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Period of droplet quasi-Bessel beam generated with the round-tip axicon
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We demonstrate the experimental study of the axial intensity distribution of a quasi-Bessel beam with a droplet

structure of the central core, formed by an axicon with the round-tip, and the results of the theoretical calculations.

We show that the period of droplet quasi-Bessel beam is determined by the shape of the surface rounding and the

angle at the top of the axicon lens and depends on the distance to it. The analysis of this dependence makes it

possible to restore the shape of the round-tip of the axicon without 3D scanning.
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In theory, ideal Bessel beams created using axicon can

propagate without divergence and carry infinite energy [1].

In practice, intensity distribution of an axicon incident beam

is described by Gaussian function [2], which results in

formation of a quasi-Bessel beam with a finite length of

propagation that depends on the aperture of the generating

beam. Quasi-Bessel beams formed in this way can be

effectively used to capture and manipulate microscopic

objects [3], to implement optical visualization [4], to

process materials [5], in light sheet microscopy [6] and

THz photonics [7]. The possibilities of their practical

use become considerably wider after the quasi-Bessel

beam generation using semiconductor lasers and LEDs was

demonstrated [8,9].

In recent times, the quasi-Bessel beams are actively stud-

ied that have their central core propagating intermittently in

the form of
”
light droplets“ [6,10,11]. These beams, known

as
”
droplet beams“, are extensively used, in particular, in

high-resolution microscopy [11] to obtain contrast images

of thick opaque objects without distortions since resolution

of the droplet beam is comparable with that of a standard

optical system based on Gaussian beam, and
”
light droplets“

maintain their spatial profile and are capable of providing

full-featured illuminance inside hollow opaque objects. At

the same time, droplet beams can be used in optogenetics

as well to study the dynamics of live cell movement [12]

and neuronal activity [13].

However, the experimental setups to form droplet quasi-

Bessel beam using an expensive spatial light modula-

tor [6,10,11] are complicated in use and require fine setting.

Therefor the use of the axicon with round tip (Fig. 1, a) to

generate droplet quasi-Bessel beams [14–16] is an attractive

alternative since it allows making the experimental setup

significantly simpler and cheaper.

The
”
droplet“ structure of the central spot in the quasi-

Bessel beam formed by an axicon with round tip is

accounted for by the fact that the rounded area is a focusing

lens that keeps unchanged the wavevector projection on

the symmetry axis when the beam passes through it, while

the beam refracted by the conical part of the axicon has

smaller wavevector projection depending on the refraction

angle [15–17]. The interference results in an oscilla-

tion with a half-period of 1z = λ/2(1− cos γ) ≈ λ/γ2 (at
γ ≪ 1) [17], where λ is the wavelength of the beam, γ is

the angle of light propagation after refraction on the conical

surface of the axicon (Fig. 1, a).
In this work it is shown on the basis of experimental

investigation of the axial intensity distribution and results of

theoretic calculations that the half-period of intensity pulsing

on the axis is not a constant value equal to 1z = λ/γ2,

but depends on the distance to the round tip and is

determined by the shape of axicon surface. Studying of this

dependence and the use of profilometer makes it possible

to recover the exact shape of axicon surface without 3D-

scanning. Studying of the axicon surface by profilometer

allows obtaining the information about the area close to the

tip. In turn, the area distant from the tip can be recovered

from the results of experimental studying of the oscillation

half-period.

To study the period of intensity oscillation, let us consider

an overall surface shape that is determined by parabolic and

hyperbolic matching [18]:

f (r) =

{

v(rD + r2/2rP), r 6 r0,

v
√

r2H + r2, r > r0,
(1)

where v = ctg(α/2) is determined by the tip angle of

the axicon α; rP and rH are radii of curvature of the

parabolic and hyperbolic curves multiplied by v ; rD is

the distance from the round tip to the tip of ideal axicon,
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Figure 1. a — scheme of the experiment: initial Gaussian

beam with a radius of w is incident on an axicon with round

tip and an angle of α = 140◦ (rD and rP — parameters of the

model that describes the shape of the axicon surface, see the

explanation in the text); the beam passed through the conical part

of the axicon propagates at an angle of γ relative to the axial

coordinate z (line 1) forming a quasi-Bessel beam near the axis;

distances rP/γ and w/γ determine the beginning and the end of

the geometric area of quasi-Bessel beam propagation; the rounded

part of the axicon, which is a lens, focuses the beam in the point

with coordinate z = rP/γ (curves 2); the interference of light from

the conical and rounded areas forms oscillations of the longitudinal

intensity distribution (curve 3). b — profile of the axicon surface

measured by the profilometer (points), its approximation by a

parabolic curve vx2/2rP (solid line) and profile proposed by the

model (1) (dashed line), where v = 0.364, rP = 220 µm and

rH = 130 µm.

divided by v ; r0 is the point of matching. In this

case only two parameters of four (rP , rH , rD , r0) are

independent because of the continuity condition imposed

on function (1) and on its first derivative in the point

of r0. Thus, the main difference between the model of

axicon surface under consideration and well-known models

described in literature, i.e. the hyperbolic model [15,17] and
the matching of cone with sphere [14] or parabola [16] is

the presence of two independent parameters instead of one.

In the experiment with measurement of the rounded axicon

surface by Sloan DECTAC 3030 profilometer followed by

profile processing (Fig. 1, b) we obtained the first of the two

independent parameters: rP = 220 µm. It should be noted

that the profilometer readings possess an inevitable error

due to recording of the cross-section out of the plane passing

precisely through the center of the axicon. Thus, based on

the cross-section shown in Fig. 1, b it does not seam possible

to determine reliably the second independent parameter.

As the second independent parameter explicitly determined

from the experiment, we use the distance of rH . For this

purpose we experimentally studied the axial intensity distri-

bution (Fig. 1, a) of quasi-Bessel beam formed by an axicon

with round tip. The axial distribution was obtained from

a set of transversal intensity distributions by taking photos

with equal intervals of 10 µm, which were further processed

using ImageJ software [19]. The tip angle of the axicon was

α = 140◦ (Fig. 1, a), w ≈ 0.8mm — radius of the Gaussian

beam at an intensity level of 1/e from the intensity at the

axis, and refraction index of the axicon is n ≈ 1.5, which

corresponds to v = ctg(α/2) = 0.364 and a refraction angle

of γ = v(n − 1) = 0.182. The dependence of the number

of peak s of the oscillation half-period 1z (s) = z s+1 − z s ,

which is determined as a distance between neighboring

peaks of the measured intensity distribution, is shown in

Fig. 2. In this case the expression to determine half-period

for the surface shape under consideration (1) can be written

as follows [18]:

1z (s) =
1

2γ

(

λ/γ +
√

r (0)(s + 1)2 − 4r2H

−

√

r (0)(s)2 − 4r2H

)

, (2)

where the following notation is introduced:

r (0)(s) = (s − 1/4)λ/γ + (r2H + r2P)/rP . Expression (2)
depends on parameters rP and rH . In our case parameter rP

is known (rP = 220 µm), and rH needs to be determined.

For the tip angle of axicon α = 140◦ the paraxial

approximation is valid, therefore the formalism under

consideration is valid. By approximating the obtained

experimental results with formula (2), we determine

numerical value of the parameter: rH = 130± 14 µm

(Fig. 2). For illustration purposes Fig. 2 also shows the

oscillation half-period for two limit cases: hyperbolic

matching (rH = 220 µm) and parabolic and straight

line matching (rH = 0). Other two parameters of

the model (1), as mentioned above, are determined

from the continuity condition of the function and the

derivative [18]: rD = (r2H + r2P)/2rP = 148 µm and

r0 = (r2P − r2H)1/2 = 178 µm. Physical cause of the arising

dependence of the oscillation period on the distance to the

axicon tip is in the deviation of the axicon surface from

the ideal cone in the areas away from the tip (r ≫ rP):
δ f (r) = [ f (r) − vr ] ≈ vr2H/2r . The light refracted on the

conical part in the point with radius r is propagated at an

angle of γ relative to the axis of symmetry towards the

point z = r/γ as shown in Fig. 1, a. In this case phase

factor exp[−ik0(n − 1)δ f (r)] arising due to deviation of

the axicon surface from the conical shape is also transferred
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Figure 2. The dependence of oscillation half-period 1z on the

number of peak s obtained from the analysis of the experimental

data (points). Experimental values were approximated by for-

mula (2), from which the model parameter rH was determined.

The solid curve represents the corresponding half-period for

rH = 130 µm, shaded region is the confidence interval for the

half-period with a confidence level of 0.95. Also, half-periods for

two extreme cases of matching are presented: dash-dotted line —
hyperbolic matching (rH = 220 µm), dashed line — parabolic and

straight line matching (rH = 0).

from the point with radius r in the axicon plane to the axis

of symmetry z = r/γ . As a result, the amplitude of the

field on the axis obtains an additional phase factor, which

depends explicitly on the distance rH :

E(z ) ∝ exp
[

−ik0(n − 1)δ f (γz )
]

= exp
[

−ik0r
2
H/2z

]

, (3)

where k0 is the wavevector of light in vacuum. It can be

seen from formula (3) that the contribution of this term

decreases with increase in the axial coordinate z of the

number o peak s . As a result, the half-period tends to the

constant value λ/γ2, as can be seen in Fig. 2. In addition,

a decrease in the distance rH leads to suppression of phase

factor (3) as well, which makes weaker the dependence of

the half-period on the axial coordinate z . It can be seen

in Fig. 2 that in accordance with these considerations a

hyperbolic approximation of the axicon surface yields the

strongest dependence of the
”
light droplets“ period on the

distance. In contrast, the transition to the parabolic surface

and cone matching leads to zeroing of phase factor (3) and

disappearance of the dependence of oscillation period on

the distance. Since the observed effect is determined by

the surface properties away from the rounded area of the

axicon, these results can be easily extended to the model of

cone and sphere matching [14].
Thus, the experimental investigation of the axial intensity

distribution of quasi-Bessel beam and results of the the-

oretical calculation showed that the oscillation period of

the axial intensity distribution is not a constant value, but

depends on the distance to the round tip. The analysis

of this dependence in conjunction with the use of linear

scanning data from profilometer makes it possible to recover

the shape of conical lens tip rounding without 3D-scanning.

In the future the obtained results can be used to optimize

the design of bottle beams [20] and to create controlled axial

intensity distributions [21]. By varying the oscillation period

of axial intensity distribution of the beam the length of

”
light droplets“will change as well, which can provide new

applications in the field of high-resolution microscopy [11],
where cavities of various volumes needs to be additionally

illuminated inside hollow opaque objects. Also, this feature

can be effectively used for laser cutting of glass with various

thickness [22].
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S.O. Slipchenko, I.S. Tarasov, S.A. Zolotovskaya, E.U. Rafailov,

V.I. Kuchinskii, W. Sibbett, Tech. Phys. Lett., 36 (1), 9 (2010).
DOI: 10.1134/S1063785010010049.

[10] L. Li, W.M. Lee, X. Xie, W. Krolikowski, A.V. Rode, J. Zhou,

Opt. Lett., 39, 2278 (2014). DOI: 10.1364/OL.39.002278
[11] G. Antonacci, G.Di Domenico, S. Silvestri, E. DelRe,

G. Ruocco, Sci. Rep., 7, 17 (2017).
DOI: 10.1038/s41598-017-00042-w

[12] T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Gal-

braith, C.G. Galbraith, E. Betzig, Nature Meth., 8, 417 (2011).
DOI: 10.1038/nmeth.1586

[13] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein,
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