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Boundary conditions for scattering problems of exchange spin waves

in inhomogeneous magnetic structures
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A method for obtaining boundary conditions for magnetization in ferromagnetic structures with an inho-

mogeneous ground state — a relativistic and exchange spiral caused by the presence of competing exchange

interactions — is proposed in this paper within the framework of a lattice model with a subsequent passage to the

limit to the continuum. It is shown that such conditions are the equations of the dynamics of the magnetization of

those boundary spins in which the symmetry is broken in comparison with the internal ones.
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1. Introduction

Magnetic materials with heterogeneous ground state are

promising media for observation of nonreciprocal propa-

gation effect of exchange spin waves (ESW). Such effects

constitute a physical basis of operation of magnon gates and

other devices based on magnon logic which are described in

detail in [1]. Occurrence of spin helicoid in such materials

may be attributable to, in particular, Dzyaloshinski−Moriya

relativistic interaction (DMI) [2]. Competition of exchange

interactions of the first two nearest neighbours. Nonlocal

nature of exchange interaction lead to a variety of possible

types of exchange structures and wave modes in them.

Modulated long-periodic magnetic structures and the related

investigation using elastic neutron scattering are described

in [3]. In particular, the monograph addresses magnetic

materials where a spin helicoid may exist, types of long-

periodic structures, ESW spectrum and magnetic phase

transitions in ESW.

In view of this, the problem of ESW scattering by the

interface of such structures and definition of the related

coefficients is of importance. To solve the problem,

appropriate boundary conditions (BC) are required for

magnetization components and derivatives.

ESW scattering problems [4] and ESW generation prob-

lems [5] traditionally use the following BC

M+ ×M− = 0,
α+

Mz
+

M+ ×M′
+ =

α−

Mz
−

M− ×M′
−, (1)

where M± and α± are medium magnetizations and ex-

change constants (
”
−“ corresponds to the medium to the

left of the boundary,
”
+“ corresponds to the medium to the

right of the boundary), z is the normal coordinate to the

media interface, underscore designates z derivative. The first

of them reflects an ideal close coupling between boundary

spins, the second is derived by formal integration of

Landau−Lifshitz equation (LLE) in a small neighborhood

of the boundary.

However, for the magnetization dynamics equations

containing also long-range order interactions beside the

homogeneous exchange, a number of BCs corresponding to

their order is required. In particular, the number generated

by the volumetric energy density of unlimited magnetic

medium

w =
1

2

(

σM′′2
− αM′2 + βM2

z

)

. (2)

LLE is of fourth order by coordinate and requires four BCs

for the problem to be solved. In equation (2) β is the

uniaxial anisotropy constant, σ is the non-local exchange

constant.

There is quite a number of publications devoted to

determination of BCs for spin dynamics equations. In par-

ticular, in [6,7] they were derived within a continuum, and

in [8], they were generalized for the terminal interlayer

interaction constant and take into account the influence of

the averaged interface parameters on the ESW scattering.

The idea of BC derivation for two neighbour ferromagnets

from a lattice model of a one-dimensional spin chain by

limit transition to continuum was described in [9], where

they are obtained by combining LLEs for boundary spins

containing different orders of smallness of lattice constant.

For this, lattice functions are addressed — dynamic magne-

tization components whose values coincide with the values

of the related continuous functions in the lattice points.

An approach borrowed from [9] is generalized herein for

more complex structures — long-periodic structures with

competing exchange interactions and with DMI.
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2. Boundary conditions for magnetic
structures with DMI

Consider the following one-dimensional chain lattice

Hamiltonian

−W =A−

−1
∑

n=−∞

Sn(−)S(n+1)(−)

+ A+

∞
∑

n=1

Sn(+)S(n+1)(+) + JS1(+)S1(−)

+ D− ·

−1
∑

n=−∞

Sn(−) × S(n+1)(−)

+ D+ ·

∞
∑

n=1

Sn(+) × S(n+1)(+) + D · S1(−) × S1(+)

+
B−

2

−1
∑

n=−∞

(Sn(−)e−)2 +
B+

2

∞
∑

n=1

(Sn(+)e+)2

+
6−

2
(S1(−)e−s )

2 +
6+

2
(S1(+)e+s)

2, (3)

where A± are the exchange integrals of neighbour media,

J is the interlayer exchange integral, D± are the Dzyaloshin-

ski relativistic anisotropic exchange vectors, D is the

Dzyaloshinski interlayer exchange vector, B± and 6± are,

respectively, volumetric and surface constants of single-ion

uniaxial anisotropy with easy magnetization axis defined by

single vectors e± and e±s. Enumeration of spins Sk(±) in

each layer starts with 1 to ensure more symmetrical form

of equations. In this model, the long-range order of spin

interaction is not available. The Dzyaloshinski vectors in two

media that determine the equilibrium magnetization rotation

direction (chirality) are assumed as normal-directed to the

boundary oriented along axis z .
Continuum limit is implemented by means of substitu-

tions

M →
µb

sa
Sn, dz → a, A± = α±

µ2
b

sa2
, J = G

µ2
b

sa2
,

D± = d±

µ2
b

sa2
, D = d

µ2
b

sa2
, B± = β±

µ2
b

sa
,

6± = σ±
µ2

b

sa2
(4)

in the assumption that new constants are finite within

wavelengths, there are many smaller lattice constants a .
Here, µb is Bohr magneton, Sn is spin of n-th lattice

point, G, d, d±, β±, σ± are specific exchange constants

corresponding to introduced above, s is the area per one

atom in the plane perpendicular to the chain direction.

Transform the exchange summands into (3):

. . . + Sn(±)

S(n+1)(±) + S(n−1)(±)

2
+ . . .

= . . . + S2n(±) +
a2

z
Sn(±)S

′′
n(±) + . . . ,

and summands with DMI

. . .+
D±

2
·

(

[

S(n−1)(±) × Sn(±)

]

+
[

Sn(±) × S(n+1)(±)

]

)

+ . . .

= . . . +
D±

2

[

Sn(±) × (S(n+1)(±) − S(n−1)(±))
]

+ . . .

= . . . + aD±

[

Sn(±) × S′n(±)

]

+ . . . .

In the latter expression, the following may be written

D±

[

Sn(±) × S′n(±)

]

=D± · ez ez jkSn(±) jS
′
n(±)k

= −D±Sn(±) je jz kS′
n(±)k = −D±Sn(±)

[

∇ × Sn(±)

]

, (5)

if D is oriented along the normal to the boundary. Here,

ez = 1 is a single vector projection on direction z .
Taking into account (5), the surface energy is reduced to

w =
W
s

=

0
∫

−∞

(

−
α−

2
M−1M−+d−M−[∇×M−]−

β−

2
(M−e−)2

)

dz

+

∞
∫

0

(

−
α+

2
M+1M++d+M+[∇×M+]−

β+

2
(M+e+)2

)

dz

− GM−(0)M+(0) − D ·M−(0) ×M+(0)

−
σ−

2
(M−(0)e−s )

2
−

σ+

2
(M+(0)e+s )

2. (6)

Write LLE for boundary spins in each medium

~S0Ṡn = −

[

Sn ×
∂W
∂Sn

]

, (7)

where S0 is the spin magnitude. Using Hamiltonian (3), we
obtain (7) in the form of

S0(−)~Ṡ−1(−)

=
[

S−1(−) × (A−S−2(−)+D− × S−2(−) + JS1(+)

− D× S1(+) + B−(S−1(−)e−)e− + σ−(S−1(−)e−)e−)
]

,

S0(+)~Ṡ1(+)

=
[

S1(+) × (A+S2(+) − D+ × S2(+) + JS−1(−)

+ D× S−1(−) + B+(S1(+)e+)e+σ+(S1(+)e+)e+)
]

. (8)
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Expand the spins adjacent to the boundary ones in a

series up to the values of the first order of lattice constant

smallness. It should be noted that taking into account (4),
the left-hand side of expressions (8) has a higher order of

smallness of a than the remaining summands. Then

S±2(±) = S±1(±) ± aS′±1(±). (9)

Applying (9) to (8), we obtain the following system

− aA−

[

S−1(−) × S′−1(−)

]

+
[

S−1(−) × (D− × S−1(−))
]

+ J
[

S−1(−) × S1(+)

]

−
[

S−1(−) × (D× S1(+))
]

+ B−(S−1(−)e−)[S−1(−) × e−]

+ 6−(S−1(−)es−)[S−1(−) × es−] = 0,

aA+

[

S1(+) × S′1(+)

]

−
[

S1(+) × (D+ × S1(+))
]

+ J
[

S1(+) × S−1(−)

]

+
[

S1(+) × (D× S−1(−))
]

+ B+(S1(+)e+)[S1(+) × e+]

+ 6+(S1(+)es+)[S1(+) × es+] = 0. (10)

It should be noted that constants B± at a → 0 grow

slower that the rest ones and, therefore, they may be

neglected in the continuum model. For direct integration

of dynamic equations, this is indicated by the zero limit of

an integral of the continuous magnetization function as the

integration limits tend to zero.

Rewrite BC in continuum model

− α−

[

M− × (M′
− − [K− ×M−])

]

+ G[M− ×M+]

−
[

M− × [d×M+]
]

+ σ−(M−es−)[M− × es−] = 0,

α+

[

M+ × (M′
+ − [K+ ×M+])

]

+ G
[

M+ ×M−

]

+
[

M+ × [d×M−]
]

+ σ+(M+es+)[M+ × es+] = 0, (11)

where K = d
α
id the helicoid wave vector in each medium.

It should be noted that summand K± ×M± may be

excluded by gauge transformation of transition to the

helicoid coordinate system.

3. BCs taking into account long-range
magnetic order in ferromagnets

In the presence of a long-range order of the exchange

interaction, the one-dimensional chain Hamiltonian is as

follows

W = −A6nSnSn+1 + B6nSnSn+2,

A > 0, B > 0. Rewrite it in the form of

W =
1

2

(

−A
∑

n

Sn(Sn−1 + Sn+1)+B
∑

n

Sn(Sn−2 + Sn+2)

)

.

(12)

ferromagnetic limit in this model corresponds to B = 0.

The first summand in (12) is responsible for ferromagnetic

ordering of neighbour spins, and the second summand is

responsible for antiferromagnetic ordering of spins located

at a distance equal to double lattice constant. Thus,

competition of two exchange interactions occurs and may

result in the appearance of an exchange helix.

As in the previous case, assume that the magnetizations

change negligibly within the lattice constant, which makes

it possible to expand then in the Taylor’s series:

Sn±k =Sn ± S′nka +
1

2
S′′n (ka)2±

1

6
S′′′n (ka)3+

1

24
S′′′′n (ka)4

(13)

and to write the initial Hamiltonian (12) as follows

W =
1

2

(

(4B − A)a6nSnS
′′
n a +

1

12
(16B − A)a36nSnS

′′′′
n a

)

.

(14)

Continuum transition is implemented using the substitu-

tions na → x , a → dz , Sn → asM(z ) under the summation

symbol. To represent Hamiltonian (14) in the form

summands containing coordinate derivatives, the quantities

(4B − A)a3s = a > 0,
1

12
(16B − A)a5s = σ > 0 (15)

shall be finite. From (15), we have

A =
1

s
4

a5

(

σ −
α

3
α2

)

, B =
1

s
1

a5

(

σ −
α

12
α2

)

. (16)

The volumetric energy density of unlimited structure

within a continuum limit corresponding to (14) is as

follows [3]:

w =
1

2
M(αM′′ + σM′′′′). (17)

Consider the interface of two semi-infinite one-

dimensional magnetic ion chains with Hamiltonian (14).

Enumerate them with positive indices to the depth of

each medium from the interface. Neglecting the long-

range order at the interface indicated by summand

−J2(S1(+)S2(−) + S2(+)S1(−)), the one-dimensional lattice

structure Hamiltonian is as follows

W = − A−

∑

n≥1

Sn(−)S(n+1)(−) − A+

∑

n≥1

Sn(+)S(n+1)(+)

+ B−

∑

n≥1

Sn(−)S(n+2)(−) + B+

∑

n≥1

Sn(+)S(n+2)(+)

− JS1(+)S1(−). (18)

The last summand in (18) describes the interlayer interac-

tion.
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Write LLE for two boundary and sub-boundary spins

~S1Ṡ1(−) =
[

S1(−) × (−A−S2(−) + B−S3(−) − JS1(+))
]

,

~S1Ṡ1(+) =
[

S1(+) × (−A+S2(+) + B+S3(+) − JS1(−))
]

,

~S2Ṡ2(−) =
[

S2(−) × (−A−(S1(−) + S3(−)) + B−S4(−))
]

,

~S2Ṡ2(+) =
[

S2(+) × (−A+(S1(+) + S3(+)) + B+S4(+))
]

.

(19)

If the the boundary-like defect were absent (which

corresponds to a homogeneous medium), the right-hand

side would have the same order od smallness as the

left-hand side and we would have the magnetic moment

dynamics equations in unlimited medium. While the

difference between the interlayer exchange constant and

intralayer exchange constant reduces the order of a by 1

in the right-hand side and as a result the left-hand side

(dynamic) becomes negligibly small compared with the

summands in the right-hand side within the continuum limit.

The rest summands in the right-hand side in four equations

shall be reduced to a combination of two quantities S1(−)

and S1(+) by means of Taylor’s expansions, and then the

sought-for BCs will be obtained. Taking into account the

direction of axis z ,

S(1+k)(±) = S1(±)±S′1(±)kα +
1

2
S′′a(±)(kα)2 ±

1

6
S′′′1(±)(kα)3.

(20)

Apply the expansions (19) to (18). Taking into account

the expressions for A and B (16), introduce magnetizations

instead of spins and designation Jα5 = G similar to (16).
Then with an accuracy up to the terms of the third order of

smallness of lattice constant, the equations (19) will be as

follows

G[M1(−) ×M1(+)] − 2aσ−[M1(−) ×M′
1(−)]

+ a3

(

2

3
σ−[M1(−) ×M′′′

1(−)]+
7

6
α−[M1(−) ×M′

1(−)]

)

=0,

− G[M1(+) ×M1(−)] − 2aσ+[M1(+) ×M′
1(+)]

+ a3

(

2

3
σ−[M1(+) ×M′′′

1(+)] +
7

6
α+[M1(+) ×M′

1(+)]

)

=0,

2aσ−[M2(−) ×M′
2(−)] + 2a2σ−[M2(−) ×M′′

2(−)]

+ a3

[

M2(−) ×

(

4σ−

3
M′′′

2(−) −
α−

6
M′

2(−)

)]

= 0,

2aσ+[M2(+) ×M′
2(+)] − 2a2σ+[M2(+) ×M′′

2(+)]

+ a3

[

M2(+) ×

(

4σ+

3
M′′′

2(+) −
α+

6
M′

2(+)

)]

= 0. (21)

Within the continuum limit, assume M1(±) → M± in the

first two equations (21) and M2(±) → M± in the other

equations. By subtracting the second equation from the

first one (21), we obtain in zero approximation

[M− ×M+] = 0, (22)

i.e. the collinear condition of neighbour magnetic moments

of two media with absolutely close exchange coupling

between them.

By addition of the first two equations (21), we obtain

2a
(

σ−[M− ×M′
−] − σ+[M+ ×M′

+]
)

− a3

(

2

3

(

σ−[M− ×M′′′
− ] − σ+[M+ ×M′′′

+ ]
)

+
7

6

(

α−[M− ×M′
−] − α+[M+ ×M′

+]
)

)

= 0. (23)

Then put together the third and fourth equations (21)

2a
(

σ+[M+ ×M′
+] − σ−[M− ×M′

−]
)

− 2a2
(

σ+[M+ ×M′′
+] + σ−[M− ×M′′

−]
)

+ a3

(

4

3

(

σ+[M+ ×M′′′
+ ] − σ−[M− ×M′′′

− ]
)

−
1

6

(

α+[M+ ×M′
+] − α−[M− ×M′

−]
)

)

= 0. (24)

And finally, by combining the equations (23) and (24),
we find

−2a2
(

σ+[M+ ×M′′
+] + σ−[M− ×M′′

−]
)

+ a3
(

(

σ+[M+ ×M′′′
+ ] + α+[M+ ×M′

+]
)

−
(

σ−[M− ×M′′′
− ] + α−[M− ×M′

−]
)

)

= 0. (25)

In first approximation, the equation (25) gives

σ−[M− ×M′
−] = σ+[M+ ×M′

+], (26)

and from (24) in the second and third approximations, we

obtain

σ+[M+ ×M′′
+] = −σ−[M− ×M′′

−], (27)

σ+[M+ ×M′′′
+ ] + α+[M+ ×M′

+]

= σ−[M− ×M′′′
− ] + α−[M− ×M′

−]. (28)

The obtained relations (22), (26)−(28) are a BC system

for the exchange helix magnetization dynamics. It shall

be noted that the last condition (28) may be formally

obtained by integration of the corresponding LLE in the

small neighborhood of the boundary.
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4. Conclusion

The presence of non-local exchange in a ferromagnet may

lead not only to the occurrence of a heterogeneous ground

state, but also to the increase in the number of normal

modes. Therefore for proper formulation of the scattering

problem, the number of boundary conditions corresponding

to the order of the equation is required. This paper offers

a method to derive the boundary condition in a contin-

uum model for structures with Dzyaloshinski relativistic

exchange or long-range order of exchange interaction. It

is shown that sub-boundary spin dynamics equations whose

symmetry is distorted compared with the internal spin serve

as such BCs. Such symmetry distortion in the equations

leads to reduction of the order of smallness of non-local

summands of lattice constant.
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