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Influence of a strong low-frequency wave on the propagation of weak

ultrasonic pulses in a rod resonator made of annealed polycrystalline

copper
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An experimental study of an influence of a strong low-frequency wave on the propagation of weak ultrasonic

pulses in an acoustic resonator made of annealed polycrystalline copper has been carried out. The measurements

were carried out with harmonic excitation of the resonator at its first four longitudinal modes in the range from 2 to

15 kHz, the frequency of ultrasonic pulses varied from 65 to 400 kHz. The analysis of the observed nonlinear effects

was carried out within the framework of the polycrystal equation of state obtained on the basis of a modified string

model of the Granato−Lucke dislocation. The values of the parameters of dissipative and reactive nonlinearity of

dislocations in annealed copper are determined.
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Introduction

The issues related to nonlinear wave processes (NWPs)
in microinhomogeneous solids [1–3] with anomalously high

non-analytical and frequency-dependent nonlinearity are of

urgent in current acoustics. Their topicality stems from the

fact that the
”
classical“ five-constant elasticity theory [4,5],

which corresponds to weakly nonlinear homogeneous media

(with analytical and frequency-independent nonlinearity),
does not provide explanations for the common patterns

of nonlinear acoustical effects (NAEs) in experiments

with strongly nonlinear microinhomogeneous media, and a

”
general“ (universal) NWP theory for such media has not

been formulated yet.

Many polycrystalline metals and rocks are classified

as strongly nonlinear microinhomogeneous solid media.

Their nonlinearity is associated with the motion and

interaction of dislocations (linear defects of polycrystals)
with point defects (vacancies and impurity and interstitial

atoms) [6–15]. Polycrystals manifest hysteretic nonlinearity

in the low-frequency (LF) range and dissipative and reactive

nonlinearity in the high-frequency (HF) range [3]. The

NAE patterns related to hysteretic, dissipative, and reactive

nonlinearity tend to differ, thus providing an opportunity to

study separately the contributions of these nonlinearities to

the manifestation of LF and HF nonlinear acoustical effects.

The nonlinear properties of a medium are manifested

most vividly at relatively high amplitudes of elastic waves,

which are easy to obtain in high-Q resonators. Hysteretic

effects of amplitude-dependent internal friction (nonlinear
losses, shift of resonance frequencies, and higher harmonic

generation) and effects of damping and carrier phase delay

(CPD) of weak ultrasonic pulses in the field of a strong

LF wave, which are attributable to HF dissipative and re-

active nonlinearity instead of LF hysteretic nonlinearity, are

observed in resonators made of polycrystalline solids [3,16].
Since nonlinear effects are often manifested differently in

different media, the determination of amplitude–frequency
dependences of NAEs in microinhomogeneous media is one

of the prime objectives in their experimental studies. The

fundamental purpose of these studies has to do with the

identification of mechanisms behind the anomalously high

acoustical nonlinearity of various microinhomogeneous me-

dia. The applied objective of this research is the design and

development of nonlinear acoustical diagnostics methods for

microinhomogeneous media and materials [3,17,18].
In the present study, which is a continuation of [19],

we report new experimental data on the influence of

a strong LF pump wave in a rod resonator made of

annealed polycrystalline copper on the propagation of weak

ultrasonic pulses (UPs) in it. The amplitude–frequency
dependences of nonlinear damping and CPD of ultrasonic

pulses under the influence of a strong low-frequency wave

were determined. The observed nonlinear effects (damping

and CPD of ultrasonic pulses) were analyzed within the

framework of the equation of state of a polycrystal contain-

ing dislocation dissipative and reactive nonlinearities [20].
The parameters of dissipative and reactive nonlinearity

of dislocations for annealed copper were determined by

comparing the experimental and analytical data.

1. Experimental diagram

A rod resonator made of annealed copper was used to

examine experimentally the influence of a strong standing
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Figure 1. Diagram of the experiment.

LF wave on the propagation of weak travelling UPs. Rod

length L = 0.43m. The annealing temperature and time

were 600◦C and approximately 2 h. (The same resonator

was used earlier in [19] to study the LF effects of amplitude-

dependent internal friction arising due to hysteretic nonlin-

earity of annealed copper under LF harmonic excitation of

this resonator.)
The diagram of the experimental setup is presented in

Fig. 1. Piezoceramic radiator 2 was glued to the lower

end of rod 1 to excite a longitudinal LF pump wave in it.

The other side of the radiator was glued to massive load 3.

HF piezoceramic radiator 4 (used to generate longitudinal

UPs propagating along the rod axis) and piezoreceiver 5

(detecting LF vibrations produced by radiator 2) were glued
to the upper free end of rod 1. Piezoreceiver 6, which

responded to longitudinal HF vibrations of the rod (along its

axis), was glued to the side surface of rod 1 in the vicinity

of radiator 2. This piezoreceiver was used to detect and

measure the amplitude and CPD of UPs that were generated

by radiator 4 and propagated along the rod. Pulse frequency

f was varied from 65 to 400 kHz.

Rod 1 served in this experiment as a resonator for

an LF wave and as a virtually unbounded medium for

travelling UPs. Eigen frequencies Fp of LF longitu-

dinal modes of this resonator are given by expression

Fp
∼= (2p − 1)C0/4L, where C0 is the phase velocity of

an LF longitudinal wave in the rod and p is the mode

number, p = 1, 2, 3, 4 . . .. Resonance frequencies Fp

and quality factors Qp for the first four longitudinal

modes of the resonator were F1 = 2204Hz, F2 = 6447Hz,

F3 = 10697Hz, F4 = 14928Hz and Q1 = 450, Q2 = 883,

Q3 = 578, Q4 = 711.

2. Measurement results

A strong LF standing pump wave and weak UPs were

generated in rod 1 in the experiment. Pulses propagated

along the rod, were detected by piezoreceiver 6, and were

fed to the input of an oscilloscope where their amplitude

U(εm) and CPD 1τ (εm) were measured as functions of

deformation (LF wave) amplitude εm (in resonance). When

εm increased, amplitude U(εm) of detected UPs decreased,

while their CPD 1τ (εm) grew (i.e., the damping of pulses

intensified, and their phase velocity became lower).
Figure 2 presents the dependences of nonlinear damping

coefficient χ(εm) = ln[U0/U(εm)] (U0 is the amplitude of

pulses at εm = 0) and carrier phase delay 1τ (εm) of UPs

with frequency f = 365 kHz on amplitude εm of the LF

wave at p = 1, 2, 3, 4. The following dependences are

evident: χ(εm) ∝ εm, 1τ (εm) ∝ ε2m, and χ(εm) and 1τ (εm)
at εm = const increase with LF wave frequency Fp.

Figure 3 shows the dependences of coefficient χ(εm) and

phase delay 1τ (εm) of UPs with frequencies f = 365 kHz

on frequency Fp at εm = 2 · 10−5. It can be seen from these

figures that χ(εm) ∝ F1/2
p and 1τ (εm) ∝ FP . It should be

noted that dependences χ = χ(εm) and 1τ = 1τ (εm) on εm
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Figure 2. Results of measurement of dependences χ(εm) (a)
and 1τ (εm) (b) on εm at f = 365 kHz. Lines correspond to

dependences χ(εm) ∝ εm, 1τ (εm) ∝ ε2m .
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Figure 3. Results of measurement of dependences χ(εm) (1)
and 1τ (εm) (2) on Fp at εm = 2 · 10−5 and f = 365 kHz. Lines

correspond to the following dependences: 1 — χ(εm) ∝ F1/2
p , 2 —

1τ (εm) ∝ Fp.
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Figure 4. Dependences of χ(εm) (1) and 1τ (εm) 2) on fre-

quency f upon resonator excitation at the second-mode frequency

(p = 2) at εm = 6.8 · 10−6. Curves 1 and 2 represent the results of

calculation in accordance with formulae (1), (2); • and + denote

the measurement data.

and Fp correspond neither to amplitude nor to frequency

dependences of LF effects of amplitude-dependent internal

friction established in [19] for the same resonator, which are

induced by hysteretic nonlinearity of annealed copper.

Figure 4 shows the dependences of damping coefficient

χ = χ(εm) and CPD 1τ = 1τ (εm) on pulse frequency f
at εm = 6.8 · 10−6 and p = 2. It follows from Fig. 4

that coefficient χ = χ(εm) first (at 65 kHz < f < 300 kHz)
increases and then (at 300 kHz < f < 400 kHz) decreases

as frequency f rises, while delay 1τ (εm) decreases as f
grows within the 65 kHz < f < 400 kHz interval.

3. Analysis and comparison of
experimental and theoretical results

The theoretical description of effects observed in the

present experiment was provided in [20], where the expres-

sions for χ = χ(εm) and 1τ (εm) were derived within the

framework of the equation of state of a polycrystalline solid

with dislocation dissipative and reactive nonlinearity:

χ(εm) =
µP√
π

Ŵ[(m + 1)/2]

Ŵ[(m + 2)/2]
εm

mL�q
P d0ω

2

×
∞
∫

0

[(�2 − ω2)2 − d2
0ω

2]lN(l)dl

[(�2 −�2
p)

2 + d2
0�

2
p]

m/2[(�2 − ω2)2 + d2
0ω

2]2
, (1)

τ (εm) =
ηQ√
π

Ŵ[(n + 1)/2]

Ŵ[(n + 2)/2]
εn

mL�r
P

×
∞
∫

0

[(�2 − ω2)2 − d2
0ω

2]�2lN(l)dl

[(�2 −�2
p)

2 + d2
0�

2
p]

n/2[(�2 − ω2)2 + d2
0ω

2]2
, (2)

where

P =
8R2C0

π9/2

(1 + q)Ŵ[(m + 3)/2]

Ŵ[(m + 4)/2]
B

[

m − q + 1

2
,

q + 1

2

]

×
(

4RC2
0

π2b2

)m(

b
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)q

,

Q =
8R2C0
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2
,
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)n( b
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,

G and E = 2G/(1 + ν) are the shear modulus and the

Young’s modulus; C⊥ = (G/ρ)1/2 is the shear wave ve-

locity; C0 = (E/ρ)1/2; ν and ρ are the Poisson’s ratio

and the density, b is the Burgers vector magnitude;

A = πρb2 is the mass of a unit dislocation length, B
and C = 2Gb2/π(1− ν) are the linear friction coefficient

and the linear tension coefficient of a dislocation; l,
�(l) = [2/(1 − ν)]1/2(C⊥/l) and d0 = B/A are the length,

the resonance frequency, and the damping parameter of a

dislocation; µ, η and m, q, n, r are dimensionless param-

eters and exponents of power of dissipative and reactive

nonlinearity of a dislocation, m ≥ q ≥ 0, n ≥ r ≥ 0; N(l) is

the function of distribution of dislocations over length l,
∞
∫

0

lN(l)dl = 3, 3 is the dislocation density, R is the

orientation factor, �p = 2πFP , ω = 2π f .
Let us analyze the experimental and theoretical results

and determine the parameters of the dislocation structure of

annealed copper.

It follows directly from the comparison of expres-

sions (1), (2) with the measurement results in Figs. 2, 3 that

m = 1, q = 1/2, n = 2, r = 1.
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Let us now adjust distribution function N(l) and dis-

location parameters in such a way as to obtain a fit

between dependences (1), (2) on frequency f = ω/2π and

the measurement results (Fig. 4). A close fit is obtained

with the modified Koehler distribution function

N(l) =
3 exp[−(l − l0)/L0]

L0(l0 + L0)
, 0 ≤ l0 ≤ l < ∞, (3)

with the following parameters: C⊥ = 2.3 · 103 m/s, C0 =
3.8 · 103 m/s, ν = 0.28, 3 = 1012 m−2, L0 = 10−4 m, l0 =
5 · 10−5 m, b = 3 · 10−10 m, d0 = 109 s−1, R3 = 7.7 · 10−3,

R4 = 3.03 · 10−3, µ = 4.1 · 10−1, η = 1.5 · 102.
Length l0 = 0 for the Koehler distribution function [6] ob-

tained in the case of random arrangement of impurity atoms

along the dislocation line, and L0 =
∞
∫

0

lN(l)dl
/ ∞

∫

0

N(l)dl is

the average dislocation length. Modified Koehler distribu-

tion (3) has l0 > 0 (l0 ≫ b), and average dislocation length

〈l〉 is given by expression 〈l〉 = L0 + l0.

Conclusion

The results of examination of the influence of a strong LF

wave on damping and the carrier phase delay of weak UPs

in a rod resonator made of annealed polycrystalline copper

were reported, and it was demonstrated that its acoustical

nonlinearity features dissipative and reactive components.

The key characteristics of dislocations of annealed copper

(length distribution function, damping parameter, exponents

of power, and parameters of dissipative and reactive nonlin-

earity) were determined by comparing the experimentally

measured amplitude–frequency dependences with the the-

oretical ones [20] obtained based on the modified string

model of a Granato−Lücke dislocation. It follows from

the analysis of results presented above and in [19] that

the manifestations of hysteretic, dissipative, and reactive

nonlinearities of annealed copper differ qualitatively, since

the amplitude and frequency dependences of LF and HF

nonlinear effects differ. This is indicative of the fact that

the mechanisms of hysteretic and dissipative and reactive

nonlinearities of annealed copper are also different. The

hysteretic nonlinearity of polycrystalline solids is associated

with the periodic separation of dislocations from impurity

atoms (and attachment to them), while dissipative and reac-

tive nonlinearities are associated with nonlinear friction and

tension of dislocations that undergo vibratory motion under

the influence of an intense elastic wave in the environment

of point defects of a polycrystal. The obtained results

suggest that dislocation hysteretic, dissipative, and reactive

nonlinearities are sensitive characteristics of polycrystalline

solids that may find application in nonlinear acoustical

diagnostics.
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