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We researched the influence of damage accumulation on the Poisson’s ratio measured by echo-pulse acoustic

method during plastic deformation of 12Kh18N10T steel. On the basis of the obtained experimental data we

calculated the partial contributions to the change in the Poisson’s ratio of damage accumulation and formation of

the strain induced martensite phase. The characteristics of stable cracks forming near strain-induced martensite

particles at small degrees of plastic strain have been analyzed by computer simulation. The theoretical dependence

of the change in the Poisson’s ratio due to crack formation during plastic deformation has been constructed. A

good agreement between the experimental data and theoretical calculations has been obtained.
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Introduction

It is known, that plastic deformation of chromium-nickel

steels with low stacking fault energy is accompanied with

formation of a strain-induced martensite phase from initial

austenite phase. Formation of the martensite phase with

higher strength properties, compared to austenite phase,

results in change of electromagnetic, elastic and acoustic

properties of the whole material, and also influences the

process of damage accumulation in softer austenite [1–
5]. In [6] it is showed, that micro-cracks density has

high correlation with volume fraction of the strain-induced

martensite.

In the work [1] it is observed, that Poisson’s ratio, defined
using acoustic measurements, can be used as a diagnostic

structural-sensitive parameter of austenite steel state at

fatigue fracture. Poisson’s ratio ν is expressed through the

time or velocity of elastic waves the following way:

ν =
τ 2
τ − 2τ 2

l

2(τ 2
τ − τ 2

l )
=

V 2
l − 2V 2

τ

2(V 2
l −V 2

τ )
, (1)

where Vτ ,Vl, tτ , tl are velocity and time of shear and

longitudinal elastic waves respectively.

During deformation the Poisson’s ratio ν is mainly

influenced by two factors — accumulation of damage and

formation of the strain-induced martensite phase:

1ν = 1νψ + 1ν8, (2)

where 1νψ, 1ν8 are changes of the Poisson’s ratio due to

damage accumulation and formation of the strain-induced

martensite phase respectively.

According to theoretical models, presented in the

works [7–10], the formation and development of cracks

result in reduction of elasticity modules and value of ν ,

while the formation of martensite — to increase of ν .

Change of Poisson’s ratio 1νψ due to accumulation of

damage ψ in the work [10] is defined the following way:

1νψ = −
3(1− ν20 )(5ν0 − 1)

2(7− 5ν0)
ψ, (3)

where ν0 is Poisson’s ratio of undamaged material,

ψ = ncr l̄ 3, ncr is cracks concentration, l is average cracks

length.

Based on present electron microscopic studies [11], it

is reasonable to assume that there are three characteristic

stages of damage accumulation, related to formation of the

strain-induced martensite phase in austenite steels at active

plastic deformation:

• — at the first stage the volume fraction of martensite

particles increases and micro-cracks density is accumulated

near these particles;

• — the second stage is characterized with significant

increase of density and length of micro-cracks, formed on

particles of the strain-induced martensite;

• — at the third stage the loss of micro-crack stability

happens and it transforms into the main crack.

At the first and seconds stages the density of stable cracks

in internal stress fields increases due to mesodefects [12–
14], forming on particles of the strain-induced martensite

during plastic deformation. As of now, the issue of

model presentation for micro-damage (cracks) accumulation

process, related to martensite particles formation, remains
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open. Such model building and comparison of the results of

theoretical calculations and results of experimental studies

will give a fuller picture of fracture of metastable austenite

steel under plastic deformation.

In this work the numerical modeling of characteris-

tics of stable micro-cracks, forming on particles of the

strain-induced martensite during plastic deformation, was

performed based on experimental data and their influ-

ence on Poisson’s ratio of austenite chromium-nickel steel

12Kh18N10T was studied.

1. Experimental technique

Studies of process of plastic deformation of steel

12Kh18N10T were performed using methods of ultrasound

and eddy-current control. Chemical composition of the

investigated steel (mass. %): C 0.02, Si 0.43, Mn 0.74,

Cr 17.76, Ni 9.16, Ti 0.32, S 0.002, P 0.033, Cu 0.23,

Fe basis.

Uniaxial elongation was performed with strain rate of

10−4 s−1 at room temperature. Length of a plane sample

working part was 100mm, width — 20mm, thickness —
6mm. Tests were performed at electromechanical multi-

purpose pull test machine Tinius Olsen H100KU. Deforma-

tion was performed in stages, ultrasound and eddy-current

studies were performed before the first stage (in initial state)
and after each stage of loading until necking.

Elastic waves propagation time was measured using ultra-

sound echo-method. For excitation of shear and longitudinal

waves the direct piezoelectric transducers V156 and V110

respectively, made by Olympus, with diameter of working

plate of 6mm and central frequency of 5MHz were used.

Longitudinal and shear waves propagated perpendicular to

load axis. Polarization of shear waves were directed both

along and across the load axis.

Ultrasonic flaw detector A1212 MASTER was used as

electric pulses generator. Digital oscilloscope ADCLab was

used for recording of the amplitude-time diagrams of echo-

pulses, coming from piezoelectric transducers to a personal

computer. Sampling frequency — 1GHz, time resolution —
1 ns. As a result of data processing the time of propagation

of elastic waves tτ and tl after each loading stage was

observed. During calculation of tτ the average value of

propagation time of shear waves, polarized along and across

the load axis, was used.

Propagation time measurement error was 2−3 ns, deter-

mination of Poisson’s ratio — 7 · 10−4 .

Measurement of volume fraction of the strain-induced

martensite phase 8 was performed using multi-purpose

eddy-current device
”
MVP-2M“ after each loading stage.

The device was pre-calibrated using samples with known

martensite phase content. The relative measurement error

did not exceed 5%.

2. Results of experimental studies

Eddy-current studies have showed the change of electro-

magnetic characteristics of 12Kh18N10T steel during plastic

deformation. Dependence of volume fraction of the strain-

induced martensite phase 8 on value of plastic strain εpl

has a sigmoid form (Fig. 1, a), mathematical description of

which was initially presented in the work [15].
As a result of acoustic studies the propagation time

of shear and longitudinal elastic waves was defined and

Poisson’s ratio was calculated as per formula (1) (Fig. 1, b).
It was observed, that at initial section of curve ν(εpl)
the rate of Poisson’s ratio change 1ν/1εpl is maximum.

Increase of Poisson’s ratio is related to a change of elasticity

modules of the whole material, which are influenced by

the strain-induced martensite particles formation. On a

section of the developed plastic deformation the defects

of dislocation type induce appearance of non-homogeneous

fields of elastic stresses near these particles, provoking

initiation and propagation of micro-cracks. Development of

damage results in reduction of value of 1ν , expression (3).
It is assumed, that on initial sections of deformation the

dependence 1ν(8) is linear (Fig. 1, c), and Poisson’s ratio

is defined with formation of magnetic phase only, then

the change of 1ν8, included in the expression (2), is the

following

1ν8 = k8 18, (4)

where k8 = 0.0055 (in formula (4) the volume fraction is

expressed in fractions, while on figures — in percents).
Using the experimental data of Poisson’s ratio change due

to accumulation of damage 1ν
(exp)
ψ can be defined from

expressions (2) and (4) as

1ν
(exp)
ψ = 1ν − k8 18. (5)

Figure 2 shows the change of Poisson’s ratio ν and its

components ν
(exp)
ψ and ν8.

It was observed, that damage does not impact the

Poisson’s ratio νψ at strain εpl , that do not exceed 5%.

With the further deformation the martensite phase starts

to separate more intensively (Fig. 1, a), impacting the

component 1ν8.

3. Modeling

Let’s perform the theoretical study of Poisson’s ratio

change due to damage accumulation (cracks density). The

assigned task we will solve in 2D-approximation (plane
strain). Let’s present the austenite matrix as an infinite

elastic-isotropic continuous medium, that is characterized

with shear modulus G and Poisson’s ratio ν . The matrix

contains isotropic particles of the second phase in the form

of rectangles, of the same size with sides length of 2a1

and 2a2 (a1 ≫ a2). Let’s assume that distribution of these

particles orientation as per angle of � ∈ [0, 2π) is isotropic

(Fig. 3, a). Considering symmetry of deformation scheme
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Figure 1. Dependencies of volume fraction of martensite phase 8 (a) and Poisson’s ratio (b) on value of plastic deformation εpl , relation

ν(8) (c).
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Figure 2. Change of Poisson’s ratio ν (1) and its components

ν
(exp)
ψ (2), ν8 (3) at early stages of plastic deformation.

and particle shape the angle � can be varied in a range

of [0, π/2].

Since the value of the strain-induced martensite phase

yield is significantly higher, than value of austenite matrix

yield [16], in the investigated model we will assume, that

the rectangular particle is plastically undeformed.

Let’s link the Cartesian coordinate system Oxyz and

associated basis (e1, e2, e3) with the particle (Fig. 3, b).
Concentration of particles dnm(�, εpl) of martensite, ori-

ented in a range of [�, �+ d�], at deformation of austenite

matrix εpl for the specified geometry is defined as

dnm(�, εpl) =
1µm3 8(εpl)

1µm Sm

d�
π/2

, (6)

where 8(εpl) is volume fraction of martensite particles at

value of plastic strain of εpl , Sm is martensite particle area,

d�/(π/2) is fraction of particles, orientation of which is

within a range of [�, �+ d�].
During plastic deformation of austenite matrix at the

boundaries of martensite particles and near them the ex-

cessive density of dislocations, that form non-homogeneous

fields of internal stress, is accumulated. In general case

the distribution of dislocation density (distribution of plastic

strain) near the particle boundary has rather complex non-

homogeneous structure, but at low deformation degrees it
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Figure 3. Scheme of austenite matrix, containing plate particles of martensite (a), and coordinate system, related to martensite particle (b).

can be conditionally assumed, that all dislocation density

will be distributed along the inclusion boundary pretty much

homogeneous. Despite this assumption is a rather rough

approximation of actual distribution of plastic deformations

near undeformed inclusion, it allows to set a simple, but

aligned with plastic strain, system of internal stress sources

and rather simply describe the structure of stress fields near

the particle.

Density of dislocations of orientation inconsistency, in-

duced to the particle boundary, is characterized with

mismatch of plastic strain [εpl] at this boundary, that

depends on value of εpl and orientation of the particle �:

[εpl] = εpl
(

n(�) ⊗ n(�) − n⊥(�) ⊗ n⊥(�)
)

, εpl > 0.

(7)
For the convenience of the further calculations let’s

assume the stress fields, related to intrinsic homogeneous

dilatation of the particle ε0, as the fields, generated

with virtual dislocations, distributed along the inclusion

boundary [17,18]. It should be noted, that due to presence

of intrinsic dilatation of the martensite particle, significantly

high compression stresses are formed in it. Tensor of density

of Burgers vector B [19] of dislocations at boundary of the

martensite particle with normal N (internal in relation to the

particle) is defined as [20]:

B = −N×
(

[εpl] − [ε0]
)

,

where [ε0] is written as

[ε0] = ε0(e1 ⊗ e1 + e2 ⊗ e2), ε0 > 0. (8)

The observed distribution of virtual dislocations regarding

elastic stress fields can be conveniently characterized in

terms of mesodefects of simple structure: dipoles of

wedge disclination with strength of wN and planar shearing

mesodefects with strength of wτ [21]. Expressions for

strength of mesodefects wN and wτ at the boundary with

normal N are written as:

wN = (e3 · B · N)N; wτ = (e3 · B · τ )τ ,

where τ = N× e3 is single vector, directed along the parti-

cle boundary. Expressions for calculation of components of

tensor of elastic stress fields for the specified mesodefects

are presented in Appendix [22,23].

Let’s further analyze the characteristics of stable cracks,

initiating near rotation-shearing mesodefects, forming during

plastic strain of austenite at the boundary of martensite

inclusion. It should be noted, that the approach, used in this

work, is related to presentation of internal stress fields from

the particle using equivalent system of virtual mesodefects

and further study of initiation and propagation of micro-

cracks and currently widely used for building the destruction

models [24–27]. Let’s assume, that micro-crack is formed at

negative disclinations, that create large local tension stresses.

For analysis of such micro-crack initiation and propagation

conditions let’s use the method of configuration force [28].
For plane deformation of isotropic material the expression

for configuration force f , defined as a value of elastic

energy, released at crack moving by a unit segment, is

written as

f (l)ϕ =
l
8D

(

χ(σ̄ϕϕ)σ̄ 2
ϕϕ + σ̄ 2

rϕ

)

, (9)

where D = G/[2π(1−ν)], G is shear modulus, l is crack

length, ϕ is polar angle, setting the orientation of the

investigated crack (Fig. 3, b), σ̄ϕϕ, σ̄rϕ are average weighted

total stresses near crack:

σ̄ϕϕ =
2

πl

l
∫

0

σϕϕ(r, ϕ)

√

r
l − r

dr,

σ̄rϕ =
2

πl

l
∫

0

σrϕ(r, ϕ)

√

r
l − r

dr,

χ(σ̄ϕϕ) =

{

1, σ̄ϕϕ ≥ 0,

0, σ̄ϕϕ < 0,
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Figure 4. Scheme of dependence of configuration force f on

crack length l for the investigated mesodefects at fixed ϕ.

where σϕϕ, σrϕ are components of stress in polar coordinate

system.

At the same time, the equivalent crack lengths leq for

the specified direction ϕ will be defined from the relation

f (l = leq) = 2γ , where γ is specific energy of a free surface.

At the same time, the crack length lst is called settled or

stable, if it is equivalent and the condition f ′

l(l = leq) < 0

is met, and length lun is called unsettled or unstable, if it is

equivalent and condition f ′

l(l = leq) > 0 is met.

In the work [28] it was shown, that depending on type

of divergence of stress function near singular stress source

σ ∼ r−α three characteristic cases can be implemented:

1) α = 1/2: configuration force does not depend on

crack length, at f ≥ 2γ the crack initiation and propagation

happen without restrictions;

2) α > 1/2 ( f (0) → ∞): configuration force decreases

with crack increase, crack reaches some maximum length

and stops;

3) α < 1/2 ( f (0) → 0): configuration force increases

with crack increase, the most complicated stage of destruc-

tion is a crack initiation.

For the presented mesodefects at low r a logarithmic

divergence of local stress fields is observed [21], that

corresponds to the third case. At the same time, the

characteristic dependence of configuration force f on crack

length l for the investigated mesodefects at fixed ϕ is written

as presented in Fig. 4.

According to Fig. 4 it follows that the configuration force

f < 2γ at l∗ < lun and crack increase from zero to some

length l∗ < lun can not happen without additional energy

boosting (as per configuration force definition). Because of

that the process of crack initiation in the investigated fields

of elastic stresses happens by means of other mechanisms.

For evaluation of cracks concentration let’s assume, that

the martensite particles already have nano-discontinuities

and nano-cracks with characteristic size l∗, that appeared

at the stage of the particle initiation. Let’s assume, that the

distribution function l∗ is described with the exponential

law:

F(l∗) =

{

0, l∗ < 0,

1− exp
(

− 1
L l∗
)

, l∗ ≥ 0,

where F(l∗) is exponential distribution function, L is ad-

justable parameter.

Then, on each particle with fixed orientation and at fixed

value of εpl there is a nano-discontinuity (nano-crack) with

characteristic size (with length) l∗, distributed as per F(l∗).
At the same time, the nano-discontinuities on the particles

can transform into stable crack with a length of lst only if

the following condition is met:

l∗ ≥ lmin
un , lmin

un = min
ϕ

[lun(ϕ)].

Therefore, only some part of nano-discontinuities will

be unfold. Concentration of particles ncr, oriented along

direction � at the fixed plastic strain εpl , that have stable

cracks, is defined using the following expression:

dncr(�, εpl) = dnm P(l∗ ≥ lmin
un ), (10)

where P(l∗ ≥ lmin
un ) is possibility that nano-discontinuity

length l∗ will be more than lmin
un :

P(l ≥ lmin
un ) = F(±∞) − F(lmin

un ) = exp

(

−
1

L
lmin
un

)

.

At the same time, the average length of stable cracks l̄st is

defined as

l̄st =

∞
∫

lmin
un

lst P(l∗|l∗ ≥ lmin
un )dl, (11)

where P(l∗|l∗ ≥ lmin
un ) is conditional density of possibility

of l∗ value, lst is maximum stable length, corresponding

to a germ crack with a length of lun. Then, the damage

d(ψ(th)), related to appearance of stable cracks on particles,

orientation of which is within a range of angles [�,�+ d�]
(considering symmetry), is calculated as:

d(ψ(th)) = dncr l̄ 3st .

Total material damage ψ(th) at fixed value of plastic

strain is observed by integration over the whole range of

orientations of particles � (considering symmetry)

ψ(th) =

π/2
∫

0

dψ(th). (12)

4. Results of numerical calculations

Numerical calculations will be performed at the fol-

lowing values of parameters: G = 78 000MPa, ν = 0.294,

2a1 = 1µm, 2a2 = 0.2µm — inclusion sizes, ε0 = 0.02 —
corresponds to increase of martensite particle volume

by 2% [29]. Specific surface energy of the crack,
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Figure 5. Characteristic dependencies of configuration force f
on crack length l at its orientation angles ϕ = 10 (1), 60 (2)
and 140◦ (3) and fixed values of εpl = 0.08 and � = π/3.

formed in austenite or martensite, is evaluated as

per [30] as γa = Gba/10 and γm = Gbm/10 respec-

tively, ba = 3.6 · 10−4 µm — austenite lattice parameter,

bm = 2.9 · 10−4 µm — martensite lattice parameter. Spe-

cific surface energy of the crack, formed at non-coherent

interphase boundary, γb is defined the same way as for

high angle boundary, i.e. γb = Gbm/10−Gbm/48. Range of

plastic strain value change εpl = 0.00−0.10.

As a result of calculations, the characteristic dependencies

of configuration force f on crack length l at various

orientation angle values ϕ and fixed values of εpl = 0.08

and � = π/3 are observed (Fig. 5). Figure 5, for instance,

contains the characteristic dependencies of f on crack

length l at orientation angles ϕ = 10, 60 and 140◦, cor-

responding to the austenite matrix. As seen, the existence

of stable crack is possible not at all orientation angles ϕ,

but only at those, for which the condition f max(l) > 2γ
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l u
n
,

m
m

0

0.1

0.2

0.3

0.4

0 p/2 p 3p/2 2p

lun
min

a

j, rad

l s
t,

m
m

0

0.5

1.0

1.5

0 p/2 p 3p/2 2p

b

Figure 6. Dependencies of lun(ϕ) (a) and lst(ϕ) (b) at fixed values of εpl = 0.08, and � = π/3.

is met. For the investigated case this is the orientation

angle ϕ = 60 and 140◦ . Besides, values of equivalent crack

lengths for various orientation angles can be significantly

different. Thus, for instance, for orientation angle ϕ = 60◦

the length of the germ crack is by an order less, than for

orientation angle ϕ = 140◦, indicating that the possibility of

stable crack appearance in the first direction is much higher,

than in the second.

By building the similar dependencies of f (l) for the

whole range of angles ϕ ∈ [0 2π) the crack lengths lu

and lst were defined. Figure 6 contains dependencies of

these lengths lun (Fig. 6, a) and lst (Fig. 6, b) on orientation

angle ϕ, observed at fixed values of εpl = 0.08, and

� = π/3. As per Fig. 6, a the germ cracks lun at fixed

values of εpl = 0.08, and � = π/3 for range of angles

ϕ ∈ (π/3 2π/3) ∪ {π} take the lowest values, therefore the

appearance of stable cracks, which lengths are presented

in Fig. 6, b, in this range is most likely. While for

angles, corresponding to martensite particle ϕ ∈ (π 3π/2),
the germ cracks are rather large, therefore the possibility

of stable cracks formation in the martensite particle is

negligible.

Then, by defining the dependencies of lun(ϕ) and lst(ϕ)
for all values of � (pitch by angle 1� = 10◦) and all values

of εpl (pitch by deformation 1εpl = 0.01), we will get the

dependence of ψ(εpl) and, according to expression (3),
1ν (th). Value of adjustable parameter L is defined from

condition of minimum deviation of theoretical dependence

1ν
(th)
ψ (εpl) from experimental dependence 1ν

(exp)
ψ (εpl):

∑

∣

∣

∣
1ν

(th)
ψ (εpl) − 1ν

(exp)
ψ (εpl)

∣

∣

∣
→ min . (13)

This condition is met at L = 174ba
∼= 0.0626µm.

Thus, to get the evaluation values of damage, (expression
(12)) and change of Poisson’s ratio 1νψ (expression (3)), it
is necessary to set the geometry and distribution of marten-

site particles orientations, to define the martensite particles

concentration (expression (6)), incompatibility of plastic
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plastic deformation.

deformation (expression (7)), dilatation (expression (8)),
and to calculate the elastic stress fields from martensite

particles (A1−A6). Then, using configuration force method

(expression (9)), define the lengths of equivalent (stable
and unstable) cracks, formed in elastic stress fields from

martensite particles. To determine the cracks concentration

and their average length as per formulas (10) and (11)
respectively, use the adjustable parameter, observed based

on experimental data as per formula (13).

5. Discussion of results

Changes of the Poisson’s ratio 1νψ during plastic strain,

observed experimentally (formula (5)) and theoretically, are

presented in Fig. 7.

There is a good correlation between theoretical calculated

and experimental data at strain εpl , not exceeding 10%.

The performed calculations confirmed, that damage does

not impact the Poisson’s ratio νψ at strain εpl , that do not

exceed 5%. With the further deformation on particles of

the strain-induced martensite the new systems of rotation-

shearing mesodefects appear and create internal stress, in

fields of which the micro-cracks with certain orientation

form. New defects increase component νψ in absolute value.

Conclusion

Influence of plastic deformation on Poisson’s ratio, mea-

sured with acoustic method, and intensity of formation of

the strain-induced martensite, which value is observed using

eddy-current measurements, are studied. Experimental

studies have shown, that the main influence on Poisson’s

ratio change is made by interrelated processes: formation

of the strain-induced martensite and accumulation of micro-

damage (micro-pores, micro-cracks).

It was observed, that active change of Poisson’s ratio

is accompanied with active growth of the strain-induced

martensite. At the later deformation stages the change

intensity decreases, supposedly due to micro-damaging.

The performed modeling of formation of stable

cracks, initiated near rotation-shearing mesodefects, at the

inclusion−matrix boundary has shown, that at initial stage,

considering small size of cracks, contribution to Poisson’s

ratio increment by means of increase of the volume fraction

of the strain-induced martensite prevails over contribution

due to increase of number of cracks. It was observed,

that density of stable micro-cracks on particles of the strain-

induced martensite increases due to increase of the micro-

cracks themselves and grow of existing micro-cracks. This

process changes monotonous pace of Poisson’s ratio value

dependence on plastic strain. The performed comparison

of theoretical and experimental results has shown the good

agreement of curves at low deformation degrees, indicating

the validity of the selected theoretical model, investigated in

the work.
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Appendix

Expressions for calculation of components of tensors of

mesodefects elastic stress fields [22,23], defined in the right-

hand Cartesian coordinate system Oxy , beginning of which

coincides with the mesodefect center, while axis Ox is

directed along the mesodefect shoulder, are written as

Planar shear mesodefect:

σxx = Dwτ

[
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Dipole of circular disclinations:

σxx = DwN
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, (A4)
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where wN , wτ are values of mesodefects strength pro-

jections wN, wτ on axis Ox , 2a is length of shearing

mesodefect or disclination dipole.
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