Анализ нелинейных искажений D_pHEMT структур на основе соединния GaAs/InGaAs с двусторонним дельта-легированием

© Е.А. Тарасова¹, С.В. Хазанова¹, О.Л. Голиков¹, А.С. Пузанов¹, С.В. Оболенский¹, В.Е. Земляков²

¹Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия ²Национальный исследовательский университет "МИЭТ", 124498 Москва, Зеленоград, Россия E-mail: tarasova@rf.unn.ru

Поступила в Редакцию 30 июня 2022 г. В окончательной редакции 7 июля 2022 г. Принята к публикации 7 июля 2022 г.

Проведены расчетно-экспериментальные исследования характеристик мощного AlGaAs/InGaAs/GaAs DpHEMT. При помощи самосогласованного численного решения уравнений Шредингера и Пуассона рассчитана зонная диаграмма исследуемого транзистора, получена концентрация электронов в канале. Экспериментально оценена подвижность электронов в канале транзистора, которая составила 9300 см²/В · с. На основе полученной проходной вольт-амперной характеристики транзистора рассчитаны параметры модельного дифференциального усилителя: малосигнальный коэффициент усиления и коэффициент нелинейных искажений 3-го порядка.

Ключевые слова: AlGaAs/InGaAs/GaAs DpHEMT, нелинейные искажения, спейсерные слои.

DOI: 10.21883/FTP.2022.09.53402.37

1. Введение

В настоящее время в твердотельной сверхвысокочастотной электронике широко используются полевые транзисторы с каналом из слоя узкозонного полупроводника, формирующего квантовую яму, в которой образуется двумерный электронный газ — транзисторы с высокой подвижностью электронов (ТВПЭ или НЕМТ — Hi Electron Mobility Transistor) [1]. Для снижения темпа рассеяния электронов канал НЕМТ обычно не легируют. Требуемая концентрация носителей заряда в канале достигается за счет б-слоя легирующей примеси со стороны затвора транзистора. В работе [2] было показано, что добавление второго легирующего δ-слоя в перспективных НЕМТ на основе GaAs со стороны подложки приводит к повышению линейности передаточной вольт-амперной характеристики (ВАХ) и снижению уровня интермодуляционных искажений [2]. В работе [3] анализировалась зависимость нелинейности передаточной ВАХ транзистора от распределения электронов в канале транзистора. При этом учет подвижности проводился по стандартной аналитической зависимости, что обусловило погрешность результатов расчета интермодуляционных искажений, так как подвижность в НЕМТ-структурах с двойным б-легированием меняется при комнатной температуре в широких пределах: $\mu_n = 3000 - 7500 \,\mathrm{cm}^2/(\mathrm{B} \cdot \mathrm{c})$ [4]. Новизна работы заключается в расчете передаточной ВАХ с помощью комплекса численной (самосогласованное решение уравнений Шредингера и Пуассона для нахождения концентрации электронов в канале) и аналитической (оценка подвижности электронов в канале по результатам измерений сопротивления и концентрации электронов в канале)

моделей с учетом экспериментально полученных вольтфарадных характеристик. Расчет интермодуляционных искажений проведен с помощью метода, описанного в монографии [5].

2. Объект исследования

В работе проведен расчет параметров многосекционного псевдоморфного НЕМТ (*p*HEMT) на основе GaAs/In_{0.53}Ga_{0.47}As с двумя δ -слоями со слоевой концентрацией примеси 2.4 · 10¹² и 0.7 · 10¹² см⁻². Состав слоев приведен в таблице.

3. Методика расчетов параметров исследуемой структуры

Численный расчет проводится путем решения стационарного одномерного одноэлектронного уравнения Шредингера в приближении эффективной массы, согласованного с уравнением Пуассона [6]. Применяемая численная схема решения позволяет находить профили потенциала, уровни размерного квантования и концентрацию электронов в квантовой яме, используя как однородную, так и неоднородную координатную сетки. При этом можно плавно изменять приложенное к затвору транзистора напряжение, концентрацию легирующей примеси и ряд других технологических параметров. Семейство зонных диаграмм и концентраций носителей заряда в канале для различных значений напряжения на затворе в режиме насыщения транзистора приведены на рис. 1 и 2 соответственно. Полученная зависимость концентрации электронов от напряжения

Рис. 1. Результаты численных расчетов зонной диаграммы исследуемой D*p*HEMT структуры. (Цветной вариант рисунка представлен в электронной версии статьи).

Рис. 2. Результаты численных расчетов профиля распределения электронов исследуемой D*p*HEMT структуры. На вставке — зависимость концентрации носителей заряда от приложенного напряжения на затворе в режиме насыщения транзистора.

на затворе аппроксимировалась квадратичной функцией $n_{2Dcalc}(U_{GS}) = a \cdot U_{GS}^2 + b \cdot U_{GS} + c$ (см. вставку на рис. 2), из которой было найдено пороговое напряжение отсечки транзистора $U_{TH} = -b/(2a) \approx 0.74$ В.

4. Результаты расчетов и обсуждение

Для расчета передаточной ВАХ и дальнейшего анализа интермодуляционных искажений подвижность носителей заряда определялась экспериментально. На первом этапе из вольт-фарадных характеристик определялась концентрация носителей заряда согласно методике, опи-

	$H, { m HM}$	N_d, m^{-3}
Слой, легированный кремнием	13	$5\cdot 10^{22}$
Al _{0.23} Ga _{0.77} As		
Спейсерный слой GaAs	0.4	
δ-слой GaAs	3	$1.2\cdot 10^{25}$
Спейсерный слой GaAs	0.4	
Спейсерный слой Al _{0.23} Ga _{0.77} As	2	
Спейсерный слой GaAs	15	
Канальный слой In _{0.53} Ga _{0.47} As	12	
Спейсерный слой GaAs	3	
Спейсерный слой Al _{0.23} Ga _{0.77} As	2	
Спейсерный слой GaAs	0.4	
δ-слой GaAs	3	$0.7\cdot 10^{25}$
Спейсерный слой GaAs	0.4	
Спейсерный слой А _{10.23} Ga _{0.77} As	100	
Буферная гетероструктура GaAs	440	
Подложка	1000	

Примечание. * длина канала $L_g = 0.1$ мкм, толщина канала W = 1000 мкм, H — толщина слоя, N_d — концентрация легирующей примеси.

санной в работе [7]. Отметим, что, так как емкость измерялась между затвором и объединенными электродами стока и истока транзистора, восстановленная по результатам измерений концентрация n_{2Dmeas} отличается от расчетной концентрации n_{2Dcalc} в канале транзистора в режиме насыщения и не может быть использована для получения передаточной ВАХ и расчета интермодуляционных искажений.

На втором этапе измерялось сопротивление канала в диодном включении "сток-исток" при нулевом напряжении на затворе НЕМТ. В дальнейшем подвижность носителей заряда оценивалась как $\mu_n = l/R \cdot S \cdot q \cdot n_{2Dmeas}$,

Рис. 3. Статическая передаточная ВАХ, полученная при помощи измерителя характеристик полупроводниковых приборов Л2-56 (крестики) и результаты расчетов передаточных ВАХ (точки); квадратичная аппроксимация (сплошная линия) $I_d = K (U_{GS} - U_{TH})^2$ с параметрами $K = 1 1/B^2$, $U_{TH} = 0.75$ В.

Рис. 4. Расчетные характеристики дифференциального усилителя: сплошная линия — вход/выход; пунктирная линия — коэффициент усиления. На вставке — схема дифференциальной пары [5].

где l — длина канала, R — сопротивление канала, S — площадь поперечного сечения канала. В результате расчетов было получено значение подвижности носителей заряда в двумерном электронном газе при нулевом смещении на затворе: 9300 см²/(B · c). Это значение превосходит значение подвижности в объемном материале и хорошо согласуется с литературными данными.

Результаты расчетов статической передаточной ВАХ приведены на рис. 3. Для апробации полученных результатов дополнительно проводились измерения статической ВАХ исследуемого рНЕМТ с помощью измерителя характеристик полупроводниковых приборов Л2-56. Схема измерительного стенда и методика проведения эксперимента подробно описаны в работе [8]. Следует отметить, что погрешность при измерении мощных высокочастотных субмикронных транзисторов с емкостями $\sim 10 \, \mathrm{n} \Phi$ и протекающим током $\sim 600 \, \mathrm{mA}$ с помощью измерителя Л2-56 превышает 15%, что значительно затрудняет непосредственный анализ интермодуляционных искажений на основе экспериментально полученных данных. В связи с этим в работе анализ интермодуляционных искажений 3-го порядка проводился на основе численных расчетов передаточной ВАХ.

Для безынерционного дифференциального усилителя связь между входом $u_{in}(t)$ и выходом $u_{out}(t)$ описывается в виде некоторой нечетной функции $u_{out}(t) = g(u_{in}(t))$, которая для анализа интермодуляционных искажений 3-го порядка обычно представляется в виде полиноми-ального разложения

$$u_{\rm out}(t) \approx \alpha_1 u_{\rm in}(t) + \alpha_3 u_{\rm in}^3(t), \qquad (1)$$

где α_1 — малосигнальный коэффициент усиления, а коэффициент α_3 отвечает за нелинейные свойства усилителя.

Для рассматриваемого приближения амплитуда выходного сигнала на основной частоте сравняется с амплитудой выходных продуктов интермодуляции 3-го порядка при амплитуде входного сигнала, равного [5]

$$A_{IIP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1}{\alpha_3} \right|}.$$
 (2)

При использовании квадратичной аппроксимации проходной характеристики вида $I_d = K(U_{GS} - U_{TH})^2$ связь между входом и выходом дифференциального усилителя описывается выражением [5]

$$V_{\rm out} = K \cdot V_{\rm in} \sqrt{\frac{2I_{SS}}{K} - V_{\rm in}^2} \cdot R_D, \qquad (3)$$

где I_{SS} — общий ток дифференциальной пары, R_d — нагрузочные сопротивления. В ходе расчетов предполагалось $I_{SS} = 0.5625$ А, $R_d = 8.9$ Ом. Зависимость $u_{out}(t) = g(u_{in}(t))$ дифференциального усилителя приведена на рис. 4. Малосигнальный коэффициент усиления $\alpha_1 = 9.4$, коэффициент нелинейных искажений $A_{IIP3} = 1.9$ В.

5. Заключение

В рамках представленной работы проведено комплексное расчетно-экспериментальное исследование характеристик AlGaAs/InGaAs/GaAs pHEMT и дифференциального усилителя на его основе. При помощи самосогласованного численного решения уравнений Шредингера и Пуассона получена зависимость концентрации электронов в канале транзистора. Максимальная концентрация электронов составила $n_{2Dcalc}(0) = 1.66 \cdot 10^{18} \text{ см}^{-3}$. По результатам измерений вольт-фарадных характеристик и сопротивления канала, при нулевом смещении на затворе найдено значение подвижности электронов в канале транзистора, которое составило $\mu_n(0) = 9300 \, \text{см}^2/(\text{B} \cdot \text{c}).$ Экспериментальные и теоретические результаты позволили рассчитать передаточную вольт-амперную характеристику в режиме насыщения (пороговое напряжение отсечки U_{TH} = 0.74 В) и оценить малосигнальный коэффициент усиления ($\alpha_1 = 9.4$) и коэффициент нелинейных искажений (A_{IIP3} = 1.9 B) дифференциального усилителя на базе исследуемого транзистора.

Финансирование работы

Работа профинансирована Министерством науки и высшего образования РФ в рамках государственного задания Нижегородского государственного университета им. Н.И. Лобачевского (FSWR-2021-011).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ю. Пожела. Физика быстродействующих транзисторов (Вильнюс, Мокслас, 1989).
- [2] Е.А. Тарасова, С.В. Оболенский, С.В. Хазанова, Н.Н. Григорьева, О.Л. Голиков, А.Б. Иванов, А.С. Пузанов. ФТП, 54 (9), 968 (2020).
- [3] С.В. Хазанова, О.Л. Голиков, А.С. Пузанов, С.В. Оболенский, В.Е. Земляков. ФТП, **55** (10), 872 (2021).
- [4] И.С. Василевский, Г.Б. Галиев, Е.А. Климов, В.Г. Мокеров, С.С. Широков, Р.М. Имамов, И.А. Субботин. ФТП, 42 (9), 1102 (2008).
- [5] B. Razavi. *RF Microelectronics* (Hamilton Printing Company in Castleton, N.Y., 2012).
- [6] С.В. Хазанова, В.Е. Дегтярев, С.В. Тихов, Н.В. Байдусь. ФТП, **49** (1), 53 (2015).
- [7] Е.А. Тарасова, Е.С. Оболенская, А.В. Хананова, С.В. Оболенский, В.Е. Земляков, В.И. Егоркин, А.В. Неженцев, А.В. Сахаров, А.Ф. Цацульников, В.В. Лундин, Е.Е. Заварин, Г.В. Медведев. ФТП, **50** (12), 1599 (2016).
- [8] А.С. Пузанов, С.В. Оболенский. Вопр. атомной науки и техники. Сер.: Физика радиационного воздействия на радиоэлектронную аппаратуру, № 1, 54 (2010).

Редактор А.Н. Смирнов

Analysis of nonlinear distortions of DpHEMT sturctures based on a GaAs/InGaAs compound with double-sided delta-doping

E.A. Tarasova¹, S.V. Khazanova¹, O.L. Golikov¹, A.S. Puzanov¹, S.V. Obolensky¹, V.E. Zemlyakov²

 ¹ Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
 ² National Research University of Electronic Technology (MIET), 124498 Moscow, Zelenograd, Russia

Abstract Computational and experimental studies of the characteristics of high-power AlGaAs/InGaAs/GaAs D_pHEMT were done. Using a self-consistent numerical solution of the Schrödinger and Poisson equations, the band diagram and the electron concentration in the channel of the transistor under study were calculated. The electron mobility in the transistor channel was experimentally estimated to be 9300 cm²/V · s. Based on the obtained current-voltage characteristic of the transistor, the parameters of a model differential amplifier were calculated: a small-signal gain and a third-order non-linear distortion factor.