_7	-3.16	-1.73	-1.64
O_8	-3.16	-1.73	-1.64
O9	-3.01	-1.77	-1.74
O ₁₀	-3.01	-1.77	-1.74
O ₁₁	-3.16	-1.73	-1.64

Таблица 6. Вычисленные динамические заряды соединения Ba₂ZnTeO₆ в моноклинной фазе с пространственной группой *C*2/*m*

Таблица 7. Вычисленные и экспериментальные [7] параметры решетки и координаты атомов соединения Ba₂ZnTeO₆ в кубической фазе с пространственной группой симметрии *Fm*3*m*

-1.73

-1.64

-3.16

O₁₂

Параметр	а			
решетки, Å	8.2518 (8.1479*)			
Атом	x	у	z	
Ba Zn Te O	0.25 0 0.5 0.2636	0.25 0 0.5 0	0.25 0 0.5 0	

Таблица 8. Вычисленные частоты колебаний кристалла Ba₂ZnTeO₆ в кубической фазе со структурой *Fm*3*m*

Сим.	ω, cm^{-1}
F_{1u}	0
F_{1g}	55.6
F_{2g}	120.5
F_{1u}	121.2
F_{1u}	158.5
F_{2u}	236
F_{1u}	332.8
F_{2g}	372.6
E_g	446.6
F_{1u}	555.4
A_g	648.9

Атом	Z_{xx}	Z_{yy}	Z_{zz}
Ba ₁	2.73	2.73	2.73
Ba_2	2.73	2.73	2.73
Zn	2.96	2.96	2.96
Te	4.76	4.76	4.76
O_1	-1.69	-3.19	-1.69
O_2	-1.69	-1.69	-3.19
O_3	-1.69	-1.69	-3.19
O_4	-3.19	-1.69	-1.69
O_5	-1.69	-3.19	-1.69
O_6	-3.19	-1.69	-1.69

Таблица 9. Вычисленные динамические заряды кристалла

 Ba_2ZnTeO_6 в кубической фазе со структурой $Fm\bar{3}m$

представлена на рис. 4. За ноль принята энергия при 0 давлении структуры с группой симметрии C2/m, все энергии нормированы на формульную единицу. Зависимость энтальпии от давления для фазы со структурой $R\bar{3}m$ не приводится, поскольку при всех значениях исследованных давлений данная фаза не становится выгоднее других (вычисления производятся при нулевой температуре). Как видно из рис. 4 при давлении 2.9 GPa, фаза со структурой $Fm\bar{3}m$ становится выгоднее фазы со структурой C2/m. Полученные данные согласуются с экспериментом [7], где данный фазовый переход обнаружен при давлении 4.0 GPa.

4. Заключение

В настоящей работе были вычислены частоты колебаний в центре зоны Бриллюэна соединения Ba_2ZnTeO_6 в ромбоэдрической, моноклинной и кубической фазах. В спектре вычисленных частот ромбоэдрической фазаы были получены мнимые моды колебаний двукратно вырожденная мода E_g с частотой -67 cm^{-1} и невырожденная мода A_{2g} с частотой -53 cm^{-1} . Структурный фазовый переход $R\bar{3}m \rightarrow C2/m$ связан с нестабильной модой E_g . После искажения по одной компоненте моды E_g была получена экспериментально наблюдаемая моноклинная фаза ВZTО. В спектре вычисленных частот моноклинной фазы была обнаружена мягкая мода колебаний Bg с частотой -57.3 cm^{-1} . После ее конденсации была получена структура с группой симметрии $P\bar{1}$.

Была проведена оценка зависимости энтальпии разных фаз от давления. Установлено, что при давлении 2.9 GPa, кубическая фаза со структурой $Fm\bar{3}m$ становится выгоднее моноклинной фазы со структурой C2/m. Полученные данные согласуются с экспериментом [7], где данный фазовый переход обнаружен при давлении 4.0 GPa.

Финансирование работы

Расчеты выполнены с использованием компьютерных ресурсов "Комплексное моделирование и обработка данных научно-исследовательских установок мега-класса "НИЦ "Курчатовский институт" (http://ckp.urcki.ru).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S. Vasala, M. Karppinen. Prog. Solid State Chem. 43, 1 (2015).
- [2] P. Von Köhl, U. Müller, and D. Reinen, Z. Anorg. Allg. Chem. 392, 124 (1972).
- [3] G.M. Keith, C.A. Kirk, K. Sarma, N.McN. Alford, E.J. Cussen, M.J. Rosseinsky, D.C. Sinclair. Chem. Mater. 16, 2007 (2004).
- [4] S.-F. Wang, Y.-F. Hsu, H.-S. Huang, Y.-J. Liu. Ceram. Int. 37, 1327 (2011).
- [5] R.L. Moreira, R.P.S.M. Lobo, S.L.L.M. Ramos, M.T. Sebastian, F.M. Matinaga, A. Righi, A. Dias. Phys. Rev. Mater. 2, 054406 (2018).
- [6] S. Badola, B. Ghosh, G. Sunil, S. Saha. arXiv:2110.12430
- [7] T. Aoba, T. Tiittanen, H. Suematsu, M. Karppinen. J. Solid State Chem. 233, 492 (2016).
- [8] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson,
 B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone,
 M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat,
 B. Kirtman. Int. J. Quantum Chem. 114, 1287 (2014).
- [9] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, M. Causá, Y. Noël. CRYSTAL14 User's Manual. University of Torino, Torino (2014).
- [10] D. Becke. Density-functional thermochemistry. III The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).
- [11] https://www.crystal.unito.it/basis-sets.php
- [12] A.S. Gibbs, A. Yamamoto, A.N. Yaresko, K.S. Knight, H. Yasuoka, M. Majumder, M. Baenitz, P.J. Saines, J.R. Hester, D. Hashizume, A. Kondo, K. Kindo, H. Takagi. Phys. Rev. B 95, 104428 (2017).

Редактор Т.Н. Василевская