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Work of formation of a cluster of a new phase that is in a uniform

external electric field and in the field of an ion outside the cluster
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In the framework of the classical thermodynamic approach, an expression for the joint contribution to the work

of formation of a spherical cluster of a new phase from the side of a uniform external electric field and the field of

an ion that is outside the cluster is obtained. The analysis of the obtained expression in the case of the vapor−liquid

phase transition is carried out.
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The presence of electric field is a factor affecting the

stability of metastable phases and nucleation rate [1,2].
Therefore, the controllable nucleation in electric fields finds

application in various technologies, for instance, in obtaining

nanoscale particles [3].

In calculating the work of the new-phase cluster for-

mation in the electric field, only two cases are typically

considered. In the first case, the cluster is assumed to arise

in the ion field [4,5]. In the other one, the cluster is assumed

to be formed in a uniform external field [6,7]. However,

situations often occur, both in nature and technology, when

the new-phase clusters emerge in the simultaneous presence

of ions and uniform external electric field. In [8] there was

obtained a relation for the work of the new-phase cluster

formation for the case when the cluster is formed on the

ion in the presence of the uniform external field. This paper

considers the case of formation of the new-phase cluster

that is located simultaneously in the uniform external field

and in the field of the ion outside the cluster. This case is

important since in the process of the cluster formation the

ion may be driven out to the cluster periphery [9,10].

The main task in calculating the work of the new-phase

cluster formation in the electric field is to calculate the

electric field contribution to this work. It is possible to

show [11,12] that the general expression for the electric field

contribution to the work of the new-phase cluster formation

looks as follows:

Wel =
ε0

2
(εold − εnew)

∫

Vcl

∇ϕ · ∇ϕ̃dV, (1)

where ε0 is the electrical constant, εold and εnew are the

static dielectric permittivities for the old and new phases,

respectively, ϕ and ϕ̃ are the electric potentials in the

absence and in the presence of the cluster, respectively. In

(1), the volume integration is performed over the cluster

volume Vcl . Further we will find parameter Wel for the

case considered in this study; for simplicity, assume that the

new-phase cluster has a spherical shape.

Let us use the spherical frame of reference with the origin

in the center of the spherical cluster (Fig. 1). Axis z with

respect to which polar angle θ is counted will be directed

along strength E of the old-phase uniform electric field.

Based on the superposition principle, potential ϕ may be

defined as

ϕ = ϕ f ield + ϕion, (2)

where ϕ f ield is the uniform field electrostatic potential in

the absence of the cluster, ϕion is the ion field electrostatic

potential in the absence of the cluster. In the selected frame

of reference, potential ϕ f ield is defined as

ϕ f ield = −Er cos θ, (3)

while potential ϕion outside the ion may be written as

ϕion =
q

4πε0εoldr p
=

q
ε0εoldr0

∞
∑

l=0

l
∑

m=−l

1

2l + 1

(

r
r0

)l

× Y ∗

lm(�0)Ylm(�), r < r0. (4)

Here r is the distance from the cluster center to observation

point P; q is the ion electric charge; r p is the distance from

the ion center to observation point P; r0 is the cluster center
to ion center distance; Ylm(�) are the spherical harmonics;

� ≡ {θ, ψ} is the set of spherical angles of the radius-vector

drawn from the cluster center to observation point P (ψ is

the azimuthal angle); �0 ≡ {θ0, ψ0} is the set of spherical

angles of the radius-vector drawn from the cluster center to

the ion center. Substituting (3) and (4) into (2), obtain the

final expression for potential ϕ.

The superposition principle allows potential ϕ̃ to be

represented as

ϕ̃ = ϕ̃ f ield + ϕ̃ion, (5)

where ϕ̃ f ield is the uniform field electrostatic potential in

the presence of the cluster, ϕ̃ion is the ion field electrostatic
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Figure 1. The problem geometry.

potential in the presence of the cluster. It can be shown [13]
that

ϕ̃ f ield = −
3εold

2εold + εnew
Er cos θ, r 6 R, (6)

where R is the cluster radius. In addition, it can be

shown [14] that

ϕ̃ion =
q

ε0r0

∞
∑

l=0

l
∑

m=−l

1

εold(l + 1) + εnew l

(

r
r0

)l

× Y∗

lm(�0)Ylm(�), r 6 R. (7)

Substituting (6) and (7) into (5), obtain the final expression

for potential ϕ̃ inside the cluster.

Taking into account the found potentials ϕ and ϕ̃,

calculate the integral in relation (1). Calculating this integral,
take into account that [15]:

r cos θ =

√

4π

3

∞
∑

l=0

l
∑

m=−l

r lYlm(�)δl1δm0,

∇r lYlm(�) = lr l−1Y
(−1)
lm (�) +

√

l(l + 1)r l−1Y
(1)
lm (�),

where δi j is the Kronecker delta, Y
(−1)
lm (�) and Y

(1)
lm (�) are

the vectors spherical harmonics. In addition, in calculating

this integral, the properties of the spherical harmonics

and vectors spherical harmonics should be taken ino

account [15]. As a result, obtain the following expression:

Wel =
(εold − εnew)q2

8πε0εoldR

∞
∑

l=0

l
εold(l + 1) + εnew l

(

R
r0

)2l+2

+
2πε0εold(εold − εnew)R3E2

2εold + εnew
−

(εold − εnew)qR3E cos θ0

(2εold + εnew)r20
.

(8)
In the absence of the uniform external electric field

(E = 0), relation (8) transforms into the known equation

for the contribution to the work of the new-phase spherical

cluster formation from the field of the ion located outside

the cluster [5]. In the absence of the ion (q = 0), relation (8)
transforms into the known equation for the contribution to

the work of the new-phase spherical cluster formation from

the uniform external electric field [6]. The simultaneous

presence of the ion and uniform external electric field means

that it is necessary to take into account in relation (8) the

cross term depending on angle θ0.

Fig. 2 presents as an example the calculated dependences

of work W of the new-phase cluster formation on the cluster

radius R for a polar substance (methanol) in the case of

the vapor−liquid phase transition. Those dependences were

calculated using relation

W = 4πσR2 −
4πkT ln S

3v
R3 + Wel, (9)

where parameter Wel is defined by (8). Here σ is the

liquid−vapor surface tension coefficient, k is the Boltzmann

constant, T is the temperature, S is the vapor supersatura-

tion, v is the volume per a molecule in the liquid.

Fig. 2 shows that in the case of the vapor−liquid transition

the presence of electric field leads to a decrease in the new-

phase cluster critical radius R∗ that can be found from the

dW (R∗)/dR = 0 condition and to a decrease in the work

of formation of the new-phase cluster with critical size

W ∗ = W (R∗). This, in its turn, results in an increase in

the probability of such a cluster formation and, hence, in an

increase in the nucleation rate J ∝ exp(−W ∗/kT ).
Analysis of expression (9) shows that in the case of the

vapor−liquid phase transition in the presence of the uniform

external electric field and ion located outside the cluster,

work W ∗ significantly depends on angle θ0 at the fixed

distance r0. The dependence on angle θ0 manifests itself

in the fact that work W ∗ for the positively charged ion in

the uniform external electric field will be maximal at θ0 = 0

and minimal at θ0 = π (see curves 4 in Fig. 2). Thereat,

work W ∗ for the negatively charged ion will be maximal
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Figure 2. W versus R for methanol in the case of

the vapor−liquid phase transition at T = 280K, S = 1.5 and

r0 = 3 nm. 1 — q = 0 and E = 0 (homogeneous nucleation),
2 — q = e (e is the electron charge) and E = 0, 3 — q = 0 and

E = 500MV/m, 4 — q = e and E = 500MV/m.
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at θ0 = π and minimal at θ0 = 0. Thus, the probability of

the critical-size new-phase cluster formation in the case of

a positively charged ion will be maximal at θ0 = π, while

that in the case of a negatively charged ion will be maximal

at θ0 = 0.
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