# 00

# Спектроскопия высокого разрешения молекул типа асимметричного волчка в несинглетных электронных состояниях: полоса $v_1 + v_3$ молекулы CIO<sub>2</sub>

© Е.С. Бехтерева<sup>1</sup>, А.Н. Какаулин<sup>1</sup>, М.А. Меркулова<sup>1</sup>, О.В. Громова<sup>1</sup>, Ю.В. Конова<sup>1</sup>, К. Зидо<sup>2</sup>

<sup>1</sup> Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия

<sup>2</sup> Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, D-38106, Braunschweig, Germany

e-mail: bextereva@tpu.ru

Поступила в редакцию 19.04.2022 г. В окончательной редакции 21.06.2022 г. Принята к публикации 21.06.2022 г.

С использованием фурье-спектрометра Bruker IFS 125 HR зарегистрирован спектр высокого разрешения молекулы  ${}^{16}O^{35}Cl^{16}O$  в районе полосы  $v_1 + v_3$ , в котором проинтерпретировано более 2000 переходов с максимальными значениями квантовых чисел  $N^{\text{max}} = 59$  и  $K_a^{\text{max}} = 16$ . Анализ полученной экспериментальной информации выполнен на основе модели из работы (Phys. Chem. Chem. Phys. 2021. V. 23. N 8. P. 4580–4596), учитывающей наличие в молекуле спин-вращательных взаимодействий. Среднеквадратичное отклонение экспериментальных значений вращательно-колебательных энергий от расчетных для состояния (101) составило  $d_{\text{rms}} = 2.5 \cdot 10^{-4} \text{ cm}^{-1}$ , что в 35 раз лучше по сравнению с известным в литературе результатом.

Ключевые слова: молекулярная спектроскопия, диоксид хлора, колебательно-вращательный гамильтониан для дублетного электронного состояния.

DOI: 10.21883/OS.2022.09.53291.3536-22

# 1. Введение

Значительный интерес к физике и химии хлорсодержащих веществ наблюдается с момента открытия чрезвычайно высокой концентрации монооксида хлора ClO на малых высотах в стратосфере над Антарктидой [1,2]. Измерения, показывающие образование ОСЮ в ночное время [3], предоставили убедительные доказательства того, что эволюция антарктической озоновой дыры химически обусловлена хлором. Диоксид хлора OClO был предметом многих лабораторных исследований вращательных [4–7], электронных [8–10] и низкоразрешенных колебательно-вращательных инфракрасных спектров [11–13]. Что касается инфракрасных спектров высокого разрешения ClO<sub>2</sub>, то они обсуждались лишь в нескольких работах, большинство из них выполнено до 1993 г. при разрешении 0.06-0.004 ст<sup>-1</sup> [14-20]. В современных работах исследовались лишь полосы  $v_1$  [21],  $v_3$  [22].

В работе [21] описаны инфракрасные спектры Фурье молекулы  $^{35}$ ClO<sub>2</sub>, полученные в улучшенных экспериментальных условиях в диапазоне 850-1030 cm<sup>-1</sup> с шириной инструментальной линии 0.001 cm<sup>-1</sup>. Колебательно-вращательный анализ линий проводился с помощью эффективного гамильтониана и компьютерной программы ROVDES, разработанной для изучения колебательно-вращательных спектров молекул свободных радикалов с открытой оболочкой с учетом спинвращательных взаимодействий. При этом 1703 энергетических уровня верхнего, (100), колебательного состоя-

ния, полученные из 7239 проинтерппретированных энергетических переходов с  $K_a^{\text{max}} = 26$  и  $N^{\text{max}} = 76$ , позволили определить на основе метода наименьших квадратов набор из 32 высокоточных параметров эффективного гамильтониана состояния (100). Полученный набор параметров позволяет воспроизводить верхние энергетические уровни с погрешностью  $d_{\text{rms}} = 1.67 \cdot 10^{-4} \text{ cm}^{-1}$ , тогда как для 7239 экспериментальных частот переходов  $d_{\text{rms}}$  равен  $3.45 \cdot 10^{-4} \text{ cm}^{-1}$ . Полученные результаты также позволили уточнить параметры основного колебательного состояния.

В работе [22] проведено исследование полосы  $v_3$  в диапазоне 1050–1150 сm<sup>-1</sup>. Было проинтерпретировано более 4000 переходов и определено 1646 колебательновращательных энергий с максимальными значениями квантовых чисел  $K_a^{\max} = 21 N^{\max} = 68$ . Были получены улучшенные спектроскопические параметры колебательного состояния ( $v_3 = 1$ ), позволяющие воспроизводить вращательные уровни энергии с погрешностью  $d_{\rm rms} = 2.4 \cdot 10^{-4}$  сm<sup>-1</sup>

В данной работе исследуется диапазон 1985–2090 сm<sup>-1</sup>, где расположена комбинационная полоса  $v_1 + v_3$ . Ранее эта полоса анализировалась только однажды в работе [20]. Инфракрасные спектры полос  $2v_1$ и  $v_1 + v_3$  ClO<sub>2</sub> (OClO) были зарегистрированы в области 2000 сm<sup>-1</sup> для двух основных изотопологов <sup>35</sup>ClO<sub>2</sub> и <sup>37</sup>ClO<sub>2</sub> с инструментальным разрешением ~ 0.004 сm<sup>-1</sup>. Спектры были проанализированы с использованием гамильтониана, который включает члены спинового вращения. Около 1900 переходов <sup>35</sup>ClO<sub>2</sub> и ~ 600 переходов <sup>37</sup>ClO<sub>2</sub> было отнесено к  $2\nu_1$ , и 1100 переходов <sup>35</sup>ClO<sub>2</sub> и  $\sim 450$  переходов  ${}^{37}\text{ClO}_2$  было идентифицировано в  $v_1 + v_3$ . Также получены значения параметров  $\alpha$  и у для констант А, В, С и для некоторых констант ангармонизма. Максимальные квантовые числа для переходов в полосе  $2\nu_1$  изотополога <sup>35</sup>ClO<sub>2</sub> составляют  $N^{\max} = 45$  и  $K_a^{\max} = 12$ , а для переходов в изотопологе  $^{37}$ ClO<sub>2</sub> максимальные квантовые числа равны  $N^{\text{max}} = 45$ и  $K_a^{\text{max}} = 10$ . Для полосы  $v_1 + v_3$  изтопологов <sup>35</sup>ClO<sub>2</sub> и  $^{37}$ ClO<sub>2</sub> максимальные квантовые числа равны  $N^{\text{max}} = 41$ и  $K_a^{\text{max}} = 14$  и  $N^{\text{max}} = 40$  и  $K_a^{\text{max}} = 12$  соответственно. Удалось не только значительно увеличить число зарегистрированных и проинтерпретированных переходов, но и значительно улучшить теоретическое описание экспериментальных данных за счет усовершенствования используемой модели гамильтониана.

# 2. Теоретическая модель

Теоретический анализ проинтерпретированных в рамках данной работы переходов полосы  $v_1 + v_3$  был выполнен на основе модели из [21]. Тот факт, что основное электронное состояние молекулы ClO<sub>2</sub> является дважды вырожденным, приводит к существенному усложнению традиционного эффективного гамильтониана молекулы типа асимметричного волчка [23–28]. Как показано в работе [21], его следует записать в виде

$$H_{\text{eff}}^{v} = H_{\text{rot}}^{v} + H_{\text{sp-rot}}^{v} + H_{\text{sp}}^{v}.$$
 (1)

Первое слагаемое в правой части выражения (1) представляет собой традиционный вращательный эффективный гамильтониан колебательного состояния  $|v\rangle$ . Для молекулы типа асимметричного волчка одной из наиболее эффективных форм такого оператора является редуцированный гамильтониан Уотсона [23], который предпочтительно используется в форме *A*-редукции и *I*<sup>r</sup>представления:

$$\begin{aligned} H_{\rm rot}^{v} &= E^{v} + \left[ A^{v} - \frac{1}{2} \left( B^{v} + C^{v} \right) \right] N_{z}^{2} + \frac{1}{2} \left( B^{v} + C^{v} \right) N^{2} \\ &+ \frac{1}{2} \left( B^{v} - C^{v} \right) N_{xy}^{2} - \Delta_{K}^{v} N_{z}^{4} - \Delta_{NK}^{v} N_{z}^{2} N^{2} - \Delta_{N}^{v} N^{4} \\ &- \delta_{K}^{v} [N_{z}^{2}, N_{xy}^{2}]_{+} - 2\delta_{N}^{v} N^{2} N_{xy}^{2} + H_{K}^{v} N_{z}^{6} + H_{KN}^{v} N_{z}^{4} N^{2} \\ &+ H_{NK}^{v} N_{z}^{2} N^{4} + H_{N}^{v} N^{6} + [N_{xy}^{2}, h_{K}^{v} N_{z}^{4} + h_{NK}^{v} N^{2} N_{z}^{2} + h_{N}^{v} N^{4}]_{+} \\ &+ L_{K}^{v} N_{z}^{8} + L_{KKN}^{v} N_{z}^{6} N^{2} + L_{NK}^{v} N_{z}^{4} N^{4} + L_{KNN}^{v} N_{z}^{2} N^{6} + L_{N}^{v} N^{8} \\ &+ [N_{xy}^{2}, l_{K}^{v} N_{z}^{6} + l_{KN}^{v} N^{2} N_{z}^{4} + l_{NK}^{v} N^{4} N_{z}^{2} + l_{NN}^{v} N^{6}]_{+} + P_{KN}^{v} N_{z}^{10} \\ &+ P_{KKKN}^{v} N_{z}^{8} N^{2} + P_{KKN}^{v} N_{z}^{6} N^{4} + P_{NNK}^{v} N_{z}^{4} N^{6} + P_{NNNK}^{v} N_{z}^{2} N^{8} \\ &+ [N_{xy}^{2}, p_{K}^{v} N_{z}^{8} + p_{KKN}^{v} N^{2} N_{z}^{6} + p_{NK}^{v} N^{2} N_{z}^{6}]_{+} + Q_{K}^{v} N_{z}^{12} \\ &+ Q_{KKKN}^{v} N_{z}^{10} N^{2} \dots, \end{aligned}$$

где  $N^2 = (N_x^2 + N_y^2 + N_z^2); N_{xy}^2 = (N_x^2 - N_y^2); [\widehat{A}, \widehat{B}]_+$  — обозначает антикоммутатор  $(\widehat{A}\widehat{B} + \widehat{B}\widehat{A}); A^v, B^v, C^v$  — эффективные вращательные постоянные, связанные с колебательным состоянием v, остальные параметры — коэффициенты центробежного искажения различного порядка малости. Второе слагаемое в правой части выражения (1) можно представить [21] в виде:

$$H_{\rm sp-rot}^{v} = {}^{(2)}H_{\rm sp-rot}^{v} + {}^{(4)}H_{\rm sp-rot}^{v} + {}^{(6)}H_{\rm sp-rot}^{v}, \qquad (3)$$

где каждое из слагаемых равно соответственно

$$^{(2)}H_{\rm sp-rot}^{v} = a_0(NS) + aN_zS_z + b(N_xS_x - N_yS_y), \qquad (4)$$

$$\begin{split} & = M_{sp-rot} = M_{N}N_{c} (NS) + \frac{1}{2} H_{NKK}^{s} [N^{2}N_{z}^{2}, N_{z}S_{z}]_{+} + H_{KNN}^{s} \\ & \times N_{z}^{2}N^{2}(NS) + \frac{1}{2} H_{NKK}^{s} [N^{2}N_{z}^{2}, N_{z}S_{z}]_{+} + H_{KKN}^{s} N_{z}^{4}(NS) \\ & + H_{K}^{s} N_{z}^{4} N_{z}S_{z} + \frac{1}{2} h_{KN}^{s} [(N_{+}^{2} + N_{-}^{2}), N_{z}^{2}(NS)]_{+} \\ & + \frac{1}{2} h_{NK}^{s} [(N_{+}^{2} + N_{-}^{2})N^{2}, N_{z}S_{z}]_{+} + h_{NN}^{s} (N_{+}^{2} + N_{-}^{2})N^{2}(NS), \end{split}$$

где  $(AB) = \sum_{\alpha} A_{\alpha} B_{\alpha}$  — обозначает скалярное произведение векторов A и B;  $N_+$  и  $N_-$  — вращательные операторы рождения и уничтожения. Последний член в уравнении (1) зависит только от спиновых операторов  $S_{\alpha}$  и в нашем исследовании дает добавку только к эффективной колебательной энергии. Чтобы использовать эффективный спин-вращательный гамильтониан (1)–(6) для анализа экспериментальных положений линий (спинвращательной структуры того или иного колебательного состояния), необходимо знать матричные элементы этого оператора на спин-вращательных функциях  $|Nk, SJ\rangle$  или (значительно удобнее) на симметризованных спинвращательных функциях  $|NK\gamma, SJ\rangle$ , которые можно найти в [21].

# Исследование спектра молекулы CIO<sub>2</sub> и решение обратной спектроскопической задачи

Спектр молекулы  $ClO_2$  был зарегистрирован на фурье-спектрометре Bruker IFS 125 HR с разрешением 0.003 cm<sup>-1</sup>. Исследуемый диапазон длин волн составил 1985—2090 cm<sup>-1</sup>. Для получения спектра было выполнено 2000 сканирований при давлении 250 Ра в ячейке Уайта, которая позволяет увеличить оптическую длину

| Ν  | $K_a$ | $K_c$ | N' | $K'_a$ | $K_c'$ | $J^{a)}$ | Положение линии, $cm^{-1}$ | Коэффициент пропускания, %, |
|----|-------|-------|----|--------|--------|----------|----------------------------|-----------------------------|
|    | 1     |       |    | 2      |        | 3        | 4                          | 5                           |
| 34 | 3     | 31    | 35 | 3      | 32     | +        | 2012.8462                  | 73.6                        |
| 34 | 3     | 31    | 35 | 3      | 32     | _        | 2012.8514                  | 71.2                        |
| 37 | 1     | 37    | 38 | 1      | 38     | $\pm$    | 2012.8747                  | 55.0                        |
| 36 | 1     | 35    | 37 | 1      | 36     | $\pm$    | 2012.9151                  | 54.1                        |
| 33 | 9     | 25    | 34 | 9      | 26     | +        | 2012.9368                  | 88.8                        |
| 33 | 9     | 25    | 34 | 9      | 26     | _        | 2012.9422                  | 81.9                        |
| 35 | 3     | 33    | 36 | 3      | 34     | ±        | 2012.9860                  | 66.6                        |
| 31 | 14    | 18    | 32 | 14     | 19     | +        | 2013.0028                  | 91.4                        |
| 31 | 14    | 18    | 32 | 14     | 19     | _        | 2013.0175                  | 85.3                        |
| 33 | 8     | 26    | 34 | 8      | 27     | +        | 2013.1489                  | 70.2                        |
| 33 | 8     | 26    | 34 | 8      | 27     | _        | 2013.1538                  | 73.8                        |
| 32 | 11    | 21    | 33 | 11     | 22     | +        | 2013.2403                  | 75.9                        |
| 32 | 11    | 21    | 33 | 11     | 22     | _        | 2013 2497                  | 85.8                        |
| 33 | 7     | 27    | 34 | 7      | 28     | +        | 2013 3168                  | 70.1                        |
| 31 | 13    | 19    | 32 | 13     | 20     | +        | 2013 3935                  | 89.8                        |
| 31 | 13    | 19    | 32 | 13     | 20     | _        | 2013 4073                  | 86.1                        |
| 30 | 15    | 15    | 31 | 15     | 16     | +        | 2013 4073                  | 86.1                        |
| 30 | 15    | 15    | 31 | 15     | 16     | _        | 2013 4259                  | 91.9                        |
| 33 | 6     | 28    | 34 | 6      | 29     | +        | 2013.4259                  | 64.2                        |
| 28 | 9     | 19    | 27 | 9      | 18     | +        | 2052 0284                  | 76.1                        |
| 28 | 9     | 19    | 27 | 9      | 18     | _        | 2052.0201                  | 76.1                        |
| 28 | Ó     | 28    | 27 | Ó      | 27     | +        | 2052.0344                  | 34.1                        |
| 20 | 2     | 26    | 26 | 2      | 27     |          | 2052.0495                  | 40.7                        |
| 27 | 27    | 20    | 20 | 27     | 20     |          | 2052.0901                  | 40.7                        |
| 27 | 7     | 21    | 20 | 7      | 20     | Ŧ        | 2052.1005                  | 60.8                        |
| 27 | 5     | 21    | 20 | 5      | 20     | _        | 2052.1131                  | 62.2                        |
| 20 | 5     | 21    | 25 | 5      | 20     | +        | 2052.1440                  | 54.2                        |
| 20 | 10    | 21    | 23 | 10     | 20     | _        | 2052.1529                  | 54.2                        |
| 29 | 10    | 20    | 20 | 10     | 19     | +        | 2052.1529                  | 70.0                        |
| 29 | 10    | 20    | 20 | 10     | 19     | _        | 2052.1001                  | 79.0                        |
| 20 | 0     | 19    | 29 | 0      | 10     | +        | 2052.2401                  | 02.4<br>71.9                |
| 20 | 0     | 20    | 27 | 0      | 19     | +        | 2052.2082                  | /1.0                        |
| 20 | 10    | 20    | 27 | 0      | 19     | _        | 2052.2943                  | /5.4                        |
| 21 | 12    | 20    | 30 | 12     | 19     | +        | 2052.3037                  | 86.0                        |
| 31 | 12    | 20    | 30 | 12     | 19     | _        | 2052.3100                  | 80.2                        |
| 27 | 0     | 22    | 20 | 0      | 21     | +        | 2052.3202                  | 59.4                        |
| 27 | 12    | 10    | 20 | 0      | 21     | _        | 2052.3333                  | 60.6                        |
| 32 | 13    | 19    | 21 | 13     | 18     | +        | 2052.3202                  | 60.6<br>50.4                |
| 32 | 13    | 19    | 31 | 13     | 18     | _        | 2052.3333                  | 59.4                        |
| 26 | 2     | 24    | 25 | 2      | 23     | ±        | 2052.3587                  | 51.7                        |
| 29 | 1     | 29    | 28 | 1      | 28     | ±        | 2052.4114                  | 30.3                        |
| 27 | 3     | 25    | 26 | 3      | 24     | ±        | 2052.4451                  | 43.7                        |
| 28 | 1     | 27    | 27 | 1      | 26     | ±        | 2052.4836                  | 40.5                        |
| 26 | 4     | 22    | 25 | 4      | 21     | +        | 2052.5170                  | 41.3                        |
| 26 | 4     | 22    | 25 | 4      | 21     | _        | 2052.5282                  | 42.3                        |
| 30 | 10    | 20    | 29 | 10     | 19     | +        | 2052.5561                  | 79.2                        |
| 30 | 10    | 20    | 29 | 10     | 19     | _        | 2052.5625                  | 78.8                        |
| 27 | 4     | 24    | 26 | 4      | 23     | +        | 2052.5943                  | 61.1                        |
| 27 | 4     | 24    | 26 | 4      | 23     | —        | 2052.6007                  | 61.6                        |
| 31 | 11    | 21    | 30 | 11     | 20     | +        | 2052.6396                  | 72.8                        |
| 31 | 11    | 21    | 30 | 11     | 20     | —        | 2052.6467                  | 80.9                        |
| 29 | 8     | 22    | 28 | 8      | 21     | +        | 2052.6990                  | 80.8                        |
| 29 | 8     | 22    | 28 | 8      | 21     | —        | 2052.7067                  | 65.3                        |
| 26 | 3     | 23    | 25 | 3      | 21     | +        | 2052.7302                  | 58.0                        |
| 26 | 3     | 23    | 25 | 3      | 21     | —        | 2052.7389                  | 59.1                        |

**Таблица 1.** Фрагмент колебательно-вращательных переходов для полосы  $v_1 + v_3$  молекулы <sup>35</sup>ClO<sub>2</sub>

| Ν  | $K_a$ | $K_c$ | N' | $K'_a$ | $K_c'$ | $J^{a)}$ | Положение линии, ст $^{-1}$ | Коэффициент пропускания, %, |
|----|-------|-------|----|--------|--------|----------|-----------------------------|-----------------------------|
|    | 1     |       |    | 2      |        | 3        | 4                           | 5                           |
| 30 | 0     | 30    | 29 | 0      | 29     | ±        | 2052.7680                   | 25.3                        |
| 28 | 6     | 22    | 27 | 6      | 21     | +        | 2052.7599                   | 66.2                        |
| 28 | 6     | 22    | 27 | 6      | 21     | _        | 2052.7680                   | 25.3                        |

Таблица 1 (продолжение)

*Примечание*.<sup>*a*)</sup> Полный угловой момент, учитывающий спин электрона:  $J = N \pm 1/2$ , где J = N + 1/2 обозначено как "+", а J = N - 1/2 обозначено как "-"; обозначение "±" соответствует дублетам, которые неразрешимы при данных экспериментальных условиях.



**Рис. 1.** Исследуемый спектр полосы  $v_1 + v_3$  молекулы ClO<sub>2</sub>.

пути (равную в данном случае 6.4 m). Для калибровки использовались пары воды, оксид углерода и карбонилсульфид. Исследуемый спектр проиллюстрирован на рис. 1, центр полосы расположен около 2040 сm<sup>-1</sup>, хорошо видны структуры *P*- и *R*-ветвей, а также более слабые линии *Q*-ветви. При этом для полосы  $v_1 + v_3$ справедливы следующие правила отбора:

$$\Delta N=0,\pm 1,~\Delta K_a=$$
четные,  $\Delta K_c=$ нечетные,  $\Delta J=0,~\Delta S=0.$ 

Набор проинтерпретированных переходов был использован для определения верхних спин-вращательноколебательных энергий колебательного состояния (101) молекулы <sup>35</sup>ClO<sub>2</sub>. При этом из-за наличия в регистрируемом спектре многочисленных перекрывающихся линий (причина в наличии ряда неразрешенных или малоразрешенных спин-вращательных дублетов) только изолированные, ненасыщенные и не слишком слабые линии использовались для определения верхних спинвращательно-колебательных энергий.

Анализ спектра производился с помощью метода комбинационных разностей [29–33]. Необходимые для этого данные о колебательно-вращательных уровнях энергии основного колебательного состояния были взяты из работы [21].



**Рис. 2.** Фрагмент спектра высокого разрешения: показано спин-вращательное расщепление линий для *P*-ветви полосы  $v_1 + v_3$  молекулы ClO<sub>2</sub>. Символами "—" и "+" отмечены симметричная и антисимметричная компоненты дублетов:  $J = N \pm 1/2$ , где J = N + 1/2 соответствует "+", а J = N - 1/2 соответствует "—".



**Рис. 3.** Фрагмент спектра высокого разрешения: показано спин-вращательное расщепление линий для *R*-ветви полосы  $v_1 + v_3$  молекулы ClO<sub>2</sub>. Символами "—" и "+" отмечены симметричная и антисимметричная компоненты дублетов:  $J = N \pm 1/2$ , где J = N + 1/2 соответствует "+", а J = N - 1/2 соответствует "–". Подписями "OSC" отмечены линии, принадлежащие молекуле карбонилсульфида.

| Параметр, $cm^{-1}$                                                                                                                                                                                                                                                                                                                     | Данная работа                                                                                                                                                                                                                                                                                                                                           | [20]                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                   |
| E A<br>B<br>C<br>$\Delta_{K}/10^{-5}$ $\Delta_{NK}/10^{-5}$ $\Delta_{N}/10^{-5}$ $\delta_{K}/10^{-5}$ $\delta_{N}/10^{-5}$ $H_{K}/10^{-9}$ $H_{KN}/10^{-9}$ $H_{NK}/10^{-9}$ $H_{N}/10^{-9}$ $H_{N}/10^{-9}$ $L_{K}/10^{-13}$ $L_{N}/10^{-13}$ $L_{N}/10^{-13}$ $l_{NK}/10^{-13}$ $l_{NK}/10^{-15}$ $P_{KKN}/10^{-15}$ $P_{K}/10^{-15}$ | $\begin{array}{c} 2038.933801(30)\\ 1.7191685(18)\\ 0.32817231(29)\\ 0.27474737(23)\\ 6.93(29)\\ -0.40123(22)\\ 0.030229(21)\\ 0.10185(13)\\ 0.0078647(19)\\ 10.290(92)\\ -0.6223(28)\\ \hline\\ 0.003534(87)\\ 0.395\\ 0.0432\\ 0.001140(81)\\ -24.9(33)\\ 5.24(88)\\ -0.00622(20)\\ -0.143\\ -0.00237(16)\\ 0.913\\ -0.299(13)\\ -4.22\\ \end{array}$ | $\begin{array}{c} 2038.93378(5)\\ 1.7191579(20)\\ 0.32816808(31)\\ 0.27474381(33)\\ 6.92499(230)\\ -0.402051(314)\\ 0.029644(13)\\ 0.09894(74)\\ 0.0077767(100)\\ 9.320(80)\\ -0.3844(113)\\ -0.03356(157)\\ 0.0007402\\ -0.29\\ 0.0363\\ -0.0000600\\ \end{array}$ |
| $a_{0}/10^{-2}$ $a/10^{-2}$ $b/10^{-2}$ $\Delta_{K}^{(S)}/10^{-5}$ $\Delta_{NK}^{(S)}/10^{-5}$ $\Delta_{N}^{(S)}/10^{-5}$ $\delta_{N}^{(S)}/10^{-5}$ $\delta_{N}^{(S)}/10^{-5}$ $H_{KKN}/10^{-8}$ $H_{KNN}/10^{-8}$ $h_{KN}^{(S)}/10^{-8}$ $d_{KK}/10^{-4}$                                                                             | $\begin{array}{c} -0.36125(27) \\ -4.3890(15) \\ 0.38215(15) \\ 0.490(18) \\ -6.683(93) \\ 6.194(82) \\ -0.003272(76) \\ -0.2739(84) \\ \end{array}$ $\begin{array}{c} -0.281(30) \\ 0.3325(79) \\ -0.797(37) \\ 0.922(52) \\ 2 5 \end{array}$                                                                                                          | $\begin{array}{c} -0.364906(272)^{a)} \\ -4.38531(84)^{a)} \\ 0.38290(43) \\ -0.0237 \\ -0.244(32) \\ \end{array}$ $\begin{array}{c} -0.106(24) \\ -0.000587 \\ \end{array}$                                                                                        |
| $d_{\rm rms}/10^{-4}$                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                     | 87.0                                                                                                                                                                                                                                                                |

**Таблица 2.** Спектроскопические параметры колебательного состояния  $v_1 + v_3$  молекулы <sup>35</sup>ClO<sub>2</sub> (в cm<sup>-1</sup>)

Примечание. В скобках в столбцах 2 и 3 представлены статистические доверительные интервалы  $1\sigma$  относительно последних указанных цифр. Значения параметров, приведенные без доверительных интервалов, были фиксированы на значениях соответствующих параметров основного колебательного состояния и не варьировались в процедуре подгонки.

<sup>*a*)</sup> Наш параметр  $a_0$  равен  $(a - a_0)$  из работы [20], параметр a равен (-3a) из [20].

По результатам анализа более 2000 переходов с максимальными значениями квантовых чисел  $K_a^{\text{max}} = 59$  и  $N^{\text{max}} = 16$  были отнесены к полосе  $v_1 + v_3$  молекулы

<sup>35</sup>ClO<sub>2</sub>, примеры проинтерпретированных линий можно увидеть на рис. 2, 3. В качестве иллюстрации в табл. 1 приведена небольшая часть проинтерпретированных переходов. На основе 2000 экспериментальных частот переходов были определены 983 спин-колебательновращательные энергии состояния (101), которые затем использовались в качестве исходной информации в обратной задаче с целью определения спектроскопических параметров состояния (101). Полученный результат (набор из 30 спектроскопических параметров, включая колебательную энергию, 17 вращательных и центробежных параметров и 12 спин-вращательных параметров) приведен в колонке 2 табл. 2 и позволяет воспроизвести 983 значения экспериментальных колебательновращательных энергий состояния (101) со среднеквадратичным отклонением  $d_{\rm rms} = 2.5 \cdot 10^{-4} \,{\rm cm}^{-1}$ . Для сравнения набор параметров из работы [20] воспроизводит экспериментальные энергии со среднеквадратичным отклонением  $d_{\rm rms} = 87 \cdot 10^{-4} \,{\rm cm}^{-1}$ , т.е. в 35 раз хуже.

## 4. Заключение

В работе был проведен анализ полосы  $v_1 + v_3$  молекулы <sup>35</sup>ClO<sub>2</sub> в интервале частот 1985–2090 cm<sup>-1</sup>. Более 2000 переходов проинтерпретированы в экспериментальном спектре с помощью метода комбинационных разностей, из которых определены 983 спинколебательно-вращательных энергии с максимальными значениями квантовых чисел  $N^{\text{max}} = 59$  и  $K_a^{\text{max}} = 16$ . В результате решения обратной спектроскопической задачи получено 30 спектроскопических параметров (колебательная энергия, 17 вращательных и центробежных параметров и 12 спин-вращательных параметров), которые позволяют воспроизвести значения 983 спинколебательно-вращательных уровней с погрешностью  $d_{\text{rms}} = 2.5 \cdot 10^{-4} \text{ cm}^{-1}$ .

### Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного фонда, грант 22-22-00171.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- [1] S. Solomon. Rev. Geophys., **26** (1), 131–148 (1988). DOI: 10.1029/RG026i001p00131
- [2] V. Vaida, S. Solomon, E.C. Richard, E. Ruhl, A. Jefferson. Nature, 342, 405–408 (1988). DOI: 10.1038/342405a0
- [3] T. Canty, E.D. Rivi.re, R.J. Salawitch, G. Berthet, J.-B. Renard, K. Pfeilsticker, M. Dorf, A. Butz, H. B.sch, R.M. Stimpfle, D.M. Wilmouth, E.C. Richard, D.W. Fahey, P.J. Popp, M.R. Schoeberl, L.R. Lait, T.P. Bui. J. Geophys. Res., 110, D01301 (2005). DOI: 10.1029/2004JD005035

- [4] R.F. Curl Jr., R.F. Heidelberg, J.L. Kinsey. Phys. Rev., 125, 1993–1999 (1993). DOI: 10.1103/PhysRev.125.1993
- [5] R.F. Curl Jr. J. Chem. Phys., 37, 779–784 (1962).
   DOI: 10.1063/1.1733160
- [6] M.G. Krishna Pillai, R.F. Curl Jr. J Chem Phys., 37, 2921– 2926 (1962). DOI: 10.1063/1.1733118
- [7] W.M. Tolles, J.L. Kinsey, R.F. Curl Jr., R.F. Heidelberg. J. Chem Phys, 37, 927–930 (1962). DOI: 10.1063/1.1733247
- [8] J.C.D. Brand, R.W. Redding, A.W. Richardson. Journal of Molecular Spectroscopy, 34, 399–414 (1970). DOI: 10.1016/0022-2852(70)90023-8
- [9] R.F. Curl Jr., K. Abe, J. Bissinger, C. Bennett, F.K. Tittel. Journal of Molecular Spectroscopy, 48, 72–85 (1973). DOI: 10.1016/0022-2852(73)90136-7
- [10] Y. Hamada, A.J. Merer, S. Michielsen, S.A. Rice. Journal of Molecular Spectroscopy, 86, 499–525 (1981). DOI: 10.1016/0022-2852(81)90297-6
- [11] A.H. Nielsen, P.J.H. Woltz. J. Chem Phys., 20, 1878–1983 (1952). DOI: 10.1063/1.1700331
- [12] A.W. Richardson. Journal of Molecular Spectroscopy, 35, 34– 48 (1970). DOI: 10.1016/0022-2852(70)90162-1
- [13] C.P. Rinsland, D.C. Benner. Journal of Molecular Spectroscopy, 112, 18–25 (1985). DOI: 10.1016/0022-2852(85)90187-0
- [14] Y. Hamada, M. Tsuboi. Bulletin of the Chemical Society of Japan, 52, 383–385 (1979). DOI: 10.1246/bcsj.52.383
- [15] Y. Hamada, M. Tsuboi. Journal of Molecular Spectroscopy, 83, 373–390 (1980). DOI: 10.1016/0022-2852(80)90062-4
- [16] K. Tanaka, T. Tanaka. Journal of Molecular Spectroscopy, 98, 425–452 (1983). DOI: 10.1016/0022-2852(83)90253-9
- J. Ortigoso, R. Escribano, J.B. Burkholder, W.J. Lafferty. Journal of Molecular Spectroscopy, 148, 346–370 (1991). DOI: 10.1016/0022-2852(91)90392-N
- [18] J. Ortigoso, R. Escribano, J.B. Burkholder, W.J. Lafferty. Journal of Molecular Spectroscopy, 156, 89–97 (1992). DOI: 10.1016/0022-2852(92)90095-6
- [19] J. Ortigoso, R. Escribano, J.B. Burkholder, W.J. Lafferty.
   J. Mol. Spectr., 155 (1), 25–43 (1992). DOI: 10.1016/0022-2852(92)90546-z
- [20] J. Ortigoso, R. Escribano, J.B. Burkholder, W.J. Lafferty. Journal of Molecular Spectroscopy, **158** (2), 347–356 (1993). https://DOI: 10.1006/jmsp.1993.1079
- [21] O.N. Ulenikov, E.S. Bekhtereva, O.V. Gromova, M. Quack, K.B. Berezkin, C. Sydow, S. Bauerecker. Phys. Chem. Chem. Phys., 23 (8), 4580–4596 (2021). DOI: 10.1039/d0cp05515h
- [22] M.A. Merkulova, A.N. Kakaulin, O.V. Gromova,
   E.S. Bekhtereva. Opt. Spectrosc., **129**, 1138–1144 (2021).
   DOI: 10.1134/S0030400X21080130
- [23] J.K.G. Watson. J. Chem. Phys., 46, 1935–1949 (1967). DOI: 10.1063/1.1840957
- [24] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.V. Kashirina, S. Bauerecker, V.M. Horneman. Journal of Molecular Spectroscopy, **313**, 4–13 (2015). DOI: 10.1016/j.jms.2015.04.008
- [25] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, I.B. Bolotova, I.A. Konov, V.M. Horneman, C. Leroy. Journal of Quantitative Spectroscopy and Radiative Transfer, **113** (7), 500-517 (2012). DOI: 10.1016/j.jqsrt.2012.01.006
- [26] O.N. Ulenikov, A.W. Liu, E.S. Bekhtereva, O.V. Gromova, L.Y. Hao, S.M. Hu. Journal of Molecular Spectroscopy, 226 (1), 57–70 (2004). DOI: 10.1016/j.jms.2004.03.014

- [27] O.N. Ulenikov, E.S. Bekhtereva, Y.V. Krivchikova, Y.B. Morzhikova, T. Buttersack, C. Sydow, S. Bauerecker. Journal of Quantitative Spectroscopy and Radiative Transfer, 166, 13–22 (2015).
   DOI: 10.1016/j.jqsrt.2015.07.004
- [28] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, K.B. Berezkin, E.A. Sklyarova, C. Maul, S. Bauerecker. Journal of Quantitative Spectroscopy and Radiative Transfer, 161, 180– 196 (2015). DOI: 10.1016/j.jqsrt.2015.04.008
- [29] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, S. Alanko, M. Koivusaari, R. Anttila, Journal of molecular spectroscopy, 186 (2), 293–313 (1997). DOI: 10.1006/jmsp.1997.7431
- [30] O.N. Ulenikov, E.S. Bekhtereva, O.V. Gromova, S. Alanko, V.M. Horneman, C. Leroy. Molecular Physics, **108** (10), 1253–1261 (2010). DOI: 10.1080/00268970903468297
- [31] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, P.G. Sennikov, M.A. Koshelev, A.D. Bulanov. Journal of Quantitative Spectroscopy and Radiative Transfer, 144, 11–26 (2014). DOI: 10.1016/j.jqsrt.2014.03.025
- [32] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, N.V. Kashirina, A.L. Fomchenko, S. Bauerecker. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 496–510 (2017). DOI: 10.1016/j.jqsrt.2017.03.020
- [33] M.A. Koshelev, A.P. Velmuzhov, I.A. Velmuzhova, P.G. Sennikov, N.I. Raspopova, E.S. Bekhtereva, O.N. Ulenikov. Journal of Quantitative Spectroscopy and Radiative Transfer, 164, 161–174 (2015). DOI: 10.1016/j.jqsrt.2015.06.003