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Establishing the stationary state during severe plastic deformation
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1. Introduction

A current issue at present is the behavior of materials

under severe plastic torsional deformation (SPTD). As

shown in [1,2], application of SPTD may change the phase

composition of two-component materials such as Cu−Ag,

Cu−Sn, Cu−Co. Thereat, the non-destructive process of

torsion impact took place. It was found that, if the number

of revolutions is large enough, a system always comes to

the same stationary state irrespective of the initial state

and annealing temperature. The phase boundary of the

diagram of dependence of dissolved impurity concentration

on annealing temperature Tann shifted and degenerates into

a straight vertical line [1]. Concurrently, a change in the

lattice parameters occurred simultaneously. Such a behavior

of the observed quantities can be explained on the basis

of the Landau’s phenomenological theory [3,4]. However,

these papers did not consider the wave edge shape (kink)
arising under SPTD. The present paper is dedicated to

studying this issue. Movement of the edge is an autowave

process in the kink form and is the simplest topological

soliton. A stationary state established after the edge passes

through the entire crystal. Autowaves arise in various

physical, chemical and biological media. Their examples

can be concentration waves in the Belousov−Zhabotinsky

reaction [5], chemical signaling waves in colonies of certain

microorganisms [6], waves in the interstellar gas which

lead to the formation of spiral galaxies [7]. An important

example of active media is many biological tissues. Thus,

propagation of a neural impulse [8] and excitation in the

cardiac muscle have the autowave nature [9]. Self-similar

solutions of a differential equation in physical systems

correspond to motion of the phase interface under first- or

second-order phase transitions [10,11], and describe flame

propagation [12]. The above-mentioned papers describe the

found analytical approximate solutions. Paper [13] describes
an attempt at a numerical consideration of this issue, which

provides a more accurate solution. In the present paper the

ideas elaborated in [3,4,13] are applied to two-component

crystals.

2. Theory

Let a two-component crystal with one fastened end be

exposed to SPTD in the phase diagram region where the

impurity is completely dissolved. In the present paper we

will consider the behavior of the edge (kink) of an arising

traveling wave. In this case a virtual crystal approximation

can be used. If it is used, all the crystal characteristics are

assumed to be averaged and we can introduce a unified

order parameter (OP) to describe unit cell deformation. Let

us use the Landau’s phenomenological theory to establish

the kink shape.

As shown in [10,11], kink dynamics can be conve-

niently considered using a differential equation of the

Landau−Khalatnikov type [14]:

∂qi

∂t
= −γii

δ8̃

δqi
; (i = x , y), (1)

where 8̃ is the composed function of free energy,

δ8̃

δqi
=
∑

k

(−1)k dk

dz k
∂8

∂

(
∂k qi
∂z k

)

— functional derivative, t — time, γii(i = x , y) — com-

ponents of the parameter that characterizes the rate of
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system relaxation to an equilibrium position. We will

subsequently assume that these components are constant

and will neglect the off-diagonal components for simplicity.

The Landau–Khalatnikov equation is an equation in partial

derivatives in relation to time (the left member) and spatial

variables (the right member) and describes the process of

relaxation from one state to another. The equation was

created based on the fact that a physical system reaches

a stationary state at t → ∞. Depending on the right

member, such a transition can be smooth, abrupt or via

several intermediate states. Transition kind is affected by

dispersion, dissipation, relaxation rate and other factors.

The Landau−Khalatnikov equation allows many solutions

dependent on kind of non-equilibrium thermodynamic

potential and magnitude of its parameters. This equation

describes the relaxation processes, both in perfect crystals

and in defective crystals. Various deviations from the

perfect structure in the non-equilibrium thermodynamic

potential NTDP are determined using derivatives of different

orders from the corresponding OPs according to spatial

variables. In particular, long-period spiral structures in

crystals without an inversion center can be described

using Lifshitz invariants. If the crystal has an inversion

center, squares of the first and second derivatives must be

introduced in the NTDP. In the latter case, the system of

equations (2) becomes a fourth-order system in relation to

space derivatives, which requires a large number of initial

(boundary) conditions and the solution is complicated.

Therefore, we will restrict ourselves to crystals without an

inversion center.

Density of a NTDP-system, exposed to SPTD with

moment M along the OZ axis, is as follows [3,4,13,15]:

8̃ =
α1

2
q2(N) +

α2

4
q4(N) +

α3

6
q6(N) + γ1Mr

×

(
qx

∂qy

∂z
− qy

∂qx

∂z

)
+ γ2Ms

((
∂qx

∂z

)2

+

(
∂qy

∂z

)2
)

+ β1ϕ +
β2

2
ϕ2 +

β3

2
ϕ3 + δq2ϕ, (2)

where γi(i = 1, 2), αi , βi (i = 1−3), δ — phenomenologi-

cal constants, q — vector structural OP with components qx

and qy , defined as a linear combination of shifts of unit

cell ions as a result of a phase transition, ϕ — defect

density. The component qz is ignored, since the torque

moment is along the OZ axis. In fact, the present paper

considers the possibility of origination of transverse waves

only. Torque moment M is an axial vector. Therefore,

the powers r and s in (1) must be even in crystals

without an inversion center. As demonstrated in [13],
r = 6, s = 2. The term accountable for elastic interaction

is not written out in potential (1). The procedure for

its exclusion is given in [16]. It must be noted that the

Lifshitz invariants, which describe the deformation arising

under SPTD, are absent in crystals with an inversion center,

since the arising axial symmetry does not remove the

inversion. Therefore, crystals without an inversion center

are considered in the present paper. Substituting (2) in (1),
we obtain





∂qx

∂t
= − γxx

[
qx(α1 + α2q2 + α3q4 + 2δϕ)

+ 2γ1Mr ∂qy

∂z
− 2γ2Ms ∂2qx

∂z 2

]

∂qy

∂t
= − γyy

[
qy(α1 + α2q2 + α3q4 + 2δϕ)

− 2γ1Mr ∂qx

∂z
− 2γ2Ms ∂2qy

∂z 2

]

. (3)

As shown in [3,4], magnitude of defect density ϕ depends

on annealing temperature Tann. Since the corresponding

law is unknown, the desired dependence was selected

by a best fit of the theoretical and experimental data.

Since the dependence is weak, we neglect it. The

obtained system of equations is autonomous and can be

considerably simplified by changing over to a self-simulated

variable

u = z − ct, (4)

where c is the phase velocity of wave propagation.

Mathematically this conversion means a changeover to

a moving coordinate system where a wave is im-

mobile, and a distribution of characteristics at dif-

ferent time moments is obtained by shifting. It

is clear that the class of system solutions narrows

and it is simpler to find a solution. As a re-

sult, a system of ordinary differential equations is ob-

tained






2γxxγ2Ms d2qx

du2
− 2γxxγ1Mr dqy

du
+ c

dqx

du

= γxx qx(α1 + α2q2 + α3q4 + 2δϕ)

2γyyγ2Ms d2qy

du2
+ 2γyyγ1Mr dqx

du
+ c

dqy

du

= γyy qy(α1 + α2q2 + α3q4 + 2δϕ)

. (5)

In order to solve this system, we must assign four

conditions which can be qx(−∞), qy (−∞), qx (+∞),
qy(+∞). Since the system is in an equilibrium state at

t = 0 and a random value of z (u = z ) (there is no SPTD.),
all the derivatives are zero. Consequently, quantity q(+∞)
is determined from a system of algebraic equations

α1 + α2q2 + α3q4 + 2δϕ = 0. (6)

Considering the uncertainty, we adopt

qx(+∞) = qy (+∞) =
q(+∞)
√
2

.
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Figure 1. Qualitative kink shape at a low velocity. Arbitrary units

of measurements are adopted along the axes.

It was shown in [3,4] that the magnitudes of coeffi-

cients αi(i = 1−3) depend on annealing temperature and,

therefore, stationary states will slightly differ from each

other. However, we neglect this insignificant difference in

the present paper for simplicity. At t = +∞ (u = −∞),
the system is also in an equilibrium state, and under SPTD

it has a crystalline spiral structure described by relations

qx = q(−∞) · cos(k · z ), qy = q(−∞) · sin(k · z ). Here the

OP modulus is a constant quantity. To find the next pair

of boundary conditions, we must substitute these relations

in (3) taking into account the fact that all time derivatives

are zero. Simple conversions yield a biquadratic algebraic

equation solved as follows [3]:

q2(−∞) =

−α2 +

√
α2
2 + 4α3

(
α1 − 2δϕ +

γ2
1

M2r−s

2γ2

)

2α3

.

(7)

Here we also adopt qx (−∞) = qy(−∞) =
q(−∞)
√
2

. As

shown in [1–4], a critical annealing temperature Tkr ann

is observed in two-component systems such as Cu−A
(A = Ag, Sn, Co); system’s behavior drastically changes

after a transition through this temperature. At Tann < Tkr ann,

the function q(N), where N — number of revolutions —
is increasing and convex, at Tann > Tkr ann the desired

dependence is decreasing and concave. This behavior is

explained by the divergence and a change of the sign of

coefficient γ2 in the vicinity of point Tann < Tkr ann [3,4].
This peculiarity affects the kink shape as well.

Fig. 1 shows the established propagation mode for

relatively long times after SPTD impact and presents the

dependence q(u) for the case Tann < Tkr ann (solid curve)
and Tann > Tkr ann (dashed curve). In both cases there

is an oscillatory process upon a transition from one state

to another. This peculiarity of the kink leading edge

depends on its velocity and relaxation coefficient magnitude.

An increase of propagation speed leads to an increase of

oscillatory process decay, i.e. the amplitude and number of

oscillations till transition to an equilibrium state decrease.

The kink shape in the high speed limit becomes monotonic

(decreasing or increasing). When the relaxation coefficient

increases, oscillation amplitudes of the leading edge and

their number increase. A decrease of γ acts similarly to an

increase of unperturbed velocity.

A decrease of the value of coefficient γ2 leads to an

increase of the damped oscillations frequency and does not

affect their amplitude. Thereat, a transition to the final

stationary state is faster (Fig. 2). It should be noted that

similar oscillating tails of solitons were predicted in [17].

Behavior of the leading edge can be affected by disper-

sion, magnitude of which is defined to be constant γ1. Let

us assume that a weak dispersion is due to a change of

the OP magnitude. Then γ1 can be expanded into a series

according of OP powers. Let us consider two cases.
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Figure 2. Qualitative kink shape at a high velocity. The solid

line shows Tann < Tkr ann. The dashed line shows Tann > Tkr ann.

Arbitrary units of measurements are adopted along the axes.
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Figure 3. Comparison of qualitative shapes of the kink with

quadratic (dashed line) and linear (dash-and-dot line) dependences
of dispersion on OP. The solid line means no dispersion. Arbitrary

units of measurements are adopted along the axes.

1. Quadratic dependence: γ1 = γ10 + γ11
(
q − q(+∞)

)2
.

The corresponding system of auto-wave equation is as

follows






2γxxγ2Ms d2q2x

du2
− 2γxx

(
γ10 + γ11

(
q2 − q2(+∞)

)2

+ 2γ11
(
q2x − q2x(+∞)

))
Mr dq2y

du
+
(

c + 2γxxγ11Ms

×

(
q2x − q2x(+∞)

)(
q2y − q2y(+∞)

)) dq2x

du

= γxx q2x (α1 + α2q2
2 + α3q4

2 + 2δϕ)

2γyyγ2Ms d2q2y

du2
+ 2γyy

(
γ10 + γ11

(
q2 − q2(+∞)

)2

+ 2γ11
(
q2y − q2y(+∞)

))
Mr dq2x

du
+
(

c + 2γyyγ11Ms

×

(
q2x − q2x(+∞)

)(
q2y − q2y(+∞)

)) dq2y

du

= γyy q2y (α1 + α2q2
2 + α3q4

2 + 2δϕ)

.

(8)

The plot of a numerical solution for this system with

account of the initial conditions (6) and (7) is shown in

Fig. 3 by a dashed line. The solid line shows the shape of

kink (q1(u) = q(u)) at γ1 = const. A considerable decrease

of the leading edge maxima can be seen. This conclusion

is confirmed by the plots of the corresponding OP shift

velocities shown in Fig. 4. It must be noted that qualitative

behavior of OPs in the right part of the kink’s leading edge

is virtually the same in both cases.

2. Linear dependence: γ1 = γ10 + γ11
(
q − q(+∞)

)
. Sys-

tem of equations






2γxxγ2Ms d2q3x

du2
− 2γxx

(
γ10 + γ11

(
q3 − q3(+∞)

)

+ γ11

(
q3x − q3x(+∞)

)2

2
(
q3 − q3(+∞)

)
)

Mr dq3y

du
+

(
c + γxxγ11M

s

×

(
q3x − q3x (+∞)

)(
q3y − q3y(+∞)

)

q3 − q3(+∞)

)
dq3x

du

= γxx q3x(α1 + α2q2
3 + α3q4

3 + 2δϕ)

2γyyγ2Ms d2q3y

du2
+ 2γyy

(
γ10 + γ11

(
q3 − q3(+∞)

)

+ γ11

(
q3y − q3y(+∞)

)

2
(
q3 − q3(+∞)

)
)

Mr dq3x

du
+

(
c + γyyγ11M

s

×

(
q3x − q3x (+∞)

)(
q3y − q3y(+∞)

)

q3 − q3(+∞)

)
dq3y

du

= γyy q3y(α1 + α2q2
3 + α3q4

3 + 2δϕ)

.

(9)
The dash-and-dot lines in Fig. 3, 4 show the numerically

found dependences of kink front (q3(u)) and the corre-

sponding derivative. The OP oscillation amplitudes decrease

in the right half of the leading edge, which leads to a smaller
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Figure 4. Qualitative shape of OP derivatives with quadratic

(dashed line) and linear (dash-and-dot line) dependences of

dispersion. The solid line means no dispersion. Arbitrary units

of measurements are adopted along the axes.
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OP value for the final stationary state. The derivatives in the

right part of the leading edge also have an identical shape.

It must be noted that derivatives at point u = 0 are zero in

all cases, i.e. there is a minimum of the oscillatory process

in relation to the final state. This point is stable since

the first OP derivative is zero, and the energy minimum

is ensured. The situation is similar in the task of thermal

edge propagation [17]. We showed that a local maximum at

the initial point is possible only in plane symmetry systems,

which is true in our problem. If symmetry is axial or ball,

the first-order derivative at point u = 0 is non-zero.

3. Conclusion

1. It is shown that oscillations with an increasing ampli-

tude occur in the leading edge at a low velocity of kink

propagation.

2. If kink propagation velocity is high, the leading edge is

a monotonic curve.

3. Dispersion significantly affects the kink shape. Oscilla-

tion amplitudes decrease in the case of linear and quadratic

dispersions, but the frequency pattern does not change.
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