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The effect of electrostatic pressure on the diffusion equilibrium of bulk

nanobubbles
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A modified formula for calculating the electrostatic pressure (EP) in bulk nanobubbles (BNB) is proposed. It is

shown that EP prevents the diffusion dissolution of BNB in an aqueous solution. As a result, the BNB dissolves

only partially and becomes stable.
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A number of experimental and theoretical studies of

bulk nanobubbles (BNB) has increased sharply in recent

years [1–11] due to their wide application in various fields

of science and technology. It is believed that the main

stabilizing factor of BNB are the ions adsorbed on its

surface. Electrokinetic potential, on the one hand, prevents

BNB coagulation, and, on the other hand, creates a tensile

negative electrostatic pressure (EP) that compensates for the

compressive Laplace pressure (LP) and prevents diffusive

dissolution of the BNB [1–3,7–9].
However, this viewpoint is not universally accepted. In [4]

it is argued that EP cannot stabilize BNB due to its

smallness compared to LP. Alternative theories, which, in

our opinion, do not stand up to criticism (see [2]), have

been proposed in papers [10,11]. The theory developed

in [2] is valid for the special case when ionic strength of

the solution is negligible (see discussion below). According
to experiments [6], when the electrokinetic potential of the

double electric layer (DEL) is zero, BNBs collapse with the

formation of free radicals. In accordance with this, as well

as many other experiments, the EP is the main, if not the

only, stabilizing factor for the BNB.

The purpose of the present paper is to show theoretically

that EP causes diffusive stabilization of BNB.

When a BNB is formed in a liquid medium (distilled
water, dilute aqueous electrolyte solution, a mixture of water

and ethanol, etc.), a DEL is formed around it. Electrostatic

energy W of such layer may be described with a formula of

a spherical capacitor

W =
q2

2C
(1)

with electric capacity C, equal to

C = 4πε0ε
R(R + LD)

LD
, (2)

where

LD =

√

εε0kBT
2INAe2

(3)

— Debye shielding length, q — charge on a nanobubble

surface, R — its radius, e — elementary charge, kB and

NA — — Boltzmann’s constant and Avogadro number,

respectively, T — absolute temperature, ε — dielectric

permeability of water, ε0 — electric constant,

I =
1

2

∑

i

c i z
2
i (4)

— solution ion strength, c i and z i — mole concentration

and charge (in units e) of ith ion.

In case of meeting the condition

LD ≫ R (5)

for electrostatic energy, equation is produced from (1), (2)

W =
q2

8πε0εR
. (6)

If we suggest that in process of radius variation the charge

remains stable, for EP pe , which performs the work to

expand BNB, equal to the change with reverse sign of

electrostatic energy (−dW ),

pe4πR2dR = −dW, (7)

from (6), (7) the known equation is produced [1–4,7,8]:

pe =
q2

32π2ε0εR4
=

σ
2

2ε0ε
, (8)

where

σ =
q

4πR2
(9)

— surface density of the charge. Therefore, the common

equation for EP (8) is only fair, when inequality (5) is

complied with, i.e. practically with complete absence of

ions (c < 10−6 M, see table). Accordingly, in this case the

BNB stability theory is applicable, which is developed in [2].
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In another limit case

LD ≪ R (10)

from (1), (2) we have

W =
q2LD

8πε0εR2
. (11)

For EP from (7) it is

pe =
q2LD

16π2ε0εR5
=

σ
2LD

ε0εR
. (12)

For a random value of Debye length LD from (1), (2), and
(7) we have

pe =
(2R + LD)q2LD

32π2ε0εR4(R + LD)2
. (13)

From (13) the ratios (8) and (12) follow as private cases.

Let us consider occurrence of BNB. Let the solution

initially have an excess concentration (mole fraction) xmax

of some dissolved gas (nitrogen, air, oxygen, etc.), and after

removal of supersaturation the concentration dropped to

the value xmin. In this case, so-called critical BNBs with

gas pressure pmax = kHxmax (kH — Henry’s factor of the

dissolved gas) are formed in the solution. According to the

vast majority of experiments [3–8], the ionic force is such

that inequality (10) is most often satisfied. The mechanical

equilibrium condition for the so-called critical BNB nuclei

formed is
σ
2LD

ε0εRcr
+ pmax =

2γ

Rcr
+ pa . (14)

Here pa — pressure in the liquid (often equal to nor-

mal atmospheric pressure), γ — surface tension at the

solution−gas boundary (dependence of γ on radius R will

be neglected for simplicity). The critical nucleus size is

Rcr =
2
(

γ −
σ
2LD
2ε0ε

)

pmax − pa
≈

2γ

pmax − pa
. (15)

The second approximated equality is met because of EP

smallness compared to LP for a critical nucleus. After

Calculation of Debye length LD using formulas (3), (4) for a

binary solution at different concentrations of ions (z 1 = z 2 = 1,

c1 = c2 = c, T = 298K)

c, M LD , nm

10−6 308

10−5 97.4

10−4 30.8

10−3 9.7

10−2 3.1

10−1 0.97

1 0.31

10 0.1

removal of supersaturation, BNB starts dissolving in water,

however, its dissolution will be prevented by rising EP pe .

Let us introduce a few assumptions.

1. In process of gas diffusion from BNB, its surface charge

qcr = 4πR2
crσ (16)

remains constant with a varying radius. Then, if in

equation (12) the charge q is substituted with qcr from

(16), for EP pe you can write

pe(R) =
σ
2R4

cr LD

ε0εR5
. (17)

2. In process of BNB dissolution the mechanical equilib-

rium remains.

With the assumptions made, the equation for gas pressure

in process of BNB dissolution will be rewritten as

p =
2γ

R
+ pa −

σ
2R4

cr LD

ε0εR5
. (18)

Diffusion equilibrium will establish when gas pressure in

BNB becomes equal to the value peq = kHxmin (equilibrium
BNB). The calculation performed under (18), demonstrates

(Fig. 1) that pressure reaches maximum at radius Rmax,

meeting the ratio

Rmax

Rcr
= 4

√

5σ 2LD

2ε0εγ
< 1. (19)

Since Rcr > Rmax, for a critical nucleus LP dominates

above EP (see (15)). From Fig. 1 you can also see that

after formation of a critical BNB the pressure rises from

pmax = 4 · 105 to 1.1 · 106 Pa, and then drops to equilibrium

peq = 0.8 · 105 Pa.

If we assume that gas inside BNB is ideal, from (18) we

will get the equation for the number of molecules N inside

BNB

N =
4π

3kB T

(

2γR2 + paR3
−

σ
2R4

cr LD

ε0εR2

)

. (20)

Results of the calculation presented in Fig. 2 demonstrate

that after formation of a critical BNB the radius R
monotonously reduces because of diffusion (reduction of

N), until it reaches equilibrium value Req . Since equilibrium

pressure depends on Henry’s constant kH and gas concen-

tration value after removal of supersaturation xmin, the size

of equilibrium BNB Req should depend on gas type.

Time of BNB dissolution may be estimated using for-

mula [1,12]:

τb =
kHR2M

3NAkBT Dρ
. (21)

Here ρ — solution density, M — its
”
molar“ weight (for

dilute solutions that we consider this is just density and

molar weight of water), D — coefficient of gas molecule

diffusion in water. When boundaries water−BNB change,
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Figure 1. Dependence of pressure in BNB p on radius R after

removal of supersaturation. Calculation under formula (18). Pa-

rameters: z 1 = z 2 = 1, c1 = c2 = c = 0.1M, ε = 81, T = 298K,

γ = 0.072 J/m2, σ = 0.0083 C/m2, pa = 105 Pa. Dotted line 1 —
gas pressure inside a critical nucleus pmax = kH xmax = 4 · 105 Pa

(corresponding radius Rcr = 480 nm), dotted line 2 — gas

pressure inside equilibrium BNB peq = kH xmin = 0.8 · 105 Pa (cor-
responding radius Req = 76 nm). Curve p(R) reaches maximum

at Rmax = 115 nm. The calculation was done for nitrogen

(kH = 9.2 · 109 Pa).
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Figure 2. Dependence of molecule number in BNB N on

radius R after removal of supersaturation. Calculation under

formula (20). All parameters are the same as in Fig. 1. Dotted

line 1 corresponds to the number of molecules Ncr = 1.34 · 1010

in a critical nucleus of BNB with radius Rcr = 480 nm, dotted

line 2 — to the number of molecules Neq = 3.6 · 104 in an

equilibrium nucleus of BNB with radius Req = 76 nm.

DEL readjusts. Time τd , necessary for this process may

be estimated approximately, having divided the Debye

length LD by certain averaged thermal speed of ions

v th =
√

3kB NAT
M i

:

τd =
LD

v th
. (22)

To estimate the upper border of value τd you can assume

that M i is molar weight of the heaviest ion forming DEL.

Calculation under formulas (21), (22) with condition (10)
demonstrates that the inequality is met with high margin

τb ≫ τd .

From calculations under formulas (21), (22) it follows

that value τb — specific time of BNB size variation —
by 6−8 orders of magnitude exceeds τd . It means that

whenever BNB size changes, DEL manages to readjust

instantly.

Therefore, when Debye length smallness condition is

met (10), the equation for EP is (12). The critical BNB

emerging after removal of supersaturation starts dissolving,

however, due to rising EP, which compensates LP, the

dissolution will be suspended, and BNB will become

equilibrium.
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