Релаксация нейтрального состояния марганца в арсениде галлия

© В.Ф. Мастеров, К.Ф. Штельмах[¶], В.П. Маслов, С.Б. Михрин, Б.Е. Саморуков

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия

(Получена 3 февраля 2003 г. Принята к печати 4 февраля 2003 г.)

Приведены результаты исследований продольной магнитной релаксации нейтрального состояния центра марганца Mn⁰ в арсениде галлия. Механизмы релаксации определялись по уширению линии электронного парамагнитного резонанса в диапазоне температур 3.4–8.2 К и по изменению скорости ядерной релаксации в диапазоне 36–310 К. Результаты исследования ядерной релаксации показывают, что электронная релаксация определяется взаимодействием колебаний решетки и локальных колебаний центра. Это позволяет представить электронную релаксацию при низких температурах как результат проявления ангармонизма локальных колебаний электронного дипольного момента центра Mn⁰.

Результаты исследований спин-решеточной релаксации (СРР) парамагнитного центра в значительной степени помогают в интерпретации результатов исследования электронного парамагнитного резонанса (ЭПР). В основном это случается, когда отсутствует структура спектра, позволяющая определить истинный спин парамагнитного состояния. Кроме того, возможность появления возбужденного состояния центра в спектре акустических колебаний решетки (дебаевский спектр) позволяет с помощью исследований СРР определить сравнительно малое энергетическое расстояние между основным и возбужденным состояниями центра независимым методом [1].

Прямое исследование эффектов, связанных с проявлением спин-решеточной релаксации, (насыщение сигнала, релаксационное уширение линии ЭПР [2,3]) зачастую возможно лишь в ограниченном диапазоне температур из-за высокой скорости СРР. Поэтому полезным приемом продолжения исследований в области более высоких температур является изучение ядерной СРР [4]. Это возможно, поскольку время ядерной СРР τ_1 имеет существенно большее значение, чем время электронной релаксации T_1 . Если время корреляции между ядерной и электронной подсистемами зависит от температуры достаточно слабо, можно принять, что скорость ядерной релаксации.

В литературе обсуждались результаты работы [5], посвященной изучению температурной зависимости ультразвукового поглощения. Последнее носит релаксационный характер, что позволяет определить время релаксации по значению частоты, на которой наблюдается максимум поглощения. Результаты [5] допускают двойственный характер трактовки температурных зависимостей времени релаксации, подробно рассмотренный в работе [6]. Сравнивались рамановский процесс второго порядка с участием слабо расщепленного мультиплета основного состояния нейтрального центра марганца (механизм Орбаха–Блюма) и процесс первого порядка с участием фонона, резонансного с расстоянием между основным состоянием центра и уровнем, возникшим в дебаевском спектре из-за присутствия примеси (механизм Орбаха–Аминова). Сравнение показало, что скорость рамановского процесса в диапазоне температур 7 < T < 10 К должна быть существенно выше, даже с учетом действия на центр случайных напряжений.

В настоящем сообщении приведены результаты исследований релаксации в широком интервале температур, что позволило получить значительный диапазон изменения величины T_1 . Результаты показывают, что релаксацию центра Mn^0 нельзя рассматривать в рамках общепринятых представлений о взаимодействии магнитного момента центра с колебаниями решетки.

При измерениях использовался образец А59. Описание свойств образца приведено в [7]. В низкотемпературном диапазоне измерения проводились на спектрометре ЭПР ER-220D фирмы "Bruker". При более высоких температурах использовался релаксометр ядерного магнитного резонанса (ЯМР), работающий на частоте 10 МГц, с параметрами, описанными в [8]. ЯМР-релаксация измерялась на ядрах изотопа Ga⁷¹.

1. Результаты измерений при низких температурах

Спектр магнитного резонанса нейтрального центра марганца в арсениде галлия состоит из двух переходов, соответствующих правилам отбора $\Delta m = 1$ и $\Delta m = 2$. Значение *g*-фактора составляет *g* = 2.82. Основные особенности спектра приведены в работах [9].

Исследования СРР нейтрального состояния марганца Mn^0 проводились в диапазоне температур 3.8–8 К на переходе с $\Delta m = 2$ [10]. Выше 8.3 К спектр ЭПР состояния Mn^0 не наблюдается из-за сильного уширения линии. Это обстоятельство, во-первых, с очевидностью свидетельствует о высокой скорости СРР, а во-вторых, определяет метод ее оценки по изменению ширины линии. Для центров с величиной спина больше 1/2 принимается, что вероятности релаксаци-

[¶] E-mail: shtelmah@spes.stu.neva.ru

онных переходов для различных спиновых состояний равны [3].

Скорость СРР может быть оценена из соотношения неопределенности $\Delta E \Delta t \approx h$ [3]. При этом неопределенность энергии ΔE определяет изменение ширины линии ЭПР: $\Delta E = g\mu_B \delta(\Delta H)$, где ΔH — ширина линии ЭПР, $\delta(\Delta H)$ — ее изменение относительно температурно-независимого значения, μ_B — магнетон Бора. Неопределенность времени Δt — величина, сопоставимая с продольным временем релаксации Т₁. Поскольку ширина отдельной линии ЭПР центра Mn⁰ при температуре 3.8К приблизительно равна постоянной сверхтонкого взаимодействия ~ 50 Гс [9], существенного уширения спектра следует ожидать уже при $\delta(\Delta H) \approx \Delta H/2$. Подставляя в соотношение неопределенности величины, можно показать, что для перехода с $\Delta m = 2$ изменение ΔH на 25 Гс соответствует $\Delta t \equiv T_1 \approx 5 \cdot 10^{-9}$ с, что неплохо согласуется с результатами [5].

Определение ширины линии непосредственно по точкам перегиба линии невозможно в силу плохого разрешения спектра. Поэтому, с учетом неизменности концентрации состояний марганца в данном диапазоне температур, ширина линии определялась из соотношения [2]

$$N = KI(\Delta H)^2, \tag{1}$$

где *N* — число соответствующих парамагнитных центров, *K* — константа, *I* — интенсивность сигнала ЭПР.

Результаты измерений приведены на рис. 1 и 2. Так как абсолютная величина скорости СРР несущественна (заведомо высока) и интересна лишь температурная зависимость $1/T_1$, по оси ординат отложена величина $\delta(\Delta H)$. Из рисунков видно, что полученная зависимость может быть с одинаковым успехом аппроксимирована

Рис. 1. Температурная зависимость изменения ширины линии ЭПР центра Mn^0 в двойном логарифмическом масштабе. I — результаты обработки экспериментальных данных; 2 — аппроксимация полиномом (2), параметры приведены в тексте.

Рис. 2. Температурная зависимость изменения ширины линии ЭПР центра Mn^0 в полулогарифмическом масштабе. I — результаты обработки экспериментальных данных, 2 — результаты аппроксимации зависимости по формуле (3).

как полиномиальная,

$$T_1^{-1} = aT + bT^3 + cT^5,$$
 (2)

или содержащая экспоненту,

$$T_1^{-1} = \operatorname{d}\exp(-\Delta E/kT) + \operatorname{e}T.$$
 (3)

Параметры, характеризующие зависимости, определялись по минимуму квадрата отклонения расчетной зависимости и экспериментальных значений (минимума χ^2).

Минимальные значения χ^2 совпадают в независимости от выбранной аппроксимации. Значения а, b и с, характеризующие степенное представление результатов, равны в условных единицах соответственно 1.08 ± 0.59 , 0.05 ± 0.03 и $(7 \pm 4) \cdot 10^{-4}$. Это означает, что практически во всем температурном диапазоне зависимость определяется слагаемым bT^3 и лишь при температуре 8 К второе и третье слагаемые дают в релаксацию сопоставимые вклады, что несколько не соответствует результатам [5,6]. Значения ΔE , определенные в результате наших измерений и полученные в [5], практически равны: $\Delta E = (3.0 \pm 0.3)$ мэВ.

Экспоненциальная температурная зависимость скорости СРР свидетельствует о действии механизма Орбаха–Аминова. Суть этого механизма в последовательном поглощении и испускании фононов, резонансных с энергетическим зазором Δ между уровнем основного состояния парамагнитного центра и уровнем другого состояния, расположенным в пределах дебаевского спектра [1]. Природа этого состояния на температурной зависимости времени релаксации не сказывается, но влияет на абсолютное значение T_1 , т.е. оно может быть как возбужденным состоянием примесного центра, так и одним из оптических кристаллических колебаний кристалла или локальным колебанием [10].

В рамановском процессе СРР представляет собой последовательность актов поглощения-испускания любых пар фононов с разностью результирующих энергий пар, равной энергии кванта СВЧ. В случае процесса Орбаха–Блюма релаксационный процесс идет с участием близко расположенных уровней центра, соответствующих различным проекциям момента, и $1/T_1 \propto T^5$. Для некрамерсовых ионов, обладающих в нулевом магнитном поле малым начальным расщеплением, такая же температурная зависимость предсказана Уолкером [11].

Зависимость $T_1 \propto T^{-3}$ представляется как процесс первого порядка, описывающий релаксацию некрамерсового иона с участием одного акустического и одного оптического фонона с энергией $\hbar\omega$, меньшей энергии расположенного выше уровня, резонансного с дебаевским спектром [10].

Для обычного парамагнитного центра скорость СРР, определяемая любым рамановским процессом, должна быть существенно больше величины $1/T_1$, определяемой механизмом Орбаха–Аминова. Это следует из несоизмеримо большего числа фононов, участвующих в рамановском процессе (практически весь дебаевский спектр), по сравнению с числом фононов, резонансных энергетическому интервалу Δ в процессе Орбаха–Аминова [1].

Вместе с тем не следует забывать, что резонансное поглощение, регистрируемое спектрометром ЭПР, имеет электродипольную природу [12]. Наличие дипольного момента центра должно вести по крайней мере к двум следствиям. Во-первых, собственные частоты колебаний диполя должны отличаться от частот оптических фононов кристалла. Во-вторых, эффективность процесса сравнима с эффективностью релаксации с участием локальных колебаний, т.е. гораздо выше эффективности любого рамановского процесса [10]. Поэтому можно предположить, что $T_1 \propto \exp(-\Delta E/kT)$, где значение ΔE порядка единиц мэВ.

Значение ΔE можно представить как результат смешивания колебаний, соответствующих оптическим фононам решетки арсенида галлия. Действительно, энергии продольного (E_{LO}) и поперечного (E_{TO}) оптических фононов решетки равны: $E_{LO} = 36.69$ мэВ и $E_{TO} = 33.84$ мэВ. Разность энергий E_{LO} и E_{TO} согласно [13] составляет 2.89 мэВ, что совпадает с приведенными результатами.

Предположение о действии локальных колебаний в процессе электронной релаксации центра Mn⁰ подтверждается результатами исследований ядерной магнитной релаксации.

2. Результаты измерений при высоких температурах

Результаты измерений скорости ядерной СРР приведены на рис. 3. В диапазоне 310–105 К действуют механизмы, связанные с воздействием на ядра колебаний решетки: рамановский процесс $\tau_1^{-1} \propto T^2$ (140 < T < 310 K) и прямой $\tau_1^{-1} \propto T$ (105 < T < 140 K).

Для сравнения на рисунке приведены результаты высокотемпературных исследований ядерной релаксации

Рис. 3. Температурные зависимости времени ядерной спин-решеточной релаксации: 1 -ядра Ga⁷¹ в образце А59; 2 -результаты [14], полученные в области высоких температур на аналогичном образце. Видно, что при T < 105 К зависимости не могут быть представлены как степенны́е. Сплошные линии — результаты степенно́й аппроксимации в области 105 < T < 310 К. Обозначения соответствуют степенным зависимостям τ_1 или показателям экспонент для разных диапазонов температур.

арсенида галлия, легированного марганцем, приведенные в работе [14].

В области температур 105-86 К проявляется смена механизмов спиновой диффузии от быстрой до ограниченной [4]. При этом решающую роль в обмене энергией между ядерными спинами и решеткой начинают играть магнитные атомы.

В случае быстрой диффузии (температуры достаточно высоки) скорость СРР равна

$$\tau_1^{-1} = \frac{4}{3\pi} \left(N_p \bar{C} / b^3 \right). \tag{4}$$

В случае ограниченной диффузии (низкие температуры) скорость СРР описывается выражением [4]

$$\tau_1^{-1} = \frac{8}{3} \pi N_p \bar{C}^{1/4} D^{3/4}.$$
 (5)

Здесь

$$\bar{C} = \frac{2}{5} \gamma_n^2 \gamma_p^2 \hbar^2 s(s+1) \frac{T_1}{1 + \omega_1^2 T_1^2}$$

 ω_1 — частота ядерного резонанса, T_1 — время продольной электронной релаксации, γ_n — гиромагнитное отношение ядра, γ_p — гиромагнитное отношение, соответствующее электронному моменту со спином s, N_p концентрация парамагнитных центров, D — коэффициент спиновой диффузии. Параметры, имеющие размерность длины, определяют действие механизма диффузии:

$$b = (3a \langle \mu_p \rangle / B_1)^{1/4},$$

 $eta = \left(rac{ar C}{D}
ight)^{1/4},$

где b — радиус диффузионного барьера, a — расстояние между ядрами, $\langle \mu_p \rangle$ — средний термодинамический момент магнитного атома, участвующего в диффузии ядерной намагниченности, B_1 — поле, создаваемое магнитным центром на расстояниях, где оно сопоставимо с полем, созданным соседними ядрами.

При $b \gg \beta$ действует механизм быстрой диффузии, при $b \ll \beta$ — ограниченной.

Если время электронной релаксации мало, т.е. температуры высокие, $\omega_1 T_1 \ll 1$ и $\tau_1^{-1} \propto T_1^{\alpha}$; при $\omega_1 T_1 \gg 1$ (область низких температур) $\tau_1^{-1} \propto T_1^{-\alpha}$, где $\alpha = 1$ или 1/4 в зависимости от механизма диффузии.

Сказанное объясняет поведение температурной зависимости скорости ядерной релаксации в диапазоне от 105 К и ниже. В диапазоне температур $80 < T < 105 \,\mathrm{K}$ $\tau_1^{-1} \propto T_1^{-lpha}$, а при $36 < T < 80 \,\mathrm{K}$ $\tau_1^{-1} \propto T_1^{\alpha}$. Для низкотемпературной части зависимости следует принять $\alpha = 1/4$. При этом поведение τ_1 описывается экспонентой с энергией $\Delta E_{\rm low} = (403 \pm 24) \, {\rm K}$ в показателе экспоненты, что с учетом значения $\alpha = 1/4$ дает для скорости $\Delta E_{\rm low} = (1600 \pm 100) \, {\rm K}$ электронной релаксации $\equiv (0.138 \pm 0.009)$ эВ. Полученная величина совпадает со значением показателя экспоненты, описывающей поведение τ_1 в диапазоне 80-105 К, равным $\Delta E_{\text{high}} = (1520 \pm 40) \, \text{K} \equiv (0.131 \pm 0.003) \, \text{эB};$ при этом $\alpha = 1$. Формально характер зависимостей и равенство показателей экспонент свидетельствуют о действии механизма электронной релаксации подобного механизму Орбаха-Аминова. Однако значение энергетического показателя $\Delta E \approx 1560 \,\mathrm{K} \equiv 134 \,\mathrm{мэB}$, во-первых, близко к величине энергии ионизации нейтрального центра марганца в арсениде галлия и, более того, превышает ее, а во-вторых, существенно больше температуры Дебая арсенида галлия. Последняя в зависимости температуры кристалла от может принимать значения от 275 до 341 К. Отсюда следует, что механизм Орбаха-Аминова в его исходном понимании в кристалле GaAs(Mn) не может быть реализован. большая величина ΔE свидетельствует Поэтому о существовании колебательного состояния центра, что подтверждает предположение, сделанное на основе анализа электронной релаксации. Можно сослаться на результаты исследования оптического поглощения и фотопроводимости в кристаллах GaAs(Mn), в ходе которых были зарегистрированы колебания с энергией ~ 140 мэВ [13].

Таким образом, результаты исследований температурной зависимости скорости СРР показывают, что в электронной релаксации даже при сравнительно низких температурах (до 8–10 K) должны действовать в первую очередь механизмы быстрой релаксации, основанные на взаимодействии электрического дипольного момента нейтрального центра марганца с колебаниями решетки. В противном случае необъяснима смена высокоэффективных рамановских механизмов на механизм типа Орбаха–Аминова при повышении температуры.

Взаимодействие центра Mn⁰ с колебаниями решетки в значительной степени определяется наличием у центра электрического дипольного момента.

Список литературы

- А. Абрагам, Б. Блини. ЭПР переходных ионов (М., Мир, 1972) т. 1.
- [2] Ч. Пул. Техника ЭПР спектроскопии (М., Мир, 1970).
- [3] С.А. Альтшулер, Б.М. Козырев. ЭПР соединений элементов промежуточных групп (М., Наука, 1972).
- [4] К. Джеффрис. Динамическая поляризация ядер (М., Мир, 1965).
- [5] K. Lassmann, Hp. Schad. Sol. St. Commun., 18, 449 (1976).
- [6] N.S. Averkiev, A.A. Gutkin, O.G. Krasikova, E.B. Osipov, M.A. Reshchikov. Sol. St. Commun., 68 (11), 1025 (1988).
- [7] В.Ф. Мастеров, С.Б. Михрин, Б.Е. Саморуков, К.Ф. Штельмах. ФТП, 17 (7), 1259 (1983).
- [8] М.Н. Барбашов, В.П. Маслов, В.Ф. Мастеров. ФТТ, 25 (4), 1130 (1983).
- [9] J. Schneider, U. Kauffmann, W. Wilkening, M. Baeumler, F. Köhl. Phys. Rev. Lett., **59** (2), 240 (1987); В.Ф. Мастеров, К.Ф. Штельмах, М.Н. Барбашов. ФТП, **22** (4), 654 (1988).
- [10] K.N. Shrivastava. Phys. St. Sol. (b), **117**, 437 (1983).
- [11] M.B. Walker. Canad. J. Phys., 46 (11), 1347 (1968).
- [12] Н.П. Баран, В.Я. Братусь, В.М. Максименко, А.В. Марков, Ю.Г. Семенов. Письма ЖЭТФ, 55 (2), 108 (1992).
- [13] M. Linnarsson, E. Janzen, B. Monemar, M. Kleverman, A. Thilderkvist. Phys. Rev. B, 55 (11), 6938 (1997).
- [14] T.H. Yeom, I.G. Kim, S.H. Choh, K.S. Hong, Y.J. Park, S.-K. Min. Sol. St. Commun., 111, 229 (1999).

Редактор Л.В. Шаронова

Relaxation of neutral manganese state in gallium arsenide

V.F. Masterov, K.F. Shtel'makh. V.P. Maslov, S.B. Mikhrin, B.E. Samorukov

St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia

Abstract This paper represents a result of a research of the longitudinal magnetic relaxation of the neutral manganese state in gallium arsenide. The relaxation was studied following a deviation of the EPR line width within a low temperature region (3.4-8.2 K) and a nuclear magnetic relaxation at higher temperatures (36-310 K). The latter shows that the relaxation of the center is defined by its local vibrations. This allows to consider the electronic relaxation process at low temperatures as a result of a local vibration nonlinearity of the center electric dopole momentum.