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Laminar chaos in coupled time-delay systems
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The possibility of the existence of laminar chaos in coupled time-delayed feedback systems is investigated. The

cases of unidirectional and mutual coupling of time-delay systems are considered. It is shown for the first time that

laminar chaos can exist not only in a system with a variable delay time, but also in a system with a constant delay

time, if it is coupled with a system in the regime of laminar chaos.
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The presence of delayed feedback is typical of systems of

various nature [1,2]. This stimulates the interest in study of

such systems in different branches of science [3,4]. The case
with a constant delay time is considered in the majority of

studies into time-delay systems. However, the examination

of systems with a variable delay time is no less important,

since the delay in real-world contexts may fluctuate for

various reasons [5,6], thus making the system dynamics

considerably more complicated [7,8]. The introduction of

modulation of the delay time is useful in several practical

applications. For example, the use of chaotic generators with

a variable delay time in data-transmission systems allows

one to make them more secure [9,10] than communication

systems based on chaotic generators with delayed feedback

and a constant delay time [11,12].
A new type of chaotic behavior (laminar chaos) has

recently been identified in systems with a variable delay

time [13]. This type of behavior is characterized by an

interchange of different laminar phases. The dynamic

variable remains almost constant within these phases, but

changes chaotically in the transition from one laminar phase

to another. The existence of laminar chaos has been

demonstrated not only in numerical examples, but also in

experimental systems: an optoelectronic generator with a

delay varying in time [14], an electronic generator with

a variable delay [15], and a radiotechnical generator with

delayed feedback the delay time of which was modulated

by an external harmonic signal [16].
Thus far, laminar chaos has been observed only in single

self-oscillating time-delay systems under specific conditions

of variation of the delay time [13–17]. In the present study,

we demonstrate for the first time that laminar chaos may

emerge not only in a system with a variable delay time, but

also in a system with a constant delay time coupled with a

system in the laminar chaos regime. Let us consider a time-

delay system that, if not coupled with other systems, may be

presented in the form of a ring consisting of three elements

(nonlinear, inertial, and delay) and be characterized by the

following first-order delay differential equation:

εẋ(t) = −x(t) + f
(

x(t − τ )
)

, (1)

where ε is a parameter characterizing the inertial properties

of the system, τ is the delay time, and f is a nonlinear

function. The delay time in system (1) is constant. With

a proper choice of the nonlinear function (e.g., quadratic

or sine), system (1) demonstrates chaotic oscillations of

dynamic variable x(t) at τ ≫ ε [1]. Since the x(t) time

series has no laminar sections with x(t) remaining constant,

these chaotic oscillations were called turbulent chaos in [13].
With a periodically varying delay time

τ (t) = τ0 + τm sin(2πνt), (2)

where τ0 is the average value of the delay time, τm is

the depth of modulation of the delay time, and ν is

the modulation frequency, the system is characterized by

equation

εẋ(t) = −x(t) + f
(

x
(

t − τ (t)
)

)

(3)

and features a qualitatively different type of chaotic dynam-

ics that was called laminar chaos [13,14] and is marked by

the presence of horizontal plateaus in the x(t) time series.

Let us now consider two coupled time-delay systems.

One of them has a constant delay time and is in the turbulent

chaos regime, while the other has a variable delay time and

is in the laminar chaos regime. Time-delay systems may

be coupled in various ways that differ both in the type of

coupling (linear, diffusion, delayed) and in the position of

the point within a ring time-delay system at which the signal

from the other system is fed into the ring [18]. For example,

the coupling signal may be fed into the system characterized

by Eq. (1) between an inertial element (filter) and a delay

line, between a delay line and a nonlinear element, or
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Figure 1. a — block diagram of two unidirectionally coupled time-delay systems. Elements τ1(t) and τ2, f 1 and f 2, and ε1 and ε2

implement delay, nonlinear transformation, and inertial transformation of oscillations, respectively. Element k defines the strength of

unidirectional coupling. b and c — time series of x(t) (1) and y(t) (2) oscillations at k = 0 and 0.55, respectively.

between a nonlinear element and a filter. Each of these

cases is characterized by its own equation [18].
Figure 1, a presents the block diagram of two unidirec-

tionally coupled time-delay systems (1) and (3) for the case

when the diffusion coupling signal is fed into the slave

system between a nonlinear element and a filter. With

this type of coupling, the master system is characterized

by equation ε1ẋ(t) = −x(t) + f 1

(

x
(

t − τ1(t)
))

, while the

slave system is characterized by equation

ε2ẏ(t) = −y(t) + f 2

(

y(t − τ2)
)

+ k
(

x(t) − y(t)
)

, (4)

where k is the coupling coefficient.

The following parameters of master and slave sys-

tems were chosen: τ1(t) = 1 + 0.2 sin(2πt), τ2 = 1,

ε1 = ε2 = 0.03, f 1 = λ1 − x2, and f 2 = λ2 − y2, where

λ1 = λ2 = 1.82 are the nonlinearity parameters; integration

step 1t = 0.01. Figure 1, b presents the time series of x(t)
oscillations corresponding to the laminar chaos regime and

y(t) oscillations at k = 0 corresponding to the turbulent

chaos regime. As the coupling strength increases, the

turbulent chaos regime in the slave system starts collapsing.

Sections of laminar chaos emerge in the y(t) time series, and

the duration of these sections increases with k . Figure 1, c

presents the time series of x(t) and y(t) oscillations at

k = 0.55. It is evident that the horizontal sections in the

y(t) time series are shorter than those in x(t). In addition,

sections of laminar chaos in the slave system at k = 0.55

are interspersed in the y(t) time series with sections of

turbulent chaos that are not shown in Fig. 1, c. Coefficient R

of correlation between the master and slave systems is 0.82

at k = 0.55. The x(t) and y(t) oscillations become more

and more similar as the coupling strength increases further.

At k > 1, they are almost identical (i.e., the master and slave

systems become synchronized completely). Correlation

coefficient R is then close to unity.

Let us consider a more complicated case of mutual

coupling between time-delay systems. Figure 2, a presents

the block diagram of two mutually coupled time-delay

systems (1) and (3) for the case when the diffusion coupling

signal is fed into both systems between a filter and a

delay line. With this type of coupling, the systems are

characterized by equations

ε1ẋ(t) = −x(t) + f 1

(

x(t − τ1(t)
)

+ k1

[

y
(

t − τ1(t)
)

− x
(

t − τ1(t)
)]

)

,

ε2ẏ(t) = −y(t) + f 2

(

y(t − τ2)

+ k2

[

x(t − τ2) − y(t − τ2)
])

, (5)

where k1 and k2 are the coupling coefficients. The

parameters of both systems were chosen to be the same

as the ones used in the case of unidirectional coupling

considered above. Therefore, the time series of x(t) and y(t)
oscillations at k1 = k2 = 0 are identical to those presented

in Fig. 1, b; i.e., the first system is in the laminar chaos

regime, while the second system is in the turbulent chaos

regime. Figure 2, b presents the time series of x(t) and y(t)
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Figure 2. a — block diagram of two mutually coupled time-delay systems. Elements τ1(t) and τ2, f 1 and f 2, and ε1 and ε2 implement

delay, nonlinear transformation, and inertial transformation of oscillations, respectively. Elements k1 and k2 define the strength of coupling

between the systems. b and c — time series of x(t) (1) and y(t) (2) oscillations at k1 = k2 = 0.1 and 0.8, respectively.

oscillations at k1 = k2 = 0.1. The oscillation regimes in both

systems at this coupling strength differ considerably from

the regimes established without coupling. The case of strong

coupling (k1 = k2 = 0.8) is presented in Fig. 2, c. Here,

both systems manifest laminar chaos and are synchronized

completely.

Thus, we have demonstrated for the first time that laminar

chaos may emerge in a system with a constant delay

time coupled with a system in the laminar chaos regime.

Therefore, the regime of laminar chaos may be established

both by modulating the delay time and by introducing

coupling between time-delay systems.
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[15] T. Jüngling, T. Stemler, M. Small, Phys. Rev. E, 101, 012215

(2020). DOI: 10.1103/PhysRevE.101.012215

Technical Physics Letters, 2022, Vol. 48, No. 2



56 D.D. Kulminskiy, V.I. Ponomarenko, M.D. Prokhorov

[16] D.D. Kul’minskii, V.I. Ponomarenko, M.D. Prokhorov, Tech.

Phys. Lett., 46 (5), 423 (2020).
DOI: 10.1134/S1063785020050090.

[17] D. Müller-Bender, A. Otto, G. Radons, J.D. Hart, R. Roy,

Phys. Rev. E, 101, 032213 (2020).
DOI: 10.1103/PhysRevE.101.032213

[18 ] M.D. Prokhorov, V.I. Ponomarenko, Phys. Rev. E, 72, 016210

(2005). DOI: 10.1103/PhysRevE.72.016210

Technical Physics Letters, 2022, Vol. 48, No. 2


