01

Анализ и аналитическое представление коэффициентов уширения линий водяного пара давлением воздуха, азота, кислорода и углекислого газа для спектрального диапазона 380–26000 сm⁻¹

© В.И. Стариков

Томский университет систем управления и радиоэлектроники, 634050 Томск, Россия e-mail: vstarikov@vandex.ru

Поступила в редакцию 10.01.2022 г. В окончательной редакции 04.04.2022 г. Принята к публикации 19.06.2022 г.

Проведен анализ имеющихся экспериментальных данных по коэффициентам уширения линий водяного пара давлением воздуха, азота, кислорода и углекислого газа для спектрального диапазона $380-26000 \text{ cm}^{-1}$. Анализ основан на применении аналитической модели $\gamma(sur)$, зависящей от подгоночных параметров. Параметры $\gamma(sur)$ восстанавливают N = 4110 коэффициентов уширения воздухом со средней точностью 7.2%, N = 757 коэффициентов уширения азотом с точностью 11.6%, N = 658 коэффициентов уширения кислородом с точностью 7.6% и N = 688 коэффициентов уширения углекислым газом с точностью 7.1%. Проведен совместный анализ экспериментальных данных по коэффициентам уширения линий H₂O давлением воздуха, азота и кислорода. В совместном анализе N = 5525 коэффициентов уширения точность восстановления 9.2%. Параметры аналитической модели $\gamma(sur)$ могут быть использованы для расчетов γ для линий H₂O с вращательными квантовыми числами $J \leq 20$, $K_a \leq 15$ любой колебательной полосы из указанного диапазона.

Ключевые слова: водяной пар, уширение, воздух, азот, кислород, углекислый газ.

DOI: 10.21883/OS.2022.09.53290.3135-22

Введение

Водяной пар играет ключевую роль в ослаблении солнечного излучения в земной атмосфере. Знание коэффициентов уширения линий водяного пара атмосферными газами необходимо для моделирования радиационных процессов атмосферы, определения концентрации газа или температуры.

В настоящее время имеется обширная литература, касающаяся экспериментальных исследований уширения и сдвига линий H₂O воздухом, азотом, кислородом и углекислым газом [1–33]. Эти исследования охватывают диапазон от 0.7 до 26000 сm⁻¹. Несмотря на то что получено много экспериментальных данных по коэффициентам уширения γ , потребность в их знании намного шире, поэтому существует необходимость их численного расчета. Для проведения численных расчетов необходимо знать межмолекулярные потенциалы взаимодействия, колебательно-вращательные (KB) волновые функции и частоты переходов в молекуле H₂O [34,35].

Такие расчеты легко проводятся для отдельных спектральных диапазонов, в которых колебательные состояния молекулы объединяются в отдельную группу (полиаду) состояний, для которой и вычисляются КВ волновые функции и частоты переходов [36].

Приближенно выше 10 000 ст⁻¹ такой "полиадный" подход не работает, и нужно делать определенные приближения, чтобы провести соответствующие расчеты. В настоящей работе для расчетов коэффициентов γ в случае уширения линий H₂O воздухом, азотом, кислородом и углекислым газом предлагается использовать аналитическую модель $\gamma(sur)$, которая ранее была применена для аналитического представления коэффициентов γ в случае самоуширения [37], уширения воздухом [14,15] и одноатомными газами [38].

Аналитическая модель $\gamma(sur)$ зависит от подгоночных параметров, определяющих колебательную и вращательную зависимости коэффициентов γ . После определения этих параметров из массива экспериментальных данных (свободного от случайных ошибок) модель $\gamma(sur)$ может быть использована для расчета γ тех линий, коэффициенты уширения которых неизвестны.

Аналитическая модель и принцип отбора экспериментальных данных

Для анализа имеющихся экспериментальных данных по коэффициентам уширения использовалась аналитическая модель

$$\gamma(sur) = x_1 + x_2 \Big\{ \frac{1}{\cosh[x_3(K_i - x_4)]} + \frac{1}{\cosh[x_3(K_f - x_4)]} \Big\},$$
 (1)

в которой sur обозначает поверхность, величина

$$\begin{aligned} x_2 &= (x_{20} + x_{26} | K_{ai} - K_{af} |) f_1(v) / \cosh \left[(x_{21} (J_i + J_f) + x_{22} (K_{ci} + K_{cf}) + x_{23} (K_{ci} + K_{cf})^2 + x_{24} (J_i + J_f) (K_{ci} + K_{cf}) + x_{25} (J_i + J_f)^2) f_2(v) \right] \end{aligned}$$

есть функция колебательных (v_1, v_2, v_3) и вращательных J_i, K_{ai}, K_{ci} и J_f, K_{af}, K_{cf} квантовых чисел молекулы H₂O для начального (i) = (0, 0, 0) и конечного $(f) = (v_1, v_2, v_3)$ колебательных состояний в переходе $(0, 0, 0)[J_iK_{ai}K_{ci}] \rightarrow (v_1, v_2, v_3)[J_fK_{af}K_{cf}]$. Для k = 1, 3, 4

$$x_k = x_{k0} + x_{k1}(J_i + J_f).$$
(3)

Функции

$$f_s(v) = 1. + t_{s1}v_1 + t_{s2}v_2 + t_{s3}v_3 \tag{4}$$

(s = 1, 2) определяют колебательную зависимость $\gamma(sur)$. Обоснование функции (1) дано в [34,35]. Параметры модели $\gamma(sur)$ (1)–(4) определяются из подгонки выражений (1)–(4) к оптимальным наборам экспериментальных данных, свободных от ошибочных значений. Общая информация об используемых в настоящей работе экспериментальных данных приведена в табл. 1.

Поиск ошибочных значений в экспериментальных данных $\gamma(\exp)$ осуществлялся двумя взаимосвязанными способами.

В первом способе анализировалась зависимость коэффициентов $\gamma(\exp)$, измеренных для одних и тех же переходов $[J_iK_{ai}K_{ci}] \rightarrow [J_fK_{af}K_{cf}]$, но для разных колебательных полос $(0, 0, 0) \rightarrow (v_1, v_2, v_3)$. На рис. 1 показана зависимость $\gamma(\exp)$ от колебательных состояний (v_1, v_2, v_3) для одной линии, а на рис. 2 — отношение R экспериментальных коэффициентов уширения для 9 линий молекулы H₂O, полученных в [17] и [1,23] для полос v_1 и v_2 соответственно в случае уширения линий кислородом и азотом.

В случае уширения воздухом (рис. 1) данные, относящиеся к верхним колебательным состояниям (3, 4, 1) и (4, 2, 1), должны быть признаны ошибочными. Эти данные значительно (для полосы $(0, 0, 0) \rightarrow (3, 4, 1)$ более чем в два раза) превосходят данные, полученные для других колебательных полос. Нет никаких теоретических обоснований для такого аномально большого значения коэффициента γ для этого перехода в полосах $(0, 0, 0) \rightarrow (3, 4, 1)$ и $(0, 0, 0) \rightarrow (4, 2, 1)$.

Отношения R коэффициентов уширения для переходов из рис. 2 должны группироваться около прямой $R \approx 1.0$, однако для экспериментальных данных из [17] и [1,23] R меняется от 0.9 до 3.4. Данные из [17] и [1,23] не совместны и не могут быть описаны одной аналитической функцией.

Среди экспериментальных данных есть данные, которые относятся только к одной линии. В этом случае коэффициент уширения $\gamma(\exp)$ для этой линии считается ошибочным, если его добавление в общий массив

Рис. 1. Колебательная зависимость коэффициента уширения у линии водяного пара $[404] \leftarrow [505]$ в случае ее уширения воздухом, азотом и кислородом. Для (001), (011) и (211) данные по уширению воздухом взяты из [7,2] и [9] соответственно, остальные данные — из [13]; при уширении линии азотом данные для (111) взяты из [21], данные для (221), (311), (203) — из [12], для (501) — из [22]; при уширении линии кислородом данные для (111) и (301) взяты из [24] и [6] соответственно.

данных увеличивает среднюю точность восстановления всех данных с помощью аналитической модели до $\chi_{av,cr}$. Точность восстановления коэффициента γ для одной линии с помощью аналитической модели $\gamma(sur)$ (1)–(4) контролировалась с помощью величины

$$\chi = 100\% |1.0 - \gamma (\text{cal}) / \gamma (\text{exp})|, \qquad (5)$$

а для совокупности линий (относящихся к одной полосе или одному диапазону частот) с помощью величины

$$\chi_{\rm av} = 100\% \sum_{i=1}^{N} |1 - \gamma_i({\rm cal})/\gamma_i({\rm exp})|/N.$$
 (6)

Так же, как и в [14,15], в настоящей работе было выбрано значение $\chi_{av,cr.} = 10\%$. (Это значение не относится к данным для линий из вращательной полосы и полосы ν_2 , которые обсуждаются ниже.) Такое значение $\chi_{av,cr.}$ связано со следующим обстоятельством. Во многих экспериментальных работах объявленная погрешность определения коэффициентов γ составляет несколько процентов. Однако прямое сравнение экспериментальных данных, приведенных в литературе для одних и

Примечание. $*N_{vib}$ — число колебательных полос из указанного диапазона, N — число экспериментальных данных, N_{opt} — число экспериментальных данных, включенных в окончательный анализ, из которых определялись параметры аналитической модели (1)–(4); χ_{av} — средняя точность восстановления экспериментальных данных (в %), формула (6), a — удалены из окончательной подгонки; $Max(J_i, K_{ai})$ — максимальные значения вращательных квантовых чисел J_i и K_{ai} у нижнего состояния, вовлеченного в переход.

11.6

(17, 10)

тех же линий, показывает, что данные могут отличаться на 10-15% [39] в случае уширения воздухом, азотом или кислородом (в случае самоуширения линий водяного пара различие может достигать 20%). Со временем экспериментальные данные для γ уточняются, и это уточнение может привести к отличию в данных более чем на 10% (можно сравнить данные по уширению кислородом из [20] и [24], микроволновые данные [31]).

7.2

(17,8)

Возможен вариант, при котором экспериментальные данные, полученные для одной и той же колебательной полосы, но для разных вращательных линий (они приведены в различных статьях), хорошо восстанавливаются моделью $\gamma(sur)$, но данные, объединенные в один массив, восстанавливается хуже. Это говорит о плохой совместимости этих данных.

И, наконец, в [15] N = 1386 экспериментальных данных по уширению линий 17 колебательных полос H_2O из диапазона 380-14000 сm⁻¹ воздухом восстанавлива-

ются с помощью модели $\gamma(sur)$ (1)-(4) с точностью $\chi_{av} = 9.3\%$. И только те данные из вышележащего диапазона 13600-26000 сm⁻¹ были включены в окончательный (оптимальный) набор данных, которые не увеличивали χ_{avcr} выше 10%.

7.1

(13,6)

7.6

(14,8)

В настоящей работе использовался тот же принцип отбора экспериментальных данных для получения параметров модели $\gamma(sur)$ (1)-(4).

Коэффициенты уширения $\gamma(\exp)$ для линий из вращательной полосы и полосы ν_2 восстанавливаются по аналитической модели хуже, чем для остальных полос, с $\chi_{av} \sim 19\%$ в случае уширения воздухом [14,15].

Это может быть связано с эффектом сужения линий с высокими значениями вращательных квантовых чисел, который не учитывается моделью $\gamma(sur)$ (1)–(4), или с несовместностью данных, полученных для этих полос. Поэтому для рассматриваемых полос учитывались все имеющиеся в литературе экспериментальные данные.

		-			_											
Спектральная		I	Зоздух		Азот			Кислород				Углекислый газ				
область, ст $^{-1}$	$N_{\rm vib}$	Ν	Источник	$\chi_{\rm av}$	$N_{\rm vib}$	Ν	Источник	χ _{av}	$N_{\rm vib}$	Ν	Источник	χ _{av}	$N_{\rm vib}$	Ν	Источник	χ _{av}
380-600	1	37	[4]	26.8	1	37	[4]	24.0	1	37	[4]	15.2				
600-2271	1	122	[1]	17.8	2	420	[1]	15.8								
1316-1327					1	3	$[16]^{a}$	42.0	1	3	[16]	7.6				
1212-2137									1	378	[23]	8.5	1	257	[25]	6.7
1387-1943													1	105	[26]	6.6
1630-2235	1	265	[3]	11.5												
3055-3459	1	4	[2]	5.7	1	9	$[17]^{a}$	24.2	1	9	$[17]^{a}$	20.1				
3178-4106													3	108	[26]	7.6
3450-4000	1	83	[7]	5.8									3	31	[27]	10.8
4524-5964	3	260	[2]	9.0												
6530-7718	4	291	[2]	6.1												
5300-6700	7	211	[14]	9.6												
7182-7186					1	4	[18]	4.9	1	4	[18]	12.3	2	11	[28]	7.5
7110-7190					2	8	[19]	4.1					2	8	[29]	11.3
7520-8586	11	319	[15]	7.3												
8650-9020	4	123	[20,21]	5.8	4	128	[20,24]	5.0							-	
10100-10800													3	168	[30]	6.6
12014-12150	1	14	[9]	9.2												
13600-13950	4	113	[6]	5.1	3	77	[6]	4.6	3	116	[6]	4.9				
13517-19847	15	216	[12]	5.3												
1950-2000					3	88	[22]	6.3								
13000-26000	60	3868	[13]	5.7												
Всего	109	5803			18	769			12	675			15	688		
Nont		4110				757				658				688		

Таблица 1. Экспериментальные данные по коэффициентам уширения линий молекулы H₂O воздухом, азотом, кислородом и

 $\chi_{\rm av},\,\%$

 $Max(J_i, K_{ai})$

углекислым газом, используемые в настоящей работе*

Рис. 2. Отношение *R* экспериментальных коэффициентов уширения для 9 линий молекулы H₂O, полученных в [17] и [1,23] для полос v_1 и v_2 соответственно в случае уширения линий кислородом и азотом. Линии пронумерованы согласно табл. 2 из [17].

Результаты анализа экспериментальных данных

Уширение воздухом. Основные результаты получены в [14,15] и приведены в колонках 2-5 табл. 1 для полноты. Параметры модели приведены во второй колонке табл. 2. Согласно табл. 1, были проанализированы значения $\gamma(\exp)$ для 109 колебательных полос, 1693 данных признано ошибочными. Все они относятся к диапазону $13000-26000 \text{ сm}^{-1}$. Средняя точность восстановления данных $\chi_{av} = 7.2\%$. Хуже всего восстанавливаются данные из вращательной полосы и полосы v₂. Для вращательной полосы использованы данные из [1,4], и, как отмечено в [14], эти данные плохо совместны. Для полосы v2, возможно, имеет место эффект сужения линий для высоких вращательных квантовых чисел (J > 12). Наилучшая точность с $\chi_{av} = 5.1\%$ достигается для линий четырех колебательных полос из диапазона $13600-13950 \text{ сm}^{-1}$, исследованных в [6].

Уширение азотом. Данные по уширению азотом принадлежат 18 колебательным полосам из диапазона $380-13950 \text{ cm}^{-1}$. Основное отличие от данных по уширению воздухом связано с плохо определяемой колебательной зависимостью коэффициентов γ . Это видно также из рис. 1. Параметры t в формуле (4) из модели (1)–(4) являются статистически плохо определяемыми параметрами, поэтому на конечном этапе они были фиксированы нулем. Средняя точность восстанов-

ления данных $\chi_{av} = 11.6\%$. Как и в случае уширения воздухом, хуже всего восстанавливаются данные из [1,4] для вращательной полосы, для других полос точность восстановления значительно лучше.

Уширение кислородом. Наиболее полно экспериментально исследованы три спектральных диапазона, в которые попадают полосы v_2 [23] (диапазон 1212–2137 сm⁻¹), $v_1 + v_2 + v_3$, $2v_1 + v_2$ [20,24] (диапазон 8650–9020 сm⁻¹) и $2v_1 + 2v_2$, $2v_1 + 2v_2 + v_3$, $3v_1 + v_1$ [6] (диапазон 13600–13950 сm⁻¹). В отличие от уширения воздухом и азотом наблюдается значительное увеличение коэффициентов уширения при переходе от второго диапазона к третьему, что показано на рис. 1 для перехода [404] \leftarrow [505] (для полос $v_1 + v_2 + v_3$ и $3v_1 + v_1$) и на рис. 3 для перехода [423] \leftarrow [312] (для полос v_2 , $2v_1 + v_2$ и $2v_1 + 2v_2$).

Такое изменение коэффициентов γ приводит к большому значению параметра t_{21} из 4-й колонки табл. 2 (приближенно в 4 раза большему, чем для случая уширения воздухом).

Анализ коэффициентов отношения $\gamma(v_1v_2v_3)/\gamma(v'_1v'_2v'_3)$ для переходов с одинаковым набором вращательных квантовых чисел, но для разных колебательных полос показывает, что усредненное по 21 переходу отношение $\langle \gamma(221)/\gamma(111) \rangle = 1.13$, усредненное по 8 переходам $\langle \gamma(202) / \gamma(010) \rangle = 1.24$, и усредненное по 8 переходам $\langle \gamma(210)/\gamma(010) \rangle = 1.0.$ Из этого можно сделать вывод, что экспериментальные ланные ИЗ второго диапазона [24] являются заниженными по отношению к экспериментальным данным из первого и третьего диапазонов, изученных

Рис. 3. Колебательная зависимость коэффициента уширения γ линии водяного пара [423] — [312] в случае уширения линии кислородом. Для (010), (210) и (202) данные взяты их [23,24] и [6] соответственно.

Параметр	Βοзπγχ	Азот	Кислорол	У глекислый газ
Параметр	Воздух	11501	кислород	
<i>x</i> ₁₀	0.0	0.0	0.0	$0.4200(1200) \cdot 10^{-1}$
x ₂₀	$0.4892(25) \cdot 10^{-1}$	$0.5436(64) \cdot 10^{-1}$	$0.2814(28) \cdot 10^{-1}$	$0.7805(125) \cdot 10^{-1}$
<i>x</i> ₂₁	$0.2972(367) \cdot 10^{-1}$	$0.6522(545)\cdot 10^{-1}$	$0.5573(370) \cdot 10^{-1}$	$0.6505(599)\cdot 10^{-1}$
<i>x</i> ₂₂	$-0.9190(464) \cdot 10^{-1}$	-0.1211(90)	-0.1175(62)	-0.2129(66)
<i>x</i> ₂₃	$-0.5114(404) \cdot 10^{-2}$	$-0.1232(269) \cdot 10^{-2}$	$-0.1721(227) \cdot 10^{-2}$	0.0
<i>x</i> ₂₄	$0.3692(361) \cdot 10^{-2}$	0.0	0.0	0.0
X 25	0.0	0.0	0.0	0.0
<i>x</i> ₂₆	$0.1349(75)\cdot 10^{-2}$	$0.2332(352) \cdot 10^{-2}$	$0.1615(176) \cdot 10^{-2}$	$0.7480(810) \cdot 10^{-2}$
<i>x</i> ₃₀	0.2387 (36)	0.2098(60)	0.2674(34)	0. 6238 (15)
<i>x</i> ₃₁	$-0.1697(225) \cdot 10^{-2}$	0.0	0.0	$-0.1738(133) \cdot 10^{-1}$
t_{11}	$0.2560(115) \cdot 10^{-1}$	0.0	0.1006(47)	$0.5545(650) \cdot 10^{-1}$
t_{12}	0.0	0.0	0.0	0.0
t ₁₃	$0.2002(169) \cdot 10^{-1}$	0.0	0.0	$0.6734(1376) \cdot 10^{-1}$
t_{21}	$-0.2767(340) \cdot 10^{-1}$	0.0	0.0	0.0
t_{22}	$0.1638(392) \cdot 10^{-1}$	0.0	0.0	0.0
t_{23}	$-0.4953(506) \cdot 10^{-1}$	0.0	0.0	0.0
n_2	0.702(21)			0.922(53)
n_3	0.257(58)			
χ _{av} , %	7.2 $(N = 4110)$	11.6 $(N = 757)$	7.6 $(N = 658)$	7.1 $(N = 688)$
$0 < \chi \leq 10$	N = 3207 (78.0%)	N = 488 (64.5%)	$N = 490 \ (74.5\%)$	N = 512 (74.4%)
$10 < \chi \leq 20$	N = 693 (16.9%)	$N = 148 \ (19.6\%)$	N = 125 (19.0%)	N = 153 (22.2.%)
$20 < \chi \leq 50$	$N = 189 \; (4.6\%)$	$N = 101 \ (13.3\%)$	$N = 43 \ (6.5\%)$	N = 23 (3.4%)
$\chi > 50$	N = 21 (0.5%)	N = 20 (2.6%)	$N = 0 \ (0.0\%)$	N = 0 (0.0%)

Таблица 2. Параметры аналитической модели $\gamma(sur)$, найденные из подгонки выражений (1)–(4) к измеренным (T = 296 К) коэффициентам уширения линий водяного пара в случае уширения воздухом, азотом, кислородом и углекислым газом (для данных и спектральных диапазонов из табл. 1), температурные показатели и статистика расчетов^{*}

Примечание. * Параметры x_{10} , x_{20} и x_{26} определены в ст⁻¹/аtт, другие параметры безразмерны; величины $x_4 = 0$ в формуле (1). Выражения $0 < \chi \le 10$ (из первого столбца), N = 3207 (78.0%) (из второго столбца) означают, что для N = 3207 линий (что составляет 78.0% от всех N = 4110 линий) величина χ меняется от 0.0 до 10%.

в [23] и [6] соответственно. Колебательная зависимость коэффициентов уширения γ не является линейной функцией от колебательных квантовых чисел, что ясно видно из рис. 3.

Средняя точность восстановления экспериментальных данных составляет 7.6%. Для данных из [17] $\chi_{av} = 20.1\%$, эти данные несовместны с остальными экспериментальными данными и не учитывались на конечном этапе определения параметров модели $\gamma(sur)$.

Уширение углекислым газом. Экспериментальные данные по уширению линий H_2O получены для диапазона 1280–10800 сm⁻¹ и относятся к 15 колебательным полосам.

Наиболее полно исследована полоса v_2 в [25,26]. Сравнение 98 экспериментальных коэффициентов уширения для одних и тех же переходов из этой полосы показывает, что отношение $R = \gamma [26]/\gamma [25]$ меняется от 0.91 до 1.15, усредненное по всем 98 переходам $R_{\rm av} = 0.98$. Параметры модели (1)–(4) приведены в последнем столбце табл. 2. Средняя точность восстановления экспериментальных данных $\chi_{\rm av} = 7.1\%$. Основное отличие в полученных параметрах от параметров, приведенных в колонках 2–4, связано с тем, что параметр $x_{10} \neq 0$. Параметр $x_{10} = 0$. Параметр $x_{10} = 0$. Оновное отличие стальных данных данных зачений и полученных параметрах от параметров, приведенных в колонках 2–4, связано с тем, что параметр $x_{10} \neq 0$.

вращательных квантовых чисел) поведение вычисленных коэффициентов уширения. Для больших $J \to \infty$ вычисленные $\gamma \to 0$ в случае уширения линий воздухом, азотом или кислородом, и $\gamma \to \approx 0.04 \,\mathrm{cm^{-1}/atm}$ в случае уширения линий углекислым газом.

Температурная зависимость $\gamma(sur)$

Для определения температурной зависимости $\gamma(sur)$ использовались литературные (экспериментальные и вычисленные) данные о температурном показателе n из уравнения

$$\gamma(T) = \gamma(T_0) \left(\frac{T_0}{T}\right)^n,\tag{7}$$

в котором $T_0 = 296$ К.

Для случая уширения воздухом показатели n брались из [3,6], для случая уширения углекислым газом показатели — из [19,27], для случая уширения азотом и кислородом данных по n мало, и температурная зависимость $\gamma(sur)$ не определялась.

С показателями *n* по формуле (7) рассчитывались $\gamma(T)$ для T = 250, 350, 380 и 400 К. Далее к вычисленным $\gamma(T)$ подгонялась функция $\gamma(sur)$ (1)-(4),

содержащая в величинах x_1, x_2 и x_3 , взятых в виде

$$x_k(T) = x_k(T_0) \left(\frac{T_0}{T}\right)^{n_k},\tag{8}$$

варьируемые n_k (k = 1, 2, 3)), которые определялись подгонкой. Другие параметры $\gamma(sur)$ (1)-(4) фиксировались на значениях, приведенных в табл. 2. Найденные таким образом ненулевые n_k и приведены в табл. 2.

Совместный анализ коэффициентов уширения, вызванных давлением воздуха, азота и кислорода

В полуклассических методах расчета коэффициентов уширения γ используется межмолекулярный потенциал взаимодействия "H₂O-возмущающая молекула". В случае уширения линий H₂O двухатомными молекулами N₂ и O₂ потенциал определяется электростатическим и поляризационным взаимодействиями. В случае уширения воздухом коэффициент γ вычисляется по формуле

$$\gamma_{\rm air} = 0.79 \gamma_{\rm N2} + 0.21 \gamma_{\rm O2},\tag{9}$$

в которой γ_{N2} и γ_{O2} — коэффициенты уширения линий азотом и кислородом. В настоящей работе проверялось предположение, что уширение линий H₂O молекулами N₂ и O₂ (а следовательно, и воздухом) определяется одним доминирующим вкладом в потенциале взаимодействия, который для N₂ и O₂ отличается только величиной. Это предположение проверялось с помощью формул (1)-(4) для $\gamma(sur)$, которые использовались для совместного анализа всех данных по коэффициентам уширения линий H₂O давлением воздуха, азота и кислорода. Функция x_2 была выбрана в виде

$$\begin{aligned} x_2 &= (x_{20} + x_{26} | K_{ai} - K_{af} |) f_1(v) (1. + m(N_2) + m(O_2)) / \\ \cosh (x_{21} (J_i + J_f) + x_{22} (K_{ci} + K_{cf}) + x_{23} (K_{ci} + K_{cf})^2 \\ &+ x_{24} (J_i + J_f) (K_{ci} + K_{cf}) + x_{25} (J_i + J_f)^2), \end{aligned}$$
(10)

в котором параметры $m(N_2)$ и $m(O_2)$ являлись дополнительными варьируемыми параметрами и отличали в общем наборе данных данные для N_2 и O_2 . Все остальные параметры в (1), (3), (4) и (10) являются общими для рассматриваемых уширяющих газов.

В табл. З приведены параметры, найденные из одновременной подгонки выражений (1), (3), (4), (10) к N = 5525 коэффициентам уширения линий H₂O давлением воздуха (N = 4110), азота (N = 757) и кислорода (N = 658). Для величины χ_{av} (6), которая определяет качество восстановления всех экспериментальных данных, получено значение $\chi_{av} = 9.2\%$, для отдельных уширяющих газов получены значения $\chi_{av}(Air) = 7.7\%$, $\chi_{av}(N_2) = 11.8\%$ и $\chi_{av}(O_2) = 15.1\%$.

Сравнения $\chi_{av}(Air)$, $\chi_{av}(N_2)$ и $\chi_{av}(O_2)$, полученных в совместном анализе экспериментальных данных, с

Таблица 3. Параметры аналитической модели $\gamma(sur)$, найденные из подгонки выражений (1), (3), (4), (10) к N = 5525измеренным (T = 296 K) коэффициентам уширения линий водяного пара в случае уширения воздухом (N = 4110), азотом (N = 757) и кислородом (N = 658) одновременно

x_{20}	$0.4736(23)\cdot 10^{-1}$	<i>t</i> ₁₁	$0.2634(109)\cdot 10^{-1}$
x_{21}	$0.6052(142) \cdot 10^{-1}$	<i>t</i> ₁₂	0.0
<i>x</i> ₂₂	$-0.1145(237) \cdot 10^{-1}$	<i>t</i> ₁₃	$0.2775(176) \cdot 10^{-1}$
<i>x</i> ₂₃	$-0.1301(80)\cdot 10^{-2}$	$m(N_2)$	$0.8935(448) \cdot 10^{-1}$
<i>x</i> ₂₄	0.0	$m(O_2)$	-0.4307(42)
x ₂₅	0.0	χav	9.2%
<i>x</i> ₂₆	$0.1678(82) \cdot 10^{-2}$	χ _{av} (Air)	7.7%
x 30	0.2030(15)	$\chi_{\rm av}({ m N}_2)$	11.8%
<i>x</i> ₃₁	0.0	χ_{av} (O ₂)	15.1%
		-	

Примечание. * Параметры x_{20} и x_{26} определены в ст⁻¹/аtm, другие параметры безразмерны; величины $x_4 = 0$ в формуле (1).

аналогичными значениями χ_{av} из табл. 2, полученными при отдельном анализе этих данных, показывает, что $\chi_{av}(Air)$ и $\chi_{av}(N_2)$ практически совпадают, а $\chi_{av}(O_2)$ из совместного анализа почти в два раза больше, чем в отдельном анализе. Это значит, что основные вклады в потенциалы взаимодействия " H_2O-N_2 " и H_2O-O_2 ", которые определяют уширение линий, разные.

Из значений параметров $m(N_2)$ и $m(O_2)$ можно определить, что $\gamma(N_2)/\gamma(Air) = 1.089 \pm 0.004$ и $\gamma(O_2)/\gamma(Air) = 0.569 \pm 0.004$. При этом первое отношение достаточно точное, данные по уширению воздухом и азотом можно анализировать совместно с использованием одной аналитической модели, точность при этом не теряется. Второе соотношение приближенное, данные по уширению кислородом можно анализировать совместно с данными по уширению воздухом и азотом, но точность восстановления этих данных будет хуже, чем при отдельном анализе.

Экстраполяция на низколежащий диапазон

Параметры модели $\gamma(sur)$ из табл. 3, 4, полученные для диапазона 380-26000 ст⁻¹, были протестированы в расчетах значений коэффициентов уширения линий из диапазона ниже 10000 GHz (0.7-30.3 ст⁻¹). В табл. 4 представлено сравнение экспериментальных и вычисленных по модели $\gamma(sur)$ значений коэффициентов γ для нескольких переходов с известными экспериментальными значениями у. В случае уширения линий воздухом или азотом для рассмотренных переходов $\chi < 10\%$, в случае уширения линий кислородом и углекислым газом $\chi < 22\%$ и $\chi < 4\%$ соответственно. Результат можно считать вполне удовлетворительным, учитывая, что данные не были включены в обратную задачу по определению параметров модели. Определение параметров модели $\gamma(sur)$, которые лучше восстанавливают экспериментальные данные из диапазона ниже 10000 GHz,

ν,	$J_f K_{af} K_{cf} - J_i K_{ai} K_{ci}$	Воздух			N ₂			O ₂			CO ₂		
GHz		$\gamma(\exp)$	$\gamma(cal)$	χ,%	$\gamma(\exp)$	$\gamma(cal)$	χ,%	$\gamma(\exp)$	γ (cal)	χ,%	$\gamma(\exp)$	$\gamma(cal)$	χ,%
22	616-523		3.45; 3.30		4.10 ^c	4.01; 3.60	2.2; 7.3	2.52 ^c	1.97; 1.88	21.8; 25		4.69	
183	313-220	$3.97 - 4.6^{b}$	3.70; 3.68	6.8; 7.3	4.230^{b}	4.23; 4.00	0; 5.4	2.580^{b}	2.15; 2.09	16/7; 19.0	6.180^{b}	6.42	3.9
325	515-422	3.633 ^{<i>a</i>}	3.46; 3.50	4.7; 3.7	4.011 ^{<i>a</i>}	4.03; 3.81	0.5; 5.0	2.212 ^{<i>a</i>}	2.00; 2.00	10.0		5.40	

Таблица 4. Сравнение экспериментальных и вычисленных с параметрами из табл. 2, 3 значений коэффициентов уширения (в MHz/Torr) для нескольких линий H₂O из диапазона ниже 10000 GHz*

Примечание. * a, b, c — данные из [32,33,40]; в колонках для γ (cal) и χ левое и правое значения соответствуют вычислениям с параметрами из табл. 3 и 4 соответственно.

не является целью настоящей работы. Расчет γ для этого диапазона проведен в [8].

Сравнение с полуклассическим методом расчета

В [26] представлены наиболее полные и качественные расчеты коэффициентов уширения у для более чем 11000 линий H₂O в случае уширения линий углекислым газом из диапазона 1300-5000 сm⁻¹. Использовался метод MCRB (modified complex Robert-Bonamy), в котором параметры из атом-атомного потенциала (он является частью общего потенциала взаимодействия в системе "H₂O-CO₂") подбирались из условия наилучшего совпадения вычислений с выбранными экспериментальными данными. На рис. 4 представлено сравнение экспериментальных [26] и вычисленных по модели $\gamma(sur)$ (с параметрами из табл. 2) и в полуклассическом методе [26] значений коэффициентов у для одной вращательной ветви из полосы v₂. Видно, что вычисления хорошо совпадают между собой, они хорошо совпадают и с экспериментом. Для известных N = 12 экспериментальных данных из рис. 4 $\chi_{av} = 3.5\%$ в случае вычислений по модели $\gamma(sur)$ и $\chi_{av} = 6.3\%$ с вычислениями из [26]. Качество расчетов по модели $\gamma(sur)$ и по полуклассическому методу сравнимо и в случае других рассматриваемых уширяющих газов. Расчеты по полуклассическому методу затруднены для диапазона приближенно выше $10\,000\,{\rm cm}^{-1}$, поскольку для молекулы H₂O для этого диапазона не работает схема разбиения колебательных состояний на изолированные группы, и нужно делать определенные приближения для вычисления вращательных частот переходов и волновых функций молекулы. Например, все расчеты проводят без учета колебательной зависимости у.

Сравнение с другими аналитическими моделями

В литературе предложено несколько аналитических моделей для аналитического представления коэффициентов уширения линий водяного пара [2,34,35,41]. В [41], так же как и в настоящей работе, предложена модель

Рис. 4. Экспериментальная [26] (темные символы) и вычисленная по модели $\gamma(sur)$ (символы \Box) и в полуклассическом методе [26] (символы \circ) зависимость коэффициента уширения γ для вращательной ветви $[J0J] \rightarrow [J+11J+1]$ колебательной полосы ν_2 в случае уширения линий углекислым газом.

для расчета коэффициентов γ в случае уширения линий водяного пара воздухом, азотом, кислородом и углекислым газом. Согласно [41], коэффициент уширения γ для перехода $[J\tau] \rightarrow [J'\tau']$ (τ — общее обозначение для вращательных квантовых чисел K_a , K_c может быть вычислен по формуле

$$\gamma_{oJ\tau-0J'\tau'} \approx \left\{ \left[\gamma_{0J\tau-0J\tau}^{(n-1)} + \gamma_{0J'\tau'-0J'\tau'}^{(n-1)} \right] / 2 \right\}^{1/(n-1)}, \quad (11)$$

в которой $\gamma_{0J\tau-0J\tau}$ — коэффициент уширения для фиктивного (такого перехода в реальном спектре нет) вращательного перехода $[J\tau] \rightarrow [J\tau]$, вычисленного в полуклассическом методе, n — параметр, разный для разных уширяющих газов. Вычисленные значения $\gamma_{0J\tau-0J\tau}$ $(J \leq 16, K_a \leq 10)$ и n приведены в соответствующих таблицах из [41].

$J_f K_{af} K_{cf}$	$J_i K_{ai} K_{ci}$		N_2		O ₂					
		Exp. [17]	$\gamma(sur)$	Cal. [41]	Exp. [17]	$\gamma(sur)$	Cal. [41]			
541	652	3.90	2.79	2.3	3.75	1.40	1.57			
533	642	2.99	3.33	3.1	1.72	1.78	1.93			
440	551	2.97	2.74	2.17	1.72	1.35	1.52			
441	550	2.68	2.74	2.17	1.53	1.35	1.53			
532	643	4.18	3.41	2.9	2.57	1.78	1.81			
11011	12112	1.0	1.2	0.73	0.45	0.49	0.43			
11111	12012	0.7	1.2	0.73	0.55	0.49	0.43			
827	918	2.1	2.7	1.56	1.10	1.32	0.75			
523	634	3.5	3.8	3.25	1.85	2.03	1.92			

Таблица 5. Экспериментальные [17] и вычисленные (в MHz/Torr) по различным моделям коэффициенты уширения ряда линий H₂O из полосы v_1 в случае их уширения азотом и кислородом, T = 296 K

В табл. 5 представлено сравнение расчетов коэффициентов γ по модели $\gamma(sur)$ (1)–(4) и (11) для 9 линий из полосы v_1 . Экспериментальные данные [17] для этих линий были удалены из финальной подгонки по модели $\gamma(sur)$, так как они дают большое отклонение вычисляемых коэффициентов от экспериментальных.

Для линии [5 4 1] \leftarrow [6 5 2] в случае уширения азотом отклонения вычисленных с $\gamma(sur)$ и с моделью (11) значений γ от экспериментального значения составляет 28.5 и 40.0% соответственно, в случае уширения линий кислородом эти отклонения достигают 62.7 и 58.1%. В данном примере расчеты с $\gamma(sur)$ коррелируют с расчетами по модели (11). Между тем отклонения вычисляемых с $\gamma(sur)$ и с моделью (11) значений γ могут быть большими для переходов с большим $\Delta \tau = |\tau - \tau'| \ge 3$. Например, для переходов с $\Delta \tau = 5$ значения γ могут отличаться в несколько раз.

Сравнение с базой данных HITRAN

Экспериментальных данных базе в ланных HITRAN [42] намного больше тех, что использованы в настоящей работе для определения параметров модели $\gamma(sur)$. Сравнение расчетов по модели $\gamma(sur)$ (1)-(4) с данными из базы [42] было проведено для узкого спектрального диапазона 13521.0-13575.0 сm⁻¹, и рассмотрено уширение линий воздухом. Спектральные диапазоны ниже 12000 ст⁻¹ исследованы в литературе более детально, чем диапазоны, лежащие выше $13000.0 \,\mathrm{cm}^{-1}$. Экспериментальные данные в [42] для этого диапазона взяты из [13]. Помимо этого в [42] почти для каждой линии приведены значения у, полученные либо в результате полиномиальной аппроксимации данных из [43], либо в результате колебательной аппроксимации данных из низколежащих [44]. коэффициентов диапазонов Сравнение ν. рассчитанных по модели $\gamma(sur)$ (1)-(4) с данными из [42] для 10 линий представлено в табл. 6.

Видно, что есть большие расхождения (более 100%) между $\gamma(sur)$ — расчетами и данными их [42]. Большие

Таблица 6. Коэффициенты уширения γ (в сm⁻¹/atm) для 10 линий водяного пара, представленные в базе данных HITRAN [42] и вычисленные по модели $\gamma(sur)$ (1)–(4) в случае уширения линий воздухом, T = 296 К

ν , cm ⁻¹	γ, HITRAN	$v_1 v_2 v_3$	$J_f K_{af} K_{cf}$	$J_i K_{ai} K_{ci}$	$\gamma(sur)$	χ, %
13521.1060	0.0237 ^a	400	937	1028	0.061	157.5
13521.1371	0.0408 ^c					49.6
13528.5966	0.0454 ^a	240	431	322	0.078	72.0
13528.5544	0.0242^{c}					222.8
13528.5970	0.0813 ^c					3.9
13528.7151	0.0345 ^a	400	515	624	0.082	138.1
13528.6619	0.077 ^b					6.7
13529.4432	0.0464 ^a	301	845	946	0.065	40.1
13529.4169	0.0398^{b}					63.3
13529.4164	0.0624^{b}					4.1
13535.4162	0.0326 ^a	301	414	533	0.085	162.2
13535.4117	0.054 ^b					58.3
13549.3313	0.1135 ^{<i>a</i>}	320	423	514	0.087	22.6
13549.3230	0.0889 ^c					1.2
13560.9112	0.1007^{a}	320	432	441	0.075	24.8
13560.9230	0.0775 ^c					2.3
13569.2356	0.0464 ^a	400	909	10110	0.035	23.8
13569.2519	0.0368^{b}					3.9
13571.0559	0.0474^{a}	170	909	10110	0.035	25.4
13571.0371	0.0644 ^c					45.1
13574.3815	0.0237^{a}	221	937	936	0.0664	180.3
13574.3408	0.0693 ^c					4.1
13574.3684	0.0499 ^c					33.1

Примечание. а — экспериментальные данные из [13], b — полиномиальная аппроксимация данных из [43], c — колебательная аппроксимация данных из низколежащего диапазона [44]: величина χ определяет отклонение $\gamma(sur)$ вычислений от данных, представленных в базе данных HITRAN.

отклонения с экспериментальными данными из [13], приведенными в [42] для многих линий, объясняются, согласно [14,15], ошибочными значениями этих данных. В общем случае существует неопределенность в значениях коэффициентов у для многих линий из диапазона выше 13000.0 cm⁻¹, и эти линии требуют дополнительного экспериментального изучения.

Обсуждение

Предложенную аналитическую модель $\gamma(sur)(1)-(4)$ с параметрами из табл. 2, 3 очень удобно использовать для расчетов коэффициентов уширения γ линий поглощения H₂O из диапазона 380–26000 сm⁻¹ в случае их уширения воздухом, азотом и кислородом и из диапазона 1212–10800 сm⁻¹ в случае их уширения давлением углекислого газа.

Расчеты не требуют сведений о межмолекулярных потенциалах взаимодействия, волновых функций и частотах переходов в H₂O. Средняя точность восстановления экспериментальных данных, определяемая величиной χ_{av} (6), составляет 7.2, 11.6, 7.6 и 7.1% в случае уширения линий воздухом, азотом, кислородом и углекислым газом соответственно. Такая точность сопоставима с точностью расчетов по полуклассическим методам. Наибольшие значения χ_{av} получены для вращательных полос и полосы v2. Для этих полос экспериментальные данные из [4] и [1] плохо совместны, а также в этих полосах возможен эффект сужения линий (для J > 12). Для других полос погрешность восстановления экспериментальных данных сравнима с экспериментальной точностью (с учетом того, что экспериментальные данные согласуются друг с другом на уровне 10-15%).

Примеры расчета коэффициентов у для одной вращательной ветви из полосы v2 показаны на рис. 4 и 5. В случае уширения кислородом в литературе нет соответствующих экспериментальных данных. Рисунок 6 дает пример расчета коэффициентов у для одного вращательного перехода, но в разных колебательных полосах. Для случая уширения азотом и кислородом использовались параметры из табл. 2 (линия а) и табл. 3 (линия b). Параметры t из этих таблиц по-разному определяют колебательную зависимость коэффициентов. Если в табл. З эти параметры хорошо определены для случая уширения воздухом и кислородом, то в табл. 4 колебательная зависимость является средней для всех уширяющих газов. Значение коэффициента уширения у для этой линии в случае уширения углекислым газом в полосе $6v_1 + v_3$ на 20% больше, чем в полосе v_3 . В литературе в расчетах колебательная зависимость у в случае уширения углекислым газом не учитывается, хотя она явно проявляется в экспериментальных данных.

Заключение

Основной результат работы содержится в табл. 2, 3, в которых приведены параметры модели $\gamma(sur)$ (1)-(4), (10). Они содержат информацию о 4110, 757, 658 и 688 коэффициентах уширения γ линий водяного пара из диапазона 380-26000 сm⁻¹ давлением воздуха,

Рис. 5. Экспериментальная [1] и вычисленная по модели $\gamma(sur)$ зависимость коэффициента уширения γ для вращательной ветви $[J 0 J] \rightarrow [J + 1 1 J + 1]$ колебательной полосы ν_2 в случае уширения линий воздухом, азотом и кислородом. Использовались параметры из табл. 2.

азота, кислорода и из диапазона 1212–10800 сm⁻¹ давлением углекислого газа. В экспериментальных данных из табл. 1 максимальные значения вращательных квантовых чисел J_i , $K_{\alpha i}$ у нижнего КВ состояния, вовлеченного в переход, равны 17 и 10 соответственно. Параметры и модель $\gamma(sur)$ (1)–(4), (10) могут быть рекомендованы для расчета γ линий с $J_i \leq 20$, $K_{\alpha i} \leq 15$ любой колебательной полосы из указанных диапазонов в случая ее уширения рассматриваемыми газами. Экстраполяционные свойства модели, исследованные в [14] для случая уширения воздухом, показывают, что модель $\gamma(sur)$ и ее параметры могут быть успешно использованы для расчетов γ из вышележащих диапазонов

В случае уширения кислородом предпочтительнее использовать параметры из табл. 2, чем из табл. 3, поскольку они более точно восстанавливают экспериментальные данные. Кроме этого, следует отметить, что в случае уширения кислородом определенная сильная колебательная зависимость плохо подтверждена экспериментальными данными. В случае уширения азотом колебательная зависимость γ статистически не определена, в случае уширения воздухом колебательная зависимость γ четко выражена и намного слабее, чем в случае уширения кислородом. Асимптотическое поведение

Рис. 6. Экспериментальная [6,22] (темные символы) и вычисленная по модели $\gamma(sur)$ (светлые символы) зависимость коэффициента уширения γ для линии [404] \rightarrow [505] от колебательных квантовых чисел; в расчетах *a* и *b* использовались параметры из табл. 2 и 3 соответственно.

коэффициентов γ в случае уширения линий углекислым газом отличается от аналогичного поведения γ в случае уширения линий воздухом, азотом или кислородом. Сравнение расчетов по модели $\gamma(sur)$ (1)–(4) со значениями γ , приведенными в базе данных HITRAN [42] в случае уширения линий воздухом, показывает, что многие линии, лежащие в диапазоне выше 13000.0 cm⁻¹, требуют дополнительного экспериментального анализа.

Благодарности

Автор благодарит Р. Любезных за помощь в работе.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] R.A. Toth. J. Mol. Spectrosc., **201**, 218 (2000). DOI: 10.1006/jmsp.2008.8089
- [2] R.A. Toth. J. Quant, Spectrosc. Radiat. Transf., 94, 51 (2005).
 DOI: 10.1016/j.jqsrt.2004.08.041
- [3] R.A. Toth, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benne,
 M. Dulick. J. Quant. Spectrosc. Radiat. Transf., 101, 339 (2006). DOI: 10.1016/j.jqsrt.2005.11.022

- [4] D.W. Steyert, W.F. Wang, J.M. Sirota, N.M. Donahue, D.C. Reuter. J. Quant. Spectrosc. Radiat. Transf., 72, 775 (2002). DOI: 10.1016/S0022-4073(01)00156-X
- [5] A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, S. Fally. J. Quant. Spectrosc. Radiat. Transf., 105, 326 (2007). DOI: 10.1016/j.jqsrt.2006.11.007
- [6] B.E. Grossmann, E.V. Browell, J. Mol. Spectrosc., 138, 562 (1989). DOI: 10.1016/0022-2852(89)90019-2
- [7] V.M. Devi, R.R. Gamache, B. Vispoel, C.L. Renaud, D.C. Benner, M.A.H. Smith, T.A. Blake, R.L. Sams. J. Mol. Spectrosc., 348, 13 (2018). DOI: 10.1016/j.jms.2017.11.011
- [8] A. Bauer, M. Godon, M. Kheddar, J.-M. Hartmann. J. Quant. Spectrosc. Radiat. Transf., 41, 49 (1989). DOI: 10.1016/0022-4073(89)90020-4
- [9] A. Lucchesini, S. Gozzini, C. Gabbanini. Eur. Phys. J. D., 8, 223 (2000). DOI: 10.1007/s10053-000-8807-z
- [10] P. Poddar, S. Mitra, M.M. Hossain, D. Biswas, P.N. Ghosh, B. Ray. Mol. Phys., **108**, 1957 (2010). DOI: 10.1080/00268976.2010.499376
- [11] L.R. Brown, D.C. Benner, V.M. Devi, M.A.H. Smith, R.A. Toth. J. Mol. Struct., 742, 111 (2005).
- [12] J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, C. Camy-Peyret. J. Mol. Spectrosc., 138, 430 (1989). DOI: 10.1016/0022-2852(89)90010-6
- S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Meerienne, C. Hermans, A.C. Vandaele. J. Quant. Spectrosc. Radiat. Transf., 82, 119 (2003). DOI: 10.1016/S0022-4073(03)00149-3
- T.M. Petrova, A.M. Solodov, A.A. Solodov, V.M. Deichuli,
 V.I. Starikov. Mol. Phys., e1906967 (2021).
 DOI: 10.1080/00268976.2021.1906967
- T.M. Petrova, A.M. Solodov, A.A. Solodov, V.M. Deichuli,
 V.I. Starikov. Mol. Phys., e1988169 (2021).
 DOI: 10.1080/00268976,2021.1988169
- [16] N. Schmucker, Ch. Trojan, T. Giesen, R. Schieder, K.M.T. Yamada, G. Winnewiser. J. Mol. Spectrosc., 184, 250 (1997).
- [17] A. Bruno, G. Pesce, G. Rusciano, A. Sasso. J. Mol. Spectrosc., 215, 244 (2002).
- [18] V. Zeninari, B. Parvitte, D. Courtois, N.N. Lavrentieva, Y.N. Ponomarev, G. Durry. Mol. Phys., **102**, 1697 (2004).
- [19] V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson. J. Quant. Spectrosc. Radiat. Transf., 57, 795 (1997).
- [20] Т.М. Петрова, А.М. Солодов, А.А. Солодов. Оптика атомосф. и океана, 23 (7), 43 (2010).
- [21] N.N. Lavrentieva, T.M. Petrova, A.M. Solodov, A.A. Solodova. J. Quant. Spectrosc. Radiat. Transf., 111, 2291 (2010).
- [22] V.I. Serdyukov, L.N. Sinitsa, N.N. Lavrentieva, A.S. Dudaryonok. J. Quant. Spectrosc. Radiat. Transf., 234, 47 (2019).
- [23] R.A. Toth, L.R. Brown. J. Mol. Spectrosc., 218, 135 (2003).
- [24] T.M. Petrova, A.M. Solodov, A.A. Solodov, A.S. Dudaryonok, N.N. Lavrentieva. J. Quant. Spectrosc. Radiat. Transf., 112, 2741 (2011).
- [25] L.R. Brown, C.M. Humphrey, R.R. Gamache. J. Mol. Spectr., 246, 1 (2007).
- [26] L. Regalia, E. Cousin, R.R. Gamache, B. Vispoel, S. Robert, X. Thomas. J. Quant. Spectrosc. Radiat. Transf., 231, 126 (2019).
- [27] R.R. Gamache, S.P. Neshyba, J.J. Plateaux, A. Barb, L. Regalia, J.B. Pollack. J. Mol. Spectrosc., **170**, 131 (1995).

- [28] S. Langlois, T.P. Birbeck, R.K. Hanson. J. Mol. Spectrosc., 167, 272 (1994).
- [29] C. Claveau, A. Henry, D. Hurtmans, A. Valentin. J. Quant. Spectrosc. Radiat. Transf., 68, 273 (2001).
- [30] Yu. Borkov, T.M. Petrova, A.M. Solodov, A.A. Solodov. J. Mol. Spectrosc., 344, 39 (2018).
- [31] М.Ю. Третьяков, Г.Ю. Голубятников, В.В. Паршин, М.А. Кошелев, А.Ф. Крупнов. Изв. вузов. Радиофиз., 51, 789 (2008).
- [32] G.M. Colmont, D. Priem, G. Wlodarczak, R.R. Gamache. J. Mol. Specrosc., 193, 233 (1999).
- [33] G.Yu. Golubiatnikov. J. Mol. Spectrosc., 230, 196 (2005).
- [34] В.И. Стариков, Н.Н. Лаврентьева. Столкновительное уширение спектральных линий поглощения молекул атмосферных газов (Изд. ИОА СО РАН, Томск, 2006).
- [35] J. Buldyreva, N.N. Lavrent'eva, V.I. Starikov. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches (Imperial College Press, London, 2010).
- [36] А.Д. Быков, Л.Н. Синица, В.И. Стариков. Экспериментальные и теоретические методы в спектроскопии молекул водяного пара (Изд-во СО РАН, Новосибирск, 1999).
- [37] В.И. Стариков. Опт. и спектр., **129** (3), 258 (2021). DOI: 10.21883/OS.2021.03.50651.267-20
- [38] T.M. Petrova, A.M. Solodov, A.A. Solodov, V.M. Deichuli,
 V.I. Starikov. J. Mol. Spectr., 382, 111546 (2021).
 DOI: 10.1016/j.jms.2021.111546
- [39] R.R. Gamache, J.M. Hartmann, L. Rosenmann. J. Quant. Spectrosc. Radiat. Transf., 52, 481 (1994).
- [40] H.J. Liebe, T.A. Dillon. J. Chem. Phys., 50, 727 (1969).
- [41] C. Delaye, J.-M. Hartmann, J. Taine. Appl. Opt., 28, 5080 (1989).
- [42] *The HITRAN2020 Molecular Spectroscopic Database* [Электронный ресурс] https://hitran.org
- [43] R.R. Gamache, A.L. Laraia. J. Mol. Spectr., 257, 116 (2009).
- [44] D. Jacquemart, R.R. Gamache, L.S. Rothman. J. Quant. Spectrosc. Radiat. Transf., 96, 205 (2005).