06

Исследование влияния малой добавки ZrO₂ на плотность и рост зерен мелкозернистого оксида алюминия

© М.С. Болдин,¹ А.А. Попов,¹ А.А. Мурашов,¹ Н.В. Сахаров,¹ С.В. Шотин,¹ А.В. Нохрин,¹ В.Н. Чувильдеев,¹ Н.Ю. Табачкова,^{2,3} К.Е. Сметанина¹

 ¹ Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 603022 Нижний Новгород Россия
 ² НИТУ "МИСИС", 119049 Москва, Россия
 ³ Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия
 e-mail: boldin@nifti.unn.ru

Поступило в Редакцию 18 марта 2022 г. В окончательной редакции 11 июля 2022 г. Принято к публикации 11 июля 2022 г.

Исследовано влияние добавки 0.5 wt.% оксида циркония на кинетику электроимпульсного плазменного спекания (ЭИПС) субмикронных и микронных порошков α -Al₂O₃. Композиции Al₂O₃-0.5% ZrO₂ получали путем перемешивания порошков Al₂O₃ в планетарной мельнице мелющими телами из стабилизированного оксида циркония. Оценена энергия активации ЭИПС с использованием модели Янга-Катлера. Показано, что на плотность и средний размер зерна в керамиках, спеченных из субмикронных порошков Al₂O₃, значительное влияние оказывает неравновесное состояние границ раздела, образовавшихся в результате трансформации при ЭИПС аморфной фазы, присутствовавшей на поверхности частиц. Существенное влияние на размер зерна и плотность керамик Al₂O₃ + 0.5% ZrO₂, спеченных из микронных порошков, оказывает процесс коалесценции частиц ZrO₂.

Ключевые слова: оксид алюминия, оксид циркония, электроимпульсное плазменное спекание, плотность, диффузия, энергия активации.

DOI: 10.21883/JTF.2022.11.53442.57-22

Введение

Мелкозернистые керамики на основе оксида алюминия с повышенным содержанием частиц оксида циркония (20-50% ZrO₂) активно используются в общем и специальном машиностроении [1,2]. Добавки частиц ZrO₂ обеспечивают повышение твердости и трещиностойкости оксида алюминия [3,4], поэтому керамики Al₂O₃-ZrO₂ широко используются для изготовления металлорежущего инструмента, износостойких пар трения, запорной арматуры, в специальных приложениях и др. [1,2,5]. Добавление в Al₂O₃ большой объемной доли частиц ZrO₂ позволяет блокировать движение трещины за счет формирования сжимающих внутренних напряжений [3,4,6].

Дальнейшие перспективы повышения механических свойств связаны с возможностью формирования в керамиках однородной ультрамелкозернистой (УМЗ) микроструктуры [7,8]. Этого можно добиться за счет одновременного применения нано- и субмикронных порошков в качестве исходных материалов, а также технологий их высокоскоростного спекания. Одним из перспективных методом получения УМЗ керамик является технология электроимпульсного ("искрового") плазменного спекания (ЭИПС), представляющая собой новый эффективный метод высокоскоростного горячего прессования [9,10]. Суть технологии ЭИПС состоит в высокоскоростном нагреве порошков в графитовой пресс-форме за счет пропускания миллисекундных импульсов тока большой мощности. Спекание происходит в вакууме или инертной среде, в условиях приложения одноосного давления. Высокие скорости нагрева (до 2500 °C/min) позволяют существенно ограничивать скорость роста зерен, а возможность непосредственно в процессе ЭИПС изменять все ключевые параметры технологического процесса (время и температуру нагрева, величину приложенного давления, скорость нагрева и охлаждения) — эффективно управлять параметрами микроструктуры керамик [9,10].

Следует отметить, что высокую плотность керамики можно обеспечить за счет повышенных температур нагрева или длительной изотермической выдержки при температуре спекания, что неизбежно приводит к росту зерен [11,12]. Для решения этой проблемы эффективным является подход, основанный на стабилизации микроструктуры оксида алюминия за счет добавок наночастиц ZrO₂ [13,14].

Целью настоящей работы является исследование механизма высокоскоростного спекания оксида алюминия с малым (0.5 wt.%) содержанием наночастиц ZrO_2 , а также исследование влияния частиц ZrO_2 на кинетику роста зерен при ЭИПС оксида алюминия. Малое содержание частиц ZrO_2 позволяет минимизировать влияние фактора, связанного с влиянием внутренних напряжений, возникающих при обратимой трансформации (фазовом переходе) ZrO_2 из моноклинной в тетрагональную фазу. Особенностью настоящей работы является получение композиций Al_2O_3 – ZrO_2 за счет намола, который реализуется путем перемешивания порошков Al_2O_3 в планетарной мельнице мелющими телами из оксида циркония.

1. Материалы и методики

Объектами исследований являлись промышленные порошки оксида алюминия α -Al₂O₃ с различным уровнем дисперсности — субмикронные порошки (серия № 1) производства Taimei Chemicals Co., Ltd с начальным размером частиц $R \sim 0.2 \,\mu$ m (торговая марка TM-DAR) и микронные порошки (серия № 2) производства Alfa Aesar — A Johnson Matthey Company ($R \sim 1 \,\mu$ m).

Порошковые композиции Al₂O₃-ZrO₂ получались перемешиванием исходных порошков Al₂O₃ в планетарной мельнице "FRITSCH — Pulverisette 6". В качестве мелющих тел использовался бисер из стабилизированного оксида циркония ZrO₂-Y₂O₃ размером 0.4-0.6 mm. Для устранения намола, связанного с истиранием фурнитуры, использовался стакан из тефлона. В качестве жидкой среды использовался изопропиловый спирт. Соотношение масс порошка, мелющих тел и спирта составляло 1:4:6. Частота вращения размольного стакана составляла 400 грт, длительность перемешивания составляла 6 h. Удаление спирта из порошков проводилось при температуре 70°C (12 h). Режимы перемешивания, выбранные на основании ранее проведенных исследований, обеспечивали намол оксида циркония от мелющих тел и используемой оснастки в количестве 0.5 wt.% с точностью $\pm 0.1\%$.

ЭИПС образцов диаметром 12 mm и высотой 3 mm проводилось с помощью установки Dr. Sinter model SPS-625 (SPS SYNTEX INC. Ltd., Япония). Одноосное давление $P = 70 \,\mathrm{MPa}$ прикладывалось одновременно с началом нагрева. Спекание проводилось в вакууме (6 Ра). Температура измерялась с помощью пирометра CHINO IR-AH2, сфокусированного на поверхности графитовой пресс-формы. На основании сопоставления показаний пирометра (T_{eff}) и контрольной термопары, прикрепленной к поверхности образца, значения T_{eff} пересчитывались в температуру образца (T) с использованием эмпирических соотношений вида: $T = aT_{\text{eff}} - b$, где a и b численные коэффициенты. Остатки графита с поверхности образцов удалялись отжигом в воздушной печи (750°C, 1 h) и механической полировкой. В дальнейшем для краткости образцы, полученные спеканием чистого порошка Al₂O₃ серии № 1 и композиции Al₂O₃-ZrO₂, приготовленной на основе порошка серии № 1 будем называть керамиками серии № 1, а образцы, полученные спеканием чистого порошка Al₂O₃ серии № 2 и композиции $Al_2O_3 - ZrO_2$, приготовленной на основе порошка серии No 2, будем называть керамиками серии No 2.

В работе использовалось два режима спекания:

— Режим А: нагрев с постоянной скоростью ($V_h = 10$, 50, 100, 250, 350 и 700° С/min) до температуры окончания усадки (T_s) или до заданной температуры (T_1, T_2, T_3);

— Режим В: нагрев до заданной температуры (T_1, T_2, T_3) со скоростью 50°С/тіп и спекание при данной температуре в режиме изотермической выдержки длительностью (t_s) до 30 тіп.

В процессе ЭИПС фиксировалась зависимость эффективной усадки порошков ($L_{\rm eff}$) от температуры нагрева. Для учета вклада теплового расширения (L_0) проводились эксперименты по нагреву пустых пресс-форм. Величина истинной усадки рассчитывалась как $L = L_{\rm eff} - L_0$. Пересчет зависимости L(T) в температурную зависимость уплотнения ($\rho/\rho_{\rm th}$) проводился в соответствии с процедурой, описанной в работе [15].

Плотность керамик (ρ) измерялась методом гидростатического взвешивания в дистиллированной воде с помощью весов Sartorius CPA при комнатной температуре. Точность измерения ρ составляла ± 0.005 g/cm³. Теоретическая плотность ($\rho_{\rm th}$) Al₂O₃ и керамики Al₂O₃ + 0.5% ZrO₂ приняты равными 4.05 и 4.051 g/cm³ соответственно.

Микротвердость (H_v) измерялась на твердомере "Struers Duramin-5" (нагрузка 2 kg). Значение минимального коэффициента трещиностойкости $K_{\rm IC}$ рассчитывалось методом Палмквиста по длине максимальной радиальной трещины. При расчете величины $K_{\rm IC}$ модуль упругости принимался равным E = 350 GPa. Точность измерений величин H_v и $K_{\rm IC}$ соответственно.

Микроструктура образцов изучалась при помощи растрового электронного микроскопа (РЭМ) Jeol JSM-6490 и просвечивающего электронного микроскопа (ПЭМ) Jeol JEM 2100. Средний размер частиц (R) и зерен (d) измерялся методом хорд при помощи программы GoodGrains. Точность определения величин R и d составляла ~ 10% от средней величины. Рентгенофазовый анализ проводился с использованием дифрактометра XRD-7000 (Shimadzu, Япония) (медное излучение, шаг сканирования — 0.02° и время экспозиции — 0.6 s). Для идентификации фаз использовались данные базы данных порошковой дифракции PDF-2 и базы данных неорганических соединений ICSD.

2. Экспериментальные результаты

2.1. Аттестация порошков

На рис. 1, *a*, *b* представлены электронномикроскопические изображения порошка α -Al₂O₃ серии № 1. Гранулометрический состав порошка достаточно однороден, присутствия крупных частиц не обнаружено (рис. 1, *a*); средний размер частиц близок к заявлен-

Рис. 1. Электронно-микроскопические изображения порошков серии № 1 (*a*, *b*) и № 2 (*c*).

ному производителем. На поверхности субмикронных частиц α -Al₂O₃ присутствует аморфный слой толщиной $\sim 5-10$ nm (рис. 1, *b*); в кристаллической решетке частиц серии № 1 дислокации не обнаружены (рис. 1, *a*, *b*).

Гранулометрический состав порошков серии № 2 однороден; средний размер частиц $R \sim 0.8-1 \,\mu$ т. Частицы порошка содержат дислокации (рис. 1, *c*).

Согласно результатам РФА, в порошках серии № 1 и № 2 отсутствуют сторонние фазы. После перемешивания морфология порошков не изменяется.

2.2. Электроимпульсное плазменное спекание порошков

2.2.1. Спекание в режиме непрерывного нагрева (режим A)

На рис. 2 представлены зависимости $\rho/\rho_{\rm th}(T)$ для порошков Al₂O₃ и Al₂O₃ + 0.5% ZrO₂.

Зависимости $\rho/\rho_{\rm th}(T)$ имеют обычный трехстадийный характер [15,16]. Как видно из рис. 2, при малых скоростях нагрева ($V_h = 10^{\circ}$ C/min), стадия интенсивной усадки субмикронных порошков Al₂O₃ лежит в области температур 1000–1250°C и в интервале температур 1050–1450°C для порошков серии № 2. Увеличение V_h для всех порошков приводит к смещению зависимостей $\rho/\rho_{\rm th}(T)$ в область более высоких температур на ~ 200°C. Из рис. 2 видно, что малые добавки ZrO₂ не оказывают влияния на характер зависимости $\rho/\rho_{\rm th}(T)$. Температурные интервалы интенсивной усадки порошков Al₂O₃ и Al₂O₃ + 0.5% ZrO₂ отличаются не более чем на 20–30°C.

В табл. 1 представлены результаты исследований микроструктуры и механических свойств керамик, полученных в режиме непрерывного нагрева.

Отметим различный характер влияния скорости нагрева V_h и малых добавок частиц ZrO_2 на плотность керамик серий № 1 и № 2. Из данных, представленных в табл. 1, видно, что увеличение V_h приводит к ожидаемому уменьшению относительной плотности керамики. В частности, увеличение V_h от 10 до 700° С/тіп приводит к уменьшению $\rho/\rho_{\rm th}$ оксида алюминия, спеченного из порошков серии № 1, от 99.72 до 99.28%, т.е. масштаб уменьшения плотности составляет $\rho/\rho_{\rm th} = 0.44\%$. Для керамики серии № 1 с добавкой 0.5% ZrO₂ аналогичное повышение V_h приводит к снижению плотности на $\rho/\rho_{\rm th} = 1.07\%$ (табл. 1). Таким образом, увеличение V_h оказывает более сильное влияние на плотность УМЗ керамики Al₂O₃ + 0.5% ZrO₂, чем на плотность чистого УМЗ оксида алюминия. Из табл. 1 видно, что для всех температур ЭИПС плотность керамики с добавкой 0.5% ZrO₂ оказывается на $\rho/\rho_{\rm th} \sim 0.2-0.8\%$ меньше, чем плотность чистого Al₂O₃, спеченного в тех же условиях.

В случае ЭИПС порошков серии № 2 характер влияния малой добавки 0.5% ZrO2 оказывается иной. Во-первых, плотность мелкозернистой керамики $Al_2O_3 + 0.5\%$ ZrO₂ оказывается на $\rho/\rho_{th} \sim 0.3 - 1.3\%$ выше, чем плотность чистого Al₂O₃, спеченного в тех же условиях. При этом плотность керамик серии № 2 оказывается несколько ниже, чем плотность керамик серии № 1. Во-вторых, увеличение скорости нагрева V_h от 10 до 700°C/min приводит к заметному снижению плотности мелкозернистого оксида алюминия — более чем на 1% (от 98.24 до 97.20%, табл. 1). В то же время при аналогичном повышении V_h плотность мелкозернистой керамики $Al_2O_3 + 0.5\%$ ZrO₂ уменьшается всего на $ho/
ho_{
m th} \sim 0.3\%$. Различный характер влияния V_h и малой добавки ZrO₂ на плотность и рост зерен в керамике, спеченной из субмикронных и микронных порошков Al₂O₃, является неожиданным результатов.

В табл. 1 представлены результаты исследований микроструктуры образцов керамики $Al_2O_3 + 0.5\%$ ZrO₂, спеченных с различными скоростями нагрева V_h . Отметим, что введение 0.5% ZrO₂ позволяет уменьшить средний размер зерна керамики серий № 1 и № 2 в 2.5-3.5 и в 2.1-2.6 раза соответственно. Наиболее существенное влияние на средний размер зерна керамики добавка 0.5% ZrO₂ оказывает в случае нагрева с малыми V_h (табл. 1).

Рис. 2. Зависимости $\rho/\rho_{th}(T)$ субмикронных (a, b) и микронных (c, d) порошков Al₂O₃ (a, c) и Al₂O₃ + 0.5% ZrO₂ (b, d). Скорости нагрева (V_h) указаны на рисунках.

При спекании субмикронного порошка $Al_2O_3 + 0.5\%$ ZrO₂ с малыми V_h наблюдается аномальный рост зерен — после нагрева до $T = 1520^{\circ}$ С на фоне однородной мелкозернистой структуры с размером зерна $d \sim 0.7 - 1\,\mu$ m видны более крупные зерна, размер которых достигает ~ 5 μ m (рис. 3, *a*). При повышении V_h наблюдается уменьшение размеров аномально крупных зерен, а после ЭИПС с $V_h = 700^{\circ}$ С/min керамика имеет однородную УМЗ структуру со средним размером зерна $d \sim 0.7\,\mu$ m (рис. 3, *b*).

Результаты ПЭМ свидетельствуют о том, что в микроструктуре керамик наблюдаются частицы оксида циркония размером 50–100 nm (рис. 4). Как видно из рис. 4, энергодисперсионный микроанализ частиц свидетельствует о наличии явно выраженного рефлекса циркония. Это косвенно свидетельствует о том, что исследуемые частицы являются оксидом циркония, образовавшимся в результате намола (истирания) мелющих тел (бисера), которые были изготовлены из стабилизированного оксида циркония. Повышенное содержание кислорода, а также наличие рефлекса алюминия обусловлены, по нашему мнению, широкой областью возбуждения материала под электронным пучком, которая превосходит размер анализируемых частиц. Доля частиц ZrO₂, определенная с использованием программы GoodGrains, колеблется от 0.4 до 0.6–0.7%. Средняя доля частиц ZrO₂, рассчитанная на основании анализа результатов ПЭМ, составляет ~ $0.5 \pm 0.1\%$.

Для подтверждения предположения о том, что наблюдаемые частицы являются оксидом циркония, нами был использован метод РФА.

Из рис. 5 видно, что на дифрактограмме керамики присутствуют рефлексы, соответствующие тетрагональной фазе *t*-ZrO₂ (PDF 00-050-1089, ICSD № 97004).

Серия	T_s , °C	V_h , °C/min	Al_2O_3				$\mathrm{Al_2O_3} + 0.5\%\mathrm{ZrO_2}$			
			<i>d</i> , µm	$ ho/ ho_{ m th},$ %	H_v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}	<i>d</i> , µm	$ ho/ ho_{ m th},\%$	H_v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}
1	1520	10	5.1	99.72	18.6	2.5	1.38	99.55	19.3	2.7
		50	3.0	99.67	18.2	2.3	1.18	99.49	19.6	2.8
		100	2.8	99.60	17.9	2.5	0.74	99.40	20.7	2.3
		250	2.0	99.47	17.2	2.4	0.72	99.05	20.5	2.6
		350	1.9	99.47	16.9	2.1	0.71	98.98	19.7	2.2
		700	1.8	99.28	17.8	2.4	0.72	98.48	19.1	2.6
2	1600	10	20	98.24	16.1	1.7	9.2	98.81	16.1	2.7
		50	10.6	98.14	15.9	2.1	4.7	98.72	17.2	2.9
		100	8.0	98.00	16.7	2.7	4.2	98.74	17.3	2.5
		250	6.3	97.66	17.6	2.3	3.8	98.54	17.9	3.3
		350	6.1	97.52	15.9	2.7	3.8	98.62	17.8	3.2
		700	6.1	97.20	16.7	2.5	3.8	98.53	17.6	3.1

Таблица 1. Свойства керамических образцов, полученных методом ЭИПС в режиме непрерывного нагрева (режим A) из порошков Al₂O₃ и Al₂O₃ + 0.5% ZrO₂

Рис. 3. Микроструктура изломов образцов керамики $Al_2O_3 + 0.5\%$ ZrO₂, спеченной из порошков серии № 1 (*a*, *b*) и № 2 (*c*) при $V_h = 10$ (*a*) и 700°С/min (*b*, *c*).

На дифрактограмме также присутствует низкоинтенсивный рефлекс при 26°, который теоретически может быть отнесен к фазе ZrAl (PDF 00-050-1089). Вместе с тем следует отметить, что на дифрактограмме отсутствуют другие высокоинтенсивные рефлексы фазы ZrAl (рис. 5). Поэтому, по нашему мнению, рефлекс при 26° связан с присутствием на поверхности образца графита (PDF 00-056-0159, ICSD № 76767), образовавшегося в результате взаимодействия керамики с поверхностью графитовой пресс-формы. В пользу данного предположения косвенно свидетельствует тот факт, что после дополнительной механической шлифовки интенсивность рефлекса при 26° снизилась до уровня фона.

Количественный фазовый анализ был проведен методом Ритвельда в программном комплексе Topas (Bruker). В предположении, что примесный рефлекс при угле дифракции ~ 26° соответствует графиту, было установлено, что спеченная керамика содержит 0.6 vol.% *t*-ZrO₂ (0.9 mass.%) и ~ 1% графита. Завышенные значения содержания ZrO₂ обусловлены, по нашему мнению, погрешностью определения содержания частиц второй фазы методом РФА.

Таким образом, на основании обобщения результатов РФА и ПЭМ было установлено, что объемная доля частиц оксида циркония в исследуемых керамиках близка к расчетной (0.5%).

Отметим, что при спекании порошков серии № 2, которое осуществляется при $T = 1600^{\circ}$ С, наблюдается процесс коалесценции частиц ZrO₂ — на изломах образцов отчетливо видны светлые субмикронные частицы (рис. 3, *c*). Частицы ZrO₂ располагаются преимущественно по границам зерен оксида алюминия. На поверхности

Рис. 4. Микроструктура керамики, спеченной из порошка серии № 1 при температуре 1520°С (представлены различные участки образца).

Рис. 5. Результаты РФА керамики Al₂O₃ + 0.5% ZrO₂, спеченной из порошка № 1 при температуре 1520°С.

Рис. 6. Структура границ зерен в образцах оксида алюминия. Серия № 1. $V_h = 300^{\circ}$ С/min.

изломов образцов, спеченных из порошка № 1 при температуре 1520°С, крупных частиц ZrO_2 не наблюдается (рис. 3, *a*, *b*).

Важно подчеркнуть, что при спекании субмикронных порошков серии № 1 происходит полная кристаллизация аморфного слоя, расположенного на поверхности частиц (рис. 1, *b*). Результаты проведенных электронномикроскопических исследований показывают, что границы зерен УМЗ керамик имеют полностью кристаллическую структуру, фрагменты аморфной структуры методом ПЭМ не обнаружены (рис. 6).

Механические свойства керамик серии № 1 достаточно высоки — при $V_h = 10^{\circ}$ С/min твердость керамики Al₂O₃ + 0.5% ZrO₂ достигает 19.3 GPa, а трещиностойкость составляет $K_{IC} \sim 2.7$ MPa · m^{1/2}. Увеличение V_h до 100–250°С/min приводит к повышению H_v до 20.5–20.7 GPa. Нагрев с $V_h = 700^{\circ}$ С/min сопровождается снижением твердости керамики Al₂O₃ + 0.5% ZrO₂ серии № 1 до 19.1 GPa (табл. 1). Аналогичный эффект наблюдается при высокоскоростном спекании керамик Al₂O₃ + 0.5% ZrO₂ серии № 2 (табл. 1). Таким образом, для керамик Al₂O₃ + 0.5% ZrO₂ наблюдается немонотонный, с максимумом, характер зависимости $H_v(V_h)$.

Подчеркнем, что при всех V_h твердость керамики $Al_2O_3 + 0.5\%$ ZrO₂ серии № 1 оказывается на 1–1.5 GPa выше, чем твердость чистого оксида алюминия, и на 1.5-2.5 GPa выше, чем твердость мелкозернистой керамики $Al_2O_3 + 0.5\%$ ZrO₂ серии № 2 (табл. 1). Величина K_{IC} керамик Al_2O_3 и $Al_2O_3 + 0.5\%$ ZrO₂ при этом практически не изменяется и составляет 2.2-2.8 MPa · m^{1/2} (при точности определения величины K_{IC} , равной ± 0.3 MPa · m^{1/2}).

Журнал технической физики, 2022, том 92, вып. 11

2.2.2. Спекание в режиме изотермической выдержки (режим В)

В табл. 2 обобщены результаты исследований плотности, размера зерна и механических свойств керамик, спеченных в режиме В.

Обобщение представленных в табл. 2 результатов показывает, что, так же как и в случае спекания в режиме A, относительная плотность керамик $Al_2O_3 + 0.5\%$ ZrO₂ серии № 1 оказывается на $\rho/\rho_{th} \sim 0.1 - 0.2\%$ меньше, чем плотность чистого Al_2O_3 . Плотность керамики $Al_2O_3 + 0.5\%$ ZrO₂ серии № 2 оказывается на $\sim 0.2 - 0.3\%$ выше, чем плотность Al_2O_3 , спеченного из того же порошка (табл. 2). Так же как и в случае режима A, относительная плотность керамик серии № 1 оказывается выше, чем плотность керамик серии № 1 оказывается выше, чем плотность керамик серии № 2 (табл. 1, 2).

При спекании в режиме В аномально крупных зерен в структуре керамик не наблюдается. Увеличение температуры и времени изотермической выдержки приводит к повышению d (табл. 2). Отметим, что на изломах образцов видны частицы ZrO_2 , размер которых в керамиках серии № 1 не превышает $0.1-0.2\mu$ m (рис. 7, a). На границах зерен керамики серии № 2 наблюдаются два типа частиц — равномерно распределенные в объеме сферические частицы размером $0.5-1\mu$ m (рис. 7, b) и крупные микронные частицы (рис. 7, c), которые появляются только при повышенных температурах выдержки.

Следует обратить внимание на характер роста зерен в керамиках, спеченных в режиме В. Как видно из табл. 2, введение в субмикронный порошок добавки 0.5% ZrO₂ позволяет уменьшить интенсивность роста зерен и, как следствие, сформировать УМЗ микроструктуру. Аналогичное влияние 0.5% ZrO₂ на средний размер зерна наблюдается в керамике серии № 2 при температуре 1530°С. В керамике $Al_2O_3 + 0.5\%$ ZrO₂ серии № 2, спекаемой в режиме В при температуре 1600°С, средний размер зерна близок к размеру зерна чистого Al_2O_3 с учетом 10%-ной погрешности определения *d* (табл. 2). Обратим также внимание, что при увеличении времени t_s от 0 до 30 min при температурах 1600 и 1700°С наблюдается незначительное уменьшение плотности на 0.27-0.48% керамик серии № 2 (табл. 2).

3. Обобщение и анализ результатов

В настоящее время для анализа кинетики уплотнения порошков при ЭИПС используется большое число физических моделей (см. [13,15,17,18] и др.).

Для предварительного описания кинетики спекания порошков на стадии интенсивного уплотнения может быть использована модель Янга-Катлера [18]. Эта модель описывает начальную стадию неизотермического спекания сферических частиц в условиях одновременного протекания процессов объемной и зернограничной диффузии, а также пластической деформации. В соответствии с [18] угол наклона зависимо-

Серия	T_s , °C	t_x , min	Al ₂ O ₃				$Al_2O_3 + 0.5\% ZrO_2$			
			$d, \mu m$	$ ho/ ho_{ m th}$, %	H_v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}	$d, \mu m$	$ ho/ ho_{ m th}$, %	H_v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}
1	1320	0	0.2	96.26	19.5	2.3	0.2	83.24	10.7	3.6
		3	1.7	99.61	20.3	2.4	0.3	97.30	21.5	3.2
		10	2.2	99.71	19.6	2.5	0.3	99.06	22.7	3.0
		30	2.9	99.71	19.0	2.8	0.5	99.43	22.5	2.9
	1420	0	1.0	99.58	20.1	2.4	0.3	98.48	22.2	3.2
		3	4.3	99.64	18.5	2.6	0.5	99.47	21.2	3.2
		10	5.6	99.69	18.3	2.6	0.8	99.49	20.4	3.1
		30	7.6	99.72	17.3	2.9	1.4	99.52	18.9	3.2
	1520	0	2.8	99.67	18.1	2.3	0.8	99.45	20.5	3.5
		3	10.9	99.65	16.9	3.2	2.2	99.48	18.1	3.8
		10	13.4	99.66	17.5	3.0	2.8	99.51	17.6	3.4
		30	16.5	99.69	16.0	3.1	3.0	99.49	17.6	3.7
2	1470	0	1.4	96.11	17.7	2.8	_	_	_	_
		3	2.6	97.42	_	_		—	—	_
		10	3.9	98.02	_	_	-	_	_	_
		30	5.2	98.10	_	_	-	_	_	_
	1530	0	1.4	98.24	17.1	2.5	0.8	93.51	17.2	3.0
		3	6.1	97.93	_	_	2.1	98.24	18.5	2.8
		10	10	98.10	_	_	2.2	98.33	18.3	2.9
		30	13	98.26	_	_	2.9	98.31	17.7	3.0
	1600	0	3.8	98.14	15.9	2.1	4.2	98.72	17.3	2.5
		3	10	98.07	_	_	13	98.44	15.7	2.9
		10	15	98.15	_	_	19	98.32	16.2	2.7
		30	23	98.19	_	_	26	98.24	15.2	2.4
	1700	_	-	_	_	_	17	98.41	15.6	2.4
		_	_	—	—	_	37	98.33	15.7	3.3
		_	_	—	—	_	47	98.29	16.2	2.9
		—	—	—	_	_	52	98.14	16.1	3.2

Таблица 2. Свойства керамических образцов, полученных методом ЭИПС в режиме изотермической выдержки (режим В)

сти усадки ($\varepsilon = \rho/\rho_{\rm th}$) от температуры в координатах $\ln(T\partial\varepsilon/\partial T) - T_m/T$ соответствует эффективной энергии активации спекания mQ_s , где m — коэффициент, зависящий от доминирующего механизма диффузии (m = 1/3 — для случая зернограничной диффузии, m = 1/2 — для объемной диффузии, m = 1 для вязкого течения материала), $T_m = 2326$ К — температура плавления Al₂O₃. В качестве примера на рис. 8 представлены зависимости $\ln(T\partial\varepsilon/\partial T) - T_m/T$ для керамик серий № 1 и № 2. Из рис. 8 видно, что на стадии интенсивного уплотнения зависимость $\ln(T\partial\varepsilon/\partial T) - T_m/T$ с хорошей точностью может быть интерполирована прямой линией.

Для субмикронных порошков $Al_2O_3 + 0.5\%$ ZrO₂ при увеличении V_h от 10 до 700°C/min величина mQ_s уменьшается от 7.1 до 6.3 kT_m. При типичном для ЭИПС мелкозернистых керамик значении m = 1/3 [19] величина Q_s лежит в интервале от 21.3 kT_m (411 kJ/mol) при $V_h = 10°$ C/min до 18.9 kT_m (365 kJ/mol) при $V_h = 700°$ C/min. Рассчитанные значения Q_s близки к

Рис. 7. Микроструктура изломов образцов керамик Al₂O₃ + 0.5% ZrO₂, спеченных из порошков серий № 1 (*a*) и № 2 (*b*, *c*) при T = 1520 (*a*) и 1600°C (*b*, *c*) в течение 30 min.

энергии активации зернограничной диффузии кислорода в Al_2O_3 ($Q_b = 380 \text{ kJ/mol}$ [20]). Этот вывод хорошо соответствует данным [13,21] о том, что процессы спекания и ползучести оксида алюминия контролируются диффузией ионов кислорода по границам зерен Al_2O_3 .

Энергия активации mQ_s микронных порошков $Al_2O_3 + 0.5\%$ ZrO₂ не зависит от V_h и составляет $10.8-13.3 \,\mathrm{kT}_m$. При m = 1/3 значения Q_s оказываются аномально большими и не соответствуют известным значениям энергии активации процессов диффузии в Al₂O₃ [20]. При m = 1/2 энергия активации ЭИПС составляет 21.6-29.9 kT_m (~ 418-578 kJ/mol). Данное значение Qs оказывается промежуточным между энергией активации диффузии ионов кислорода по границам зерен ($Q_b \sim 380 \, \text{kJ/mol} [20]$) и в кристаллической решетке Al_2O_3 ($Q_v \sim 636 \text{ kJ/mol} [20,22]$). Полученный результат означает, что интенсивность ЭИПС мелкодисперсных порошков $Al_2O_3 + 0.5\%$ ZrO₂ лимитируется одновременным протеканием процессов объемной и зернограничной диффузии. Вероятно, повышенный вклад объемной диффузии при ЭИПС порошков серии № 2 обусловлен более высокими температурами их спекания, а также большим начальным размером частиц и, как следствие,

более крупнозернистой структурой керамики, спеченной из порошков серии № 2.

Энергии активации ЭИПС чистых порошков Al₂O₃ серий № 1 и № 2 оказываются близки к энергии активации ЭИПС керамик Al₂O₃ + 0.5% ZrO₂, изготовленных из этих порошков. В частности, величина Q_s для порошков Al₂O₃ серии № 1 составляет ~ 21.6–24.6 kT_m (418–475 kJ/mol), а для порошков серии № 2 величина $Q_s \sim 21.8-29$ kT_m (421–560 kT_m). Таким образом, малые добавки ZrO₂ не оказывают существенного влияния на механизм уплотнения порошков Al₂O₃ при ЭИПС. Полученный вывод качественно хорошо соответствует результатам исследований кинетики усадки порошков — как видно из рис. 2, добавка 0.5% ZrO₂ не приводит к существенному смещению кривых L(T) в область малых температур нагрева.

Более низкие значения Q_s в керамиках серии № 1 по сравнению с керамиками серии № 2 обусловлены, по нашему мнению, различным состоянием их границ зерен. На поверхности порошков серии № 1 присутствует аморфный слой толщиной 10 nm (рис. 1, *b*), который при спекании трансформируется в кристаллическую структуру границ зерен (рис. 5). Структура аморфных материалов характеризуется избыточным свободным объе-

Рис. 8. Зависимости $\ln(T\partial \varepsilon/\partial T) - T_m/T$ для керамик Al₂O₃ + 0.5% ZrO₂ серий № 1 (*a*) и № 2 (*b*).

мом [23,24]. В соответствии с [24] можно предположить, что при трансформации аморфной фазы в кристаллическую структуру границ зерен в них образовались дефекты. Эти дефекты оказывают влияние на величину коэффициента зернограничной диффузии и миграционную подвижность границ зерен [24]. По нашему мнению, неравновесное состояние границ зерен является одной из причин аномально быстрого роста зерен при ЭИПС керамик серии № 1, как видно из табл. 1, средний размер зерна в керамике, спеченной в режиме изотермической выдержки при температуре 1520°С (30 min), составляет $\sim 16{-}17\,\mu{\rm m}~(\rho/\rho_{\rm th}=99.69\%),$ а в керамике, спеченной из порошка серии № 2 в режиме 1530°С, 30 min, 13 µm $(\rho/\rho_{\rm th} = 98.26\%)$. Повышенная диффузионная проницаемость границ зерен обусловливает повышенную плотность керамики серии № 1, полученной в режиме изотермической выдержки, а также наблюдаемые различия во влиянии V_h на характер изменения плотности керамик. Как было показано выше, увеличение V_h от 10 до 700°С/тіп приводит к снижению плотности керамик

серии № 1 на $\Delta \rho / \rho_{th} = 0.44\%$ (от 99.72 до 99.28%), а керамик серии № 2 — на $\Delta \rho / \rho_{th} \sim 1\%$ (от 98.24 до 97.20%). Известно, что величина коэффициента диффузии по неравновесным границам зерен пропорциональна плотности зернограничных дефектов [24]. Повидимому, малые времена ЭИПС позволяют обеспечить ускоренное спекание керамик с неравновесными границами зерен из субмикронных порошков.

Отметим, что значения энергии ЭИПС достаточно низки по сравнению с энергией активации свободного спекания крупнозернистых порошков $Al_2O_3 - (5-95)\%$ ZrO₂, которая составляет 700 ± 100 kJ/mol, а также в сравнении с энергией активации спекания крупнозернистого оксида алюминия (440 ± 45 kJ/mol) [25]. Наблюдаемое снижение энергии активации ЭИПС обусловлено, по нашему мнению, более малым размером зерна в спекаемой керамике (см. [26]), а также воздействием приложенного давления, положительное влияние которого на ускорение спекания хорошо известно [1,2,17].

Обсудим теперь влияние добавки 0.5% ZrO₂ на рост зерен оксида алюминия.

Из табл. 1 и 2 видно, что добавка 0.5% ZrO₂ оказывает существенное влияние на рост зерен и при больших скоростях нагрева позволяет сформировать однородную УM3 микроструктуру с размером зерна менее $1 \mu m$ (табл. 1). Стабилизирующее влияние частиц ZrO₂ на рост зерен оксида алюминия хорошо известно [11,12].

Отметим, что меньший размер зерна в керамике $Al_2O_3 + 0.5\%$ ZrO₂ по сравнению с чистым оксидом алюминия должен был привести к увеличению плотности. Результаты исследований микроструктуры образцов, спеченных в режиме A, показывают, что плотность $\rho/\rho_{\rm th}$ керамики $Al_2O_3 + 0.5\%$ ZrO₂ оказывается меньше, чем плотность чистого оксида алюминия (табл. 1). С увеличением V_h (уменьшением времени спекания) наблюдается увеличение разницы между плотностью $\rho/\rho_{\rm th}$ оксида алюминия и керамики $Al_2O_3 + 0.5\%$ ZrO₂, спеченных в одинаковых условиях. Аналогичный эффект наблюдается при спекании в режиме В — плотность УМЗ керамики $Al_2O_3 + 0.5\%\,ZrO_2$ оказывается меньше, чем плотность оксида алюминия с большим размером зерна (табл. 2). Заметим также, что наиболее существенные различия в зеренной микроструктуре керамик наблюдаются при малых временах выдержки (табл. 2).

По нашему мнению, частицы ZrO_2 препятствуют уплотнению керамики на стадии низкотемпературного спекания, предшествующей стадии интенсивного уплотнения. Это приводит к получению менее плотной прессовки и, как следствие, к снижению плотности спеченной керамики. Увеличение времени выдержки приводит к более интенсивному спеканию УМЗ керамики $Al_2O_3 + 0.5\% ZrO_2$ и при больших временах выдержки и/или малых скоростях нагрева негативное влияние частиц ZrO_2 на плотность керамики минимизируется за счет более интенсивного протекания диффузионных процессов.

Интересно отметить, что добавка 0.5% ZrO₂ оказывает противоположное влияние на плотность оксида алюминия, спеченного из микронных порошков серии № 2. Как видно из табл. 1 и 2, плотность $\rho/\rho_{\rm th}$ мелкозернистой керамики $Al_2O_3 + 0.5\%$ ZrO₂ оказывается больше, чем плотность чистого оксида алюминия. Причиной этого, очевидно, является меньший размер зерна в керамике $Al_2O_3 + 0.5\%$ ZrO₂ по сравнению с чистым оксидом алюминия (табл. 1, 2). Важно подчеркнуть, что при повышенных температурах спекания в режиме непрерывного нагрева или при повышенных температурах изотермической выдержки в мелкозернистой керамике $Al_2O_3 + 0.5\%$ ZrO₂ активно протекают процессы коалесценции частиц ZrO_2 (рис. 3, *c*, 5, *c*). Это приводит к укрупнению частиц ZrO2 и уменьшению силы торможения Зинера [11-14], препятствующей миграции границ зерен Al₂O₃. Вследствие этого при повышенных температурах выдержки (1600°C) средний размер зерна керамики $Al_2O_3 + 0.5\%$ ZrO₂ близок к *d* оксида алюминия, спеченного из порошка серии № 2 (табл. 2).

По нашему мнению, процесс коалесценции частиц ZrO_2 является причиной снижения плотности мелкозернистой керамики $Al_2O_3 + 0.5\% ZrO_2$ при повышенных временах высокотемпературной изотермической выдержки. Как видно из табл. 2, увеличение t_s от 0 до 30 min приводит к уменьшению плотности ρ/ρ_{th} от 98.72 до 98.24% (при $T = 1600^{\circ}$ C) и от 98.41 до 98.14% (при $T = 1700^{\circ}$ C). По-видимому, образующиеся на границах зерен крупные частицы ZrO_2 (рис. 5, *c*) препятствуют спеканию керамики.

Заключение

Малая добавка (0.5 wt.%) ZrO₂ не оказывает заметного влияния на кинетику высокоскоростного спекания субмикронных и микронных порошков α -Al₂O₃ — значения энергии активации спекания и температурные интервалы интенсивной усадки для порошковых композиций Al₂O₃ + 0.5% ZrO₂ близки к аналогичным параметрам для чистого оксида алюминия. Наиболее существенное влияния на плотность и средний размер зерна керамики Al₂O₃ оказывает неравновесное состояние границ зерен и процесс коагуляции частиц ZrO₂. Неравновесное состояние границ зерен может оказывать более существенное влияние на интенсивность миграции границ, чем начальный размер частиц Al₂O₃.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 20-73-10113).

Исследование методом просвечивающей электронной микроскопии выполнено на оборудовании ЦКП "Материаловедение и металлургия" НИТУ "МИСИС" (проект Минобрнауки России № 075-15-2021-696).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.Г. Эванс, Т.Г. Лэнгдон. Конструкционная керамика (Металлургия, М., 1980), 256 с. [А.G. Evans, T.G. Langdon. Structural Ceramics (Pergamon Press, Oxford, 1976)]
- [2] В.Я. Шевченко, С.М. Баринов. Техническая керамика (Наука, М., 1993), 192 с.
- [3] A.Z.A Azhar, M.M. Ratman, Z.A. Ahmad. J. Alloys Compounds, 478 (1–2), 608 (2009).
 DOI: 10.1016/j.jallcom.2008.11.156
- [4] J. Chai, Y. Zhu, T. Shen, Y. Liu, L. Niu, S. Li, P. Jin, M. Cui, Z. Wang. Ceramics Int., 46 (17), 27143 (2020).
 DOI: 10.1016/j.ceramint.2020.07.194
- [5] A. Ruys. Alumina Ceramics Biomedical and Clinical Applications (Woodhead Publishing, Cambridge, 2019)
- [6] А.П. Гаршин, В.М. Гропянов, Г.П. Зайцев, С.С. Семенов. Керамика для машиностроения (Научтехлитиздат, М., 2003), 384 с.
- [7] S. Meir, S. Kalabukhov, S. Hayun, Ceramics Int., 40 (8), 1287 (2014). DOI: 10.1016/j.ceramint.2014.04.059
- [8] D. Jiang, D.M. Hulbert, J.D. Kuntz, U. Anselmi-Tamburini, A.K. Mukherjee. Mater. Sci. Eng. A, 463 (1–2), 89 (2007). DOI: 10.1016/j.msea.2006.07.163
- [9] M. Tokita. Ceramics, 4 (2), 160 (2021).DOI: 10.3390/ceramics4020014
- Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li. Materials Design., 191, 108662 (2020).
 DOI: 10.1016/j.matdes.2020.108662
- [11] D.J. Green. J. Am. Ceramic Soc., 65 (12), 610 (1982).
 DOI: 10.1111/j.1151-2916.1982.tb09939.x
- [12] F.F. Lange, M.M. Hirlinger. J. Am. Ceramic Soc., 67 (3), 164 (1984). DOI: 10.1111/j.1151-2916.1984.tb19734.x
- [13] M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Nokhrin, V.N. Chuvil'deev. Materials, 15 (6), 2167 (2022).
 DOI: 10.3390/ma15062167
- [14] F.A.T. Guimarães, K.L. Silva, V. Trombini, J.J. Pierri, J.A. Rodrigues, R. Tomasi, E.M.J.A. Pallone. Ceramics Int., 35 (2), 741 (2009). DOI: 10.1016/j.ceramint.2008.02.002
- [15] В.Н. Чувильдеев, М.С. Болдин, Я.Г. Дятлова, В.И. Румянцев, С.С. Орданьян. ЖНХ, **60** (8), 1088 (2015). [V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordan'yan. Rus. J. Inorg. Chem., **60** (8), 987 (2015). DOI: 10.1134/S0036023615080057]
- [16] M.N. Rahaman. Ceramic Processing and Sintering (Marcel Dekker Inc., NY., 2003)
- [17] E.A. Olevsky, L. Froyen. J. Am. Ceramic Soc., 92 (s1), S122 (2009). DOI: 10.1111/j.1551-2916.2008.02705.x
- [18] W.S. Young, I.B. Culter. J. Am. Ceramic Soc., 53 (12), 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
- [19] Е.А. Ланцев, Н.В. Малехонова, Ю.В. Цветков, Ю.В. Благовещенский, В.Н. Чувильдеев, А.В. Нохрин, М.С. Болдин, П.В. Андреев, К.Е. Сметанина, Н.В. Исаева. Физика и химия обработки материалов, 6, 23 (2020). [Е.А. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Y.V. Blagoveshchensky, V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorg. Mater. Appl. Res., 12 (3), 650 (2021). DOI: 10.1134/S2075113321030242]

- [20] Г.Дж. Фрост, М.Ф. Эшби. Карты механизмов деформации (Металлургия, Челябинск, 1989), 328 с. [Н.J. Frost, M.F. Ashby. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)]
- [21] A.E. Paladino, R.L. Coble. J. Am. Ceramic Soc., **46** (3), 133 (1963). DOI: 10.1111/j.1151-2916.1963.tb11696.x
- [22] В.Н. Чувильдеев, Е.С. Смирнова. ФТТ, 58 (7) 1436 (2016).
 [V.N. Chuvil'deev, E.S. Smirnova. Phys. Solid State, 58 (7), 1487 (2016). DOI: 10.1134/S1063783416070118]
- [23] В.И. Бетехтин, А.М. Глезер, А.Г. Кадомцев, А.Ю. Кипяткова. ФТТ, 40 (1), 85 (1998). [V.I. Betekhtin, А.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998). DOI: 10.1134/1.1130237]
- [24] В.Н. Чувильдеев. Неравновесные границы зерен в металлах. Теория и приложения (Физматлит, М., 2004), 304 с.
- [25] J. Wang, R. Raj. J. Am. Ceramic Soc., 74 (8), 1959 (1991).
 DOI: 10.1111/j.1151-2916.1991.tb07815.x
- [26] T.-S. Yeh, M.D. Sacks. J. Am. Ceramic Soc., 71 (12), C-484 (1988). DOI: 10.1111/j.1151-2916.1988.tb05812.x