05,11

Синтез, структурные и магнитные свойства людвигита Mn_{1.32}Ni_{0.85}Cu_{0.83}BO₅

© С.Н. Софронова¹, Е.В. Еремин¹, Е.М. Мошкина¹, А.В. Селянина¹, Г.Н. Бондаренко², А.В. Шабанов¹

¹ Институт физики им. Л.В. Киренского — обособленное структурное подразделение Федерального исследовательского центра "Красноярский научный центр Сибирского отделения Российской академии наук", Красноярск. Россия

² Институт химии и химической технологии — обособленное структурное подразделение Федерального исследовательского центра "Красноярский научный центр Сибирского отделения Российской академии наук", Красноярск, Россия

E-mail: ssn@iph.krasn.ru

Поступила в Редакцию 7 июля 2022 г. В окончательной редакции 7 июля 2022 г. Принята к публикации 9 июля 2022 г.

> Монокристаллы Mn_{1.3}2Ni_{0.85}Cu_{0.83}BO₅ со структурой людвигита получены раствор-расплавным методом при спонтанной кристаллизации. Концентрация ионов меди, марганца и никеля определена методом просвечивающей микроскопии. Ионы марганца входят в состав соединения в двух- и трехвалентном состоянии. Исследование температурных и полевых зависимостей намагниченности показало, что наблюдается несколько магнитных переходов. Первый переход, связанный с ферримагнитным упорядочением магнитных моментов части ионов, наблюдается в районе 50 К. В районе 25 К наблюдается второй магнитный переход. Замещение ионов никеля на медь и двухвалентный марганец усиливает химический беспорядок и конкуренцию обменных взаимодействий, что приводит к разбиению магнитной системы на несколько магнитных подсистем, упорядочивающихся при различных температурах.

Ключевые слова: людвигиты, магнитный фазовый переход, косвенные обменные взаимодействия.

DOI: 10.21883/FTT.2022.11.53333.425

1. Введение

Оксибораты переходных металлов, благодаря геометрическим особенностям структуры, можно отнести к квази-низкомерным соединениям [1–7]. В структуре людвигита (рис. 1) можно выделить отдельные структурные элементы — триады [2,3,8]. Триады первого типа образованы металлическими ионам в позициях 4-2-4. Расстояния между металлическими ионами в позициях 2 и 4 минимальны во всех известных людвигитах, кроме этого, их октаэдры соединяются ребрами основания так же, как и триады 4-2-4 в соседних ячейках (вдоль оси с на рис. 1), в результате образуется структура, напоминающая лестницу с тремя ногами (рис. 2, а). Ионы в позициях 1 и 3 образуют триады второго типа: 3-1-3, октаэдры этих ионов соединены вершинами, а расстояния между ионами наибольшие (рис. 2, b). Триады второго типа, соединяясь вдоль с, также образуют трехногую лестницу. Обменные пути между триадами первого и второго типа формируют треугольные группы, что в случае антиферромагитных взаимодействий, приводит к сильной конкуренции обменных взаимодействий и возникновению фрустраций.

В людвигитах Fe_3BO_5 [8] и Cu_2MnBO_5 [9] магнитная система разбивается на две подсистемы, связанные именно с трехногими лестницами, кроме этого, магнитные моменты подсистем ориентированы ортогонально в Fe_3BO_5 и под углом около 60 градусов в Cu₂MnBO₅. Людвигиты Ni₂MnBO₅ исследованы не так широко [10-12], как Fe₃BO₅ и Cu₂MnBO₅, однако, эти соединения интересны тем, что марганец может входить в них в разном валентном состоянии. В частности, ранее нами были получены составы, где помимо трехвалентных ионов марганца, присутствуют

Рис. 1. Схематическая структура людвигита спроецированная вдоль оси *с*. Металлические ионы занимают 4 позиции в центрах кислородных октаэдров. Черными точками обозначены ионы В.

Рис. 2. Трехногие лестницы, сформированные триадами первого (а) и второго типа (b).

также четырехвалентные ионы марганца [11]. Кроме того, в людвигитах (Ni,Mn)₃BO₅ был обнаружен эффект обращения намагниченности [12]. Исследование таких эффектов как неколлинеарный магнетизм, обращение намагниченности интересно не только с фундаментальной точки зрения, но и с прикладной точки зрения, поскольку подобные эффекты могут найти применение при разработке различных магнитных устройств.

Твердые растворы $Ni_2MnBO_5-Cu_2MnBO_5$ интересны тем, что родительские составы Ni_2MnBO_5 и Cu_2MnBO_5 имеют ромбическую и моноклинную структуру, соответственно [9–12]. Моноклинные искажения кристаллической структуры Cu_2MnBO_5 возникают из-за янтеллеровского эффекта ионов меди. В Cu_2MnBO_5 магнитное упорядочения в обеих подсистемах происходит в районе 90 К. Значительный интерес, при исследовании данных твердых растворов, представляет вопрос последовательности упорядочения магнитных подсистем: будут ли магнитные подсистемы упорядочиваться при одной температуре, как в Cu_2MnBO_5 или, как в Fe_3BO_5 , будет происходить упорядочение при различных температурах.

В настоящей работе мы попытались получить твердый раствор Ni₂MnBO₅-Cu₂MnBO₅ с большой концентрацией ионов меди. Ранее нами был получено три различных по составу соединения, однако, оказалось, что ионы меди входят в состав соединения лишь в небольшом количестве, даже в том случае, когда медь преобладает в раствор-расплаве [13]. При увеличении концентрации ионов температура магнитного упорядочения падала до 60-75 К (в зависимости от состава), а при низких температурах в районе 10К была обнаружена особенность на ас-восприимчивости [14]. Ориентационные исследования намагниченности показали, что в районе 60-75 К происходит упорядочение магнитных моментов перпендикулярно короткой оси (c), а в районе 10 К упорядочение магнитных моментов происходит вдоль короткой оси (с).

В настоящей работе мы приводим результаты ростового эксперимента для получения состава со значительным содержанием ионов меди в (Ni,Mn,Cu)₃BO₅, исследование состава соединения методом просвечивающей микроскопии, подробное исследование магнитных свойств, а также оценку обменных взаимодействий в рамках эмпирической модели.

2. Рост кристаллов

Монокристаллы исследуемого людвигита (Mn,Ni,Cu)₃BO₅ были получены с помощью раствор-расплавного метода в режиме спонтанной кристаллизации. В наших предыдущих работах [13-14] мы попытались получить ряд соединений от Ni₂MnBO₅ до Cu₂MnBO₅ замещением ионов никеля ионами меди. За основу была взята раствор-расплавная система для получения Ni₂MnBO₅, в которую добавлялся оксид меди CuO. Однако, оказалось, что ионы меди входят в состав соединения лишь в небольшом количестве, даже в том случае, когда медь преобладает в раствор-расплаве [13]. В данной работе, взяв за основу раствор-расплав для получения людвигита Cu₂MnBO₅, мы попытались получить состав с большим содержанием меди.

Для этого были взяты компоненты раствор-расплавной системы в соотношении Bi₂Mo₃O₁₂:2.66B₂O₃:1.4Na₂O:1.32Mn₂O₃:1.32CuO:0.1NiO.

Раствор-расплав, массой m = 83.5 g, готовился последовательным сплавлением в платиновом тигле $(V = 100 \text{ cm}^3)$, при $T = 1100^\circ\text{C}$, смесей порошков Bi₂O₃-MoO₃-B₂O₃, затем Mn₂O₃ и NiO, последним порциями добавлялся порошок Na₂CO₃. После гомогенизации раствора-расплава при $T = 1100^\circ\text{C}$ в течение 3 часов, проводилось фазовое зондирование и определение параметров раствора-расплава. Было установлено, что высокотемпературной кристаллизующейся фазой в приготовленном растворе-расплаве является фаза людвигита (в температурном диапазоне не менее 40°C). Температура насыщения составила $T_{\text{sat}} = 895^\circ\text{C}$.

После проведения поисковых исследований, растворрасплав был вновь гомогенизирован при $T = 1100^{\circ}$ С в течение 3 часов. Затем, температура в печи сначала понижалась быстро, со скоростью $dT/dt = 200^{\circ}$ С/h до температуры $T_{\text{start}} = (T_{\text{sat}} - 5) = 890^{\circ}$ С, затем медлен-

но, со скоростью $dT/dt = 4^{\circ}$ С/day. Через трое суток тигель извлекался из печи, раствор-расплав сливался. Выросшие кристаллы в виде удлиненных черных призм, похожие на иголки, отделялись от остатков растворарасплава травлением в 20% водном растворе азотной кислоты.

3. Исследование состава и структуры

Полученные монокристаллы исследовали на настольном сканирующем электронном микроскопе Hitachi TM-4000Plus при ускоряющем напряжении 20 kV. Элементное картирование проводили с использованием рентгеновского детектора Bruker XFlash 630Hc. Спектры анализировали с помощью программы Quantax70. Все образцы были однородны по составу. Для проверки однородности сравнивали спектры разных участков кристаллов для шести монокристаллических образцов. На рис. 3 показано изображение кристаллов. Соотношение Ni: Mn: Cu в раствор-расплаве и в кристалле представлено в табл. 1. Как видно из табл. 1, соотношение Ni:Mn:Cu в кристалле существенно отличается от соотношения в раствор-расплаве. Несмотря на малое содержание никеля в растворе, в составе кристаллов ионов никеля содержится столько же сколько и ионов меди. Химическая формула соединения, учитывая соотношение металлических ионов в кристалле, получается Mn_{1.32}Ni_{0.85}Cu_{0.83}BO₅, поскольку ионы никеля и меди входят в соединения со структурой людвигита в двухвалентном состоянии, по условию электронейтральности часть марганца также должна входить в соединение в двухвалентном состоянии.

Порошковая дифрактограмма была снята на рентгеновском дифрактометре Дрон-3, полученные рефлексы соответствуют ромбической структуре людвигита с пространственной группой *Pbam*, параметры решетки составляют a = 9.256(5) Å, b = 12.266(6) Å, c = 3.0585(15) Å. Таким образом, даже при достаточно

Рис. 3. Изображение кристалла людвигита (Mn,Ni,Cu)₃BO₅.

Соотношение Ni:Mn:Cu	Соотношение Ni: Mn: Cu
в растворе	в кристаллах
0.1:2:1	1.02:1.59:1

существенном замещении ионов никеля ионами меди ромбическая структура сохраняется.

4. Магнитные свойства

Магнитные свойства соединений исследовались на установке PPMS Quantum design в диапазоне температур 4-300 К и 0-90 kOe. Монокристаллические образцы, как уже отмечалось, были похожи на иголки. Как правило, интенсивный рост идет вдоль наиболее короткого кристаллографического направления, и мы предполагаем, что кристаллографическая ось с совпадает с направлением иголки, однако, достоверно это не было установлено, поэтому в дальнейшем мы будем обозначать направления приложения магнитного поля по отношению к кристаллу, то есть вдоль или перпендикулярно иголки. Измерения температурных и полевых зависимостей намагниченности проводилось в двух направлениях: вдоль иголки и перпендикулярно иголке. На рис. 4 представлены температурные зависимости намагниченности монокристалла, при приложении магнитного поля вдоль и поперек иголки в режиме охлаждения в поле (FC) и охлаждения без поля (ZFC).

На кривых намагниченности наблюдается несколько особенностей. При приложении магнитного поля вдоль иголки намагниченность плавно растет при понижении температуры от комнатных температур, а в районе 50 К начинается быстрый рост намагниченности. В режиме охлаждения без поля наблюдаются два максимума в районе 45 и 20 К. В режиме охлаждения в поле один максимум в районе 35 К, а затем "полочка" при понижении температуры (рис. 4, a). При приложении поля перпендикулярно иголке, рост намагниченности начинается в районе 50 К. Намагниченность, снятая в режимах охлаждения без поля и в поле различается в диапазоне температуры не гладкий, хорошо видно, что имеется как минимум две особенности на кривой.

Полевые зависимости намагниченности монокристаллического образца также были сняты на установке PPMS и приведены на рис. 5 и 6. На полевых зависимостях намагниченности наблюдаются петли гистерезиса. При приложении магнитного поля вдоль иголки намагниченность слабо отклоняется от линейного закона при высоких температурах и практически не меняет наклон, а коэрцитивное поле очень маленькое и слабо изменяется при понижении температуры. При приложении поля перпендикулярно иголке коэрцитивное поле растет

Рис. 4. Температурные зависимости намагниченности монокристалла, при приложении магнитного поля величиной 1 kOe вдоль (a) и поперек (b) иголки.

с понижением температуры, кроме этого, изменяется форма петель гистерезиса.

Температурные зависимости ас-восприимчивости поликристаллических образцов, приведенные на рис. 7, демонстрируют плавный рост при понижении температуры. В районе 25 К имеется особенность, положение которой не зависит от частоты переменного поля. При дальнейшем понижении температуры восприимчивость снижается. Пик на ас-восприимчивости в районе 25 К довольно широкий и не симметричный. В диапазоне температур 4–25 К ас-восприимчивость зависит от частоты.

Температурные производные произведения восприимчивости и температуры (χT) и квадрата намагниченности (M^2) пропорциональны теплоемкости для систем с различным типом магнитного упорядочения [15]. Как видно из рис. 8 на кривых $d(\chi T)/dT$ и $d(M^2)/dT$ вне зависимости от ориентации магнитного поля имеется особенность в районе 46 К. На кривой $d(\chi T)/dT$, при

Рис. 5. Полевые зависимости намагниченности монокристаллического образца при приложении поля вдоль иголки (*a*). В более мелком масштабе (*b*) видно, что петли гистерезиса имеют небольшое коэрцитивное поле около 1 kOe.

Рис. 6. Полевые зависимости намагниченности монокристаллического образца при приложении поля поперек иголки.

Рис. 7. Температурная зависимость ас-восприимчивости поликристаллических образцов.

Рис. 8. Температурная зависимость $d(\chi T)/dT$ (красная кривая) и $d(M^2)/dT$ (черная кривая) при приложении поля вдоль (*a*) и перпендикулярно иголке (*b*).

приложении поля вдоль иголки, хорошо виден положительный максимум в районе 35 K, тогда как при приложении поля перпендикулярно иголке нет выраженной особенности, хотя минимум при 46 К не симметричный, что вероятно связано с тем, что при 35 К также имеется особенность. Пик на ас-восприимчивости при 25 К согласуется с максимумом $d(M^2)/dT$ в обоих направлениях приложения поля, ниже 25 К изменяется форма петли гистерезиса при приложении поля перпендикулярно иголке, вероятно, при 25 К происходит ферримагнитное упорядочение одной из магнитных подсистем. Кривые $d(\chi T)/dT$ и $d(M^2)/dT$ также имеют особенность при низких температурах в районе 16 К при приложении поля перпендикулярно иголя. Повидимому, магнитная структура $Mn_{1.32}Ni_{0.85}Cu_{0.83}BO_5$ довольно сложная, существует несколько подсистем, которые упорядочиваются при различных температурах.

5. Обсуждение результатов

Ранее нами исследовались три состава, в которых содержание меди было значительно меньше марганца: Mn_{1.04}Ni_{1.85}Cu_{0.11}BO₅, Mn_{1.06}Ni_{1.73}Cu_{0.21}BO₅ и Мп_{1.22}Ni_{1.57}Cu_{0.21}BO₅ (образец 1, образец 2 и образец 3 соответственно) [14]. На рис. 9 приведены температурные и полевые зависимости намагниченности всех трех составов с малым содержанием меди и исследуемого образца при приложении магнитного поля перпендикулярно иголке. Как видно из рис. 9 температура, при которой начинает расти намагниченность падает при увеличении концентрации меди в составе кристалла. Для составов, где содержание меди x > 0.2 уже при комнатной температуре значение намагниченности не нулевое, имеется выраженная "полочка". Коэрцитивное поле для составов с содержанием меди x > 0.2 остается одинаковым, а остаточная намагниченность петель гистерезиса растет с увеличением концентрации меди.

На ас-восприимчивости поликристаллических образцов составов 1 и 2 в районе 60-75 К имеется особенность — небольшое плато, а в районе 10 К в составах 1 и 2 наблюдается острый пик (рис. 10) [14]. В исследуемом образце, острый пик на ас-восприимчивости смещается в область более высоких температур (около 30 К для исследуемого образца), а особенность в районе 50 К в значительной степени сглаживается.

Таким образом, увеличение концентрации меди приводит к усилению химического беспорядка, помимо этого, в исследуемом образце и в составе 3 $(Mn_{1.22}Ni_{1.57}Cu_{0.21}BO_5)$, для соблюдения условия электронейтральности, часть марганца должна находиться в двухвалентном состоянии, что также приводит к усилению химического беспорядка.

В наших предыдущих работах мы оценивали косвенные обменные взаимодействия в соединениях Ni₂MnBO₅ и Cu₂MnBO₅ [9,10] в рамках модели косвенных обменных взаимодействий на базе модели Андресона– Завадского [16–19]. Из-за того, что структура Cu₂MnBO₅ моноклинная, часть обменных путей изменяется из-за

Рис. 9. Температурные (*a*) и полевые (*b*) зависимости намагниченности трех составов с малым содержанием меди и исследуемого образца при приложении магнитного поля перпендикулярно иголке.

Рис. 10. Температурная зависимость ас-восприимчивости поликристаллических образцов состава 1.

Косвенные обменные взаимодействия	$J\left(\mathrm{K}\right)$ Ni ₂ MnBO ₅ [10]	J(K) Cu ₂ MnBO ₅ [9]	J (K) Mn ₃ BO ₅
4-4 (90°)	-1.8	-5.5	
1-1, 2-2, 3-3 (90°)	5.6	7.9	-5.7
4-2 (90°)	-5.1	0.0	-7.2
4-2 (180°)	0.6	-8.3 1.7	-1.18
4-3 (90°)	-4.6	-0.77 -5.0	-5.4
4-1 (90°)	-4.6	0.1 -6.0	-5.4
4-3 (117°)	-1.0	-2.7 -1.8	-0.24
1-3 (121°)	-1.8	6.83	-1.9
2-3 (90°)	5.6	15.6 7.9	-4.4

Таблица 2. Обменные взаимодействия в людвигитах Ni₂MnBO₅, Cu₂MnBO₅ и Mn₃BO₅

структурных искажений (рис. 2), увеличивается количество различных обменных взаимодействий в Cu_2MnBO_5 по сравнению с Ni_2MnBO_5 (табл. 2).

В табл. 2, помимо обменных взаимодействий людвигитов Ni₂MnBO₅, Cu₂MnBO₅, приведены обменные взаимодействия вычисленные для людвигита Mn₃BO₅, поскольку в исследуемом соединении появляется марганец в двухвалентном состоянии. Как видно из табл. 2, наиболее сильно в Ni₂MnBO₅ и Cu₂MnBO₅ различаются обменные взаимодействия 2-4, причем как 90-, так и 180-градусные. В Ni₂MnBO₅ 180-градусные обменные взаимодействия 2-4 очень слабые, тогда как в Cu₂MnBO₅ напротив, слабые 90-градусные обменные взаимодействия 2-4. Таким образом, появление ионов меди в позиции 2 в Ni₂MnBO₅ приведет к появлению в подсистеме антиферромагнитных взаимодействий и усилению конкуренции внутри подсистемы 4-2-4. Кроме этого обменное взаимодействие 1-3 в подсистеме 3-1-3 имеет разные знак в медном и никелевом людвигитах, следовательно, при замещении будет возрастать беспорядок и усиливаться конкуренция.

Появление двухвалентного марганца на позициях двухвалентных ионов меди и никеля приводит к возникновению антиферромагнитных взаимодействий в цепочках ионов 1-1, 2-2, 3-3, а также между ионами в позиции 2 и 3, которые в обоих родительских составах Ni_2MnBO_5 и Cu_2MnBO_5 ферромагнитные. Таким образом, при замещении ионов никеля ионами двухвалентного марганца ферромагнитное упорядочение вдоль короткой оси c, которое наблюдается в Cu_2MnBO_5 может нарушаться. При замещении ионов никеля на ионы и

меди и двухвалентный марганец в значительной степени усиливается конкуренция обменных взаимодействий, как внутри магнитных подсистем, так и между ними, что, приводит к снижению температуры магнитного упорядочения, возникновению нескольких магнитных подсистем, которые упорядочиваются при различных температурах.

6. Заключение

Раствор-расплавным методом при спонтанной кристаллизации нам удалось получить монокристаллы Мп_{1.32}Ni_{0.85}Cu_{30.83}BO₅ со структурой людвигита, в которых концентрация ионов меди сравнима с концентрацией ионов никеля. Несмотря на большое содержание ионов меди, кристаллическая структура осталась ромбической, как и у Ni₂MnBO₅. Концентрация ионов меди, марганца и никеля исследовалась методом просвечивающей микроскопии, была уточнена химическая формула соединения. Исходя из условия электронейтральности, ионы марганца входят в состав в двухи трехвалентном состоянии. Подробное исследование магнитных свойств показало, что наблюдается несколько магнитных переходов. Первый переход, связанный с ферримагнитным упорядочением магнитных моментов части ионов наблюдается в районе 50 К, в районе 25 К упорядочивается еще одна магнитная подсистема. Замещение ионов никеля на медь и двухвалентный марганец усиливает химический беспорядок и конкуренцию обменных взаимодействий, что приводит к разбиению магнитной системы на несколько магнитных подсистем, упорядочивающихся при различных температурах.

Благодарности

Авторы благодарят М.С. Молокеева за уточнение параметров решетки кристаллической структуры.

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ, Правительства Красноярского края и Красноярского краевого фонда науки в рамках научного проекта № 20-42-240011. Работа выполнена на оборудовании Красноярского регионального центра коллективного пользования.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- L.N. Bezmaternykh, S.N. Sofronova, N.V. Volkov, E.V. Eremin, O.A. Bayukov, I.I. Nazarenko, D.A. Velikanov. Phys. Status Solidi B 249, *8*, 1628 (2012).
 E.D. Solidi B 249, *8*, 1628 (2012).
- [2] E. Bertaut. Acta Crystollogr. 3, 473 (1950).

- [3] H. Neuendorf, W. Gunser. J. Magn. Magn. Mater. **173**, 117 (1997).
- [4] J.C. Fernandes, R.B. Guimaräes, M.A. Continentino, H.A. Borges, J.V. Valarelli, Alex Lacerda. Phys. Rev. B 50, 16754 (1994).
- [5] A. Arauzo, N.V. Kazak, N.B. Ivanova, M.S. Platunov, Y.V. Knyazev, O.A. Bayukov, L.N. Bezmaternykh, I.S. Lyubutin, K.V. Frolov, S.G. Ovchinnikov, J. Bartolomé. J. Magn. Magn. Mater. **392**, 114 (2015).
- [6] A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob'ev, A.P. Pyatakov, S.S. Krotov, K.I. Kamilov, V. YuIvanov, A.A. Mukhin, A.K. Zvezdin, A.M. Kuz'menko, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov. Low Temp. Phys. 36, 511 (2010).
- [7] S.N. Sofronova, N.V. Kazak, E.V. Eremin, E.M. Moshkina, A.V. Chernyshov, A.F. Bovina. J. Alloys Comp. 864, 158200 (2021).
- [8] P. Bordet, E. Suard. Phys. Rev. B 79, 144408 (2009).
- [9] E. Moshkina, C. Ritter, E. Eremin, S. Sofronova, A. Kartashev, A. Dubrovskiy, L. Bezmaternykh. J. Phys. Condens. Matter, 29, 24, 245801 (2017).
- [10] S. Sofronova, E. Moshkina, I. Nazarenko, A. Veligzhanin, M. Molokeev, E. Eremin, L. Bezmaternykh. J. Magn. Magn. Mater. 465, 201 (2018).
- [11] L.N. Bezmaternykh, E.M. Kolesnikova, E.V. Eremin, S.N. Sofronova, N.V. Volkov, M.S. Molokeev. J. Magn. Magn. Mater. 364, 55 (2014).
- [12] E. Moshkina, S. Sofronova, A. Veligzhanin, M. Molokeev, I. Nazarenko, E. Eremin, L. Bezmaternykh. J. Magn. Magn. Mater. 402, 69 (2016)
- [13] E. Moshkina, A. Bovina, M. Molokeev, A. Krylov, A. Shabanov, A. Chernyshova, S. Sofronova. Cryst. Eng. Commun. 23, 5624 (2021)
- [14] A. Kartashev, E. Eremin, E. Moshkina, M. Molokeev, S. Sofronova. J. Magn. Magn. Mater. 545, 168747 (2022).
- [15] M.E. Fisher. Phil. Mag. 7, 1731 (1962).
- [16] O.A. Bayukov, A.F. Savitskii. Phys. Status Solidi B 155, 249 (1989).
- [17] О.А. Баюков, А.Ф. Савицкий. ФТТ 36, 1923 (1994).
- [18] P.W. Anderson. Phys. Rev. 115, 2 (1959).
- [19] М.В. Еремин. ФТТ 24, 423 (1982).

Редактор Т.Н. Василевская