06

Высокоскоростное электроимпульсное плазменное спекание мелкозернистых керамик Al₂O₃—SiC. Исследование микроструктуры и механических свойств

© М.С. Болдин,¹ А.А. Попов,¹ А.А. Мурашов,¹ Н.В. Сахаров,¹ С.В. Шотин,¹ А.В. Нохрин,¹ В.Н. Чувильдеев,¹ К.Е. Сметанина,¹ Н.Ю. Табачкова^{2,3}

¹ Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 603022 Нижний Новгород, Россия ² НИТУ "МИСИС",

119049 Москва, Россия ³ Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия e-mail: boldin@nifti.unn.ru

Поступило в Редакцию 12 апреля 2022 г. В окончательной редакции 3 июля 2022 г. Принято к публикации 5 июля 2022 г.

Исследованы особенности высокоскоростного спекания субмикронных порошков Al₂O₃ с различным содержанием (0, 0.5, 1.5, 5 vol.%) наночастиц β -SiC. Изучена микроструктура и твердость керамик Al₂O₃ + 5 vol.% SiC, полученных путем спекания порошков Al₂O₃ с частицами β -SiC различного типа (наночастицы, субмикронные частицы, волокна). Спекание осуществлялось со скоростями нагрева (V_h) от 10 до 700° C/min. Процесс спекания керамик Al₂O₃ + SiC с малыми скоростями нагрева ($V_h = 10-50^{\circ}$ C/min) носит сложный трехстадийный характер, с пологим участком в интервале температур 1200–1300° C. При высоких скоростях нагрева ($V_h > 250^{\circ}$ C/min) наблюдается обычный трехстадийный характер спекания. Анализ температурных зависимостей уплотнения проведен с использованием модели Янга–Катлера; установлено, что кинетика спекания порошков лимитируется интенсивностью зернограничной диффузии. Показано, что зависимость твердости керамик Al₂O₃ + SiC or V_h имеет немонотонный характер с максимумом. В случае чистого оксида алюминия увеличение V_h приводит к монотонному снижению твердости.

Ключевые слова: оксид алюминия, карбид кремния, относительная плотность, диффузия, твердость.

DOI: 10.21883/JTF.2022.10.53249.95-22

Введение

Керамика Al₂O₃-SiC широко используется в промышленности в качестве износостойких пар трения, режущего инструмента, элементов керамической защиты и др. [1-3]. Частицы SiC позволяют повысить механические свойства оксида алюминия за счет торможения миграции границ зерен и формирования сжимающих внутренних полей напряжений, изменяющих характер разрушения керамики [4-9].

В настоящее время механизмы жидкофазного спекания керамик Al_2O_3 —SiC при температурах плавления легкоплавкой эвтектики Al_2O_3 —SiO₂—SiC хорошо исследованы [10,11]. Отмечено, что плавление оксида кремния, присутствующего на поверхности частиц SiC, сопровождается ускорением спекания, но в ряде случаев приводит к аномальному росту зерен [12]. Для дальнейшего повышения механических свойств керамик Al_2O_3 —SiC перспективным является применение технологий высокоскоростного нагрева, позволяющих минимизировать аномальный рост зерен за счет спекания в твердофазной области [4,8].

Электроимпульсное ("искровое") плазменное спекание (ЭИПС) является одним из перспективных мето-

дов получения керамик с ультрамелкозернистой (УМЗ) микроструктурой [13]. Суть технологии ЭИПС состоит в высокоскоростном (до 2500°С/min) нагреве за счет пропускания миллисекундных импульсов тока большой мощности через графитовую пресс-форму с помещенным внутрь нее порошком [13]. Спекание осуществляется в вакууме или в инертной среде в условиях приложения давления. Преимуществом технологии ЭИПС, представляющей собой метод высокоскоростного горячего прессования, является возможность снижения скорости миграции границ зерен. Это позволяет обеспечивать повышенные механические свойства керамик Al₂O₃-SiC [14,15]. Анализ литературы показывает, что работ, посвященных ЭИПС керамик Al₂O₃-SiC, достаточно много [4,8,14,15], но внимание исследователей сосредоточено на влиянии температуры ЭИПС на параметры микроструктуры и механические свойства керамик. Подробного исследования влияния скорости нагрева на параметры микроструктуры и твердость керамик Al₂O₃-SiC не проводилось.

Целью настоящей работы является исследование влияния скорости нагрева на кинетику спекания и рост зерен в керамиках Al₂O₃ + SiC. Чистый оксид алюминия используется в качестве объекта сравнения.

1. Материалы и методики

Объектами исследований являлись субмикронные порошки α -Al₂O₃ ("Taimei Chemicals Co., Ltd", торговая марка TM-DAR). Для получения композиций Al₂O₃ + SiC использовали порошки SiC ("Alfa Aesar — A Johnson Matthey Company") β -фазы различной морфологии: нанодисперсных частиц, которые далее будут обозначаться как β -SiC_n, субмикронных частиц (β -SiC_m), а также волокон (β -SiC_w). Объектами исследования являлись композиции на основе субмикронного порошка α -Al₂O₃ (порошок серии № 1), с добавкой 0.5 vol.% (серия № 2), 1.5 vol.% (серия № 3) и 5 vol.% β -SiC (серия № 4).

Исследование влияния типа частиц β -SiC (наночастицы, субмикронные частицы, волокна) проводилось на примере композиции Al₂O₃ + 5 vol.% β -SiC. Исследование влияния содержания β -SiC (0, 0.5, 1.5, 5 vol.%) проводилось с использованием нанопорошков β -SiC_n.

Перемешивание проводилось в планетарной мельнице "FRITSCH — Pulverisette 6" в аммиачной воде с добавлением дисперсанта Dolapix CE 64. Перемешивание порошков проводилось в течение 24 h мелющими телами из ZrO₂. Частота вращения размольного стакана составляла 200 rev/min. Удаление воды проводилось в печи ЭКПС-10 (70°C, 12 h).

ЭИПС образцов диаметром 12 mm и высотой 3 mm проводилось с помощью установки Dr. Sinter model SPS-625 в графитовых пресс-формах. Величина приложенного одноосного напряжения составляла $\sigma = 70$ MPa. Спекание проводилось в вакууме. Нагрев осуществляли в двухстадийном режиме — нагрев до температуры 600°C со скоростью $V_h = 100^{\circ}$ C/min, дальнейший нагрев до температуры спекания T_s со скоростью 10, 50, 100, 250, 350 или 700°С/тіп. Температура спекания Т_s была меньше температуры начала аномального роста зерен в керамиках $Al_2O_3 + \beta$ -SiC вследствие реакции оксида кремния, присутствующего на поверхности частиц β -SiC, с оксидом алюминия [10–12,15]. Выдержка при температуре спекания отсутствовала $(t_s = 0 \min)$. Охлаждение образцов происходило вместе с установкой. Для удаления остатков графита образцы после спекания отжигались в воздушной печи ЭКПС-10, при температуре 750°C, 1 h.

Температура (T_1) измерялась с помощью оптического пирометра CHINO IR-AH2, сфокусированного на поверхности графитовой пресс-формы. На основании сопоставления показаний пирометра (T_1) и термопары, прикрепленной к поверхности образца, значения T_1 пересчитывались в температуру образца (T_2) с использованием эмпирического соотношения: $T_2 = A \cdot T_1 - B$, где A и B — константы, зависящие от V_h .

В процессе ЭИПС измерялась зависимость усадки от температуры нагрева L(T). Вклад теплового расширения в L(T) учитывался в соответствии с методикой [16]. Скорость усадки рассчитывалась в линейном приближении:

 $S = \Delta L/\Delta t$. Пересчет L(T) в температурную зависимость уплотнения (ρ/ρ_{th}) проводился в соответствии с [16].

Плотность керамик (ρ) измерялась методом гидростатического взвешивания при комнатной температуре с помощью весов Sartorius CPA. Точность измерения ρ составляла ± 0.005 g/cm³. Теоретическая плотность (ρ_{th}) Al₂O₃ принята равной 4.001 g/cm³, а керамик с добавкой 0.5, 1.5 и 5% SiC — 3.997, 3.989 и 3.961 g/cm³ соответственно.

Микротвердость (H_v) измерялась на твердомере "Struers Duramin-5" (нагрузка 2 kg). Значение минимального коэффициента трещиностойкости $K_{\rm IC}$ рассчитывалось по методу Палмквиста по длине максимальной радиальной трещины. Точность измерений величин H_v и $K_{\rm IC}$ составляла ± 1 GPa и ± 0.3 MPa \cdot m^{1/2} соответственно.

Микроструктура изучалась при помощи растрового электронного микроскопа (РЭМ) Jeol JSM-6490 и просвечивающего электронного микроскопа (ПЭМ) Jeol JEM-2100. Размер частиц (*R*) и зерен (*d*) измерялся методом хорд. Рентгеновский фазовый анализ (РФА) проводился на дифрактометре Shimadzu XRD-7000.

2. Экспериментальные результаты

2.1. Аттестация порошков

Порошок оксида алюминия имеет однородный гранулометрический состав, средний размер частиц составляет ~ 0.1 μ m (рис. 1, *a*). Согласно результатам РФА, порошок оксида алюминия является однофазным, 100% α -Al₂O₃ (рис. 2). На поверхности наночастиц α -Al₂O₃ присутствует аморфный слой толщиной ~ 10 nm (рис. 1, *b*).

Нанопорошки карбида кремния являются трехфазными, на рентгенограммах порошка β -SiC_n отчетливо видны пики кубических фаз 98.6 wt.% 3C-SiC (PDF 00-029-1129) и 1.4 wt.% RS-SiC (PDF 00-049-1623), а также гексагональной фазы 6H-SiC (PDF 01-075-8314). Порошки β -SiC_{*m*} и β -SiC_{*w*} являются двухфазными — на их дифрактограммах видны пики 6H-SiC и 3C-SiC (рис. 2). Точное содержание фазы 6H-SiC в порошках β -SiC_n и β -SiC_w установить нельзя — на дифрактограммах присутствует только один пик 101 6H-SiC при угле дифракции $\sim 34^{\circ}$, который сливается с более интенсивным пиком 111 фазы 3C-SiC. Содержание фазы 6H-SiC в порошке β -SiC_m составляет 4.1 wt.%. Пиков, соответствующих оксиду кремния SiO₂ (PDF 00-052-0784, 00-042-1401, 01-077-8669), не обнаружено — вероятно, SiO₂ находится в рентгеноаморфном состоянии. Средний размер частиц β -SiC_n и β -SiC_m составляет $\sim 50 \text{ nm}$ и $\sim 0.8 - 1 \, \mu \text{m}$ соответственно. Длина волокон β -SiC_w достигает 50 μ m, а их диаметр — 200 nm.

Рис. 1. Электронно-микроскопическое изображение исходных порошков α -Al₂O₃ (a, b), наночастиц β -SiC_n (c), субмикронных частиц β -SiC_m (d) и волокон β -SiC_w (e).

Рис. 2. Рентгеновские дифрактограммы исходных порошков.

2.2. Спекание керамик с различным типом частиц *β*-SiC

На рис. З представлены температурные зависимости уплотнения $\rho/\rho_{th}(T)$ для порошков Al₂O₃ + 5% β -SiC с различным типом частиц карбида кремния. Зависимости $\rho/\rho_{th}(T)$ для порошков Al₂O₃ имеют классический трехстадийный характер (см. [16,17]).

При увеличении V_h от 10 до 700°С/тіп наблюдается смещение зависимостей $\rho/\rho_{th}(T)$ в область больших температур нагрева. Температура T_{90} , при которой относительная плотность керамики достигает $\rho/\rho_{th}(T) = 90\%$, при увеличении V_h от 10 до 700°С/тіп повышается от 1220–1230 до 1380°С. Относительная плотность Al₂O₃ при этом уменьшается от 99.72 до 99.28% ($\rho/\rho_{th}(T) = 0.44$) (табл. 1).

Зависимости $\rho/\rho_{th}(T)$ керамик $Al_2O_3 + 5\%\beta$ -SiC_n и $Al_2O_3 + 5\%\beta$ -SiC_m имеют более сложный характер (рис. 3, *b*, *c*) — при малых скоростях нагрева (10°C/min) на зависимостях $\rho/\rho_{th}(T)$, в интервале

Рис. 3. Графики уплотнения при различных скоростях нагрева порошков α -Al₂O₃ (*a*), Al₂O₃ + 5% β-SiC_n (*b*), Al₂O₃ + 5% β-SiC_n (*b*), Al₂O₃ + 5% β-SiC_w (*d*). Скорости нагрева указаны на графиках.

температур ~ 1200–1300°С наблюдается участок, на котором относительная плотность изменяется слабо. При увеличении V_h наблюдается уменьшение интервала температур, соответствующее слабому изменению $\rho/\rho_{th}(T) \sim 70-75\%$. При $V_h \geq 250°$ С/min зависимости $\rho/\rho_{th}(T)$ имеют классический трехстадийный характер.

Температура T_{90} в керамике $Al_2O_3 + 5\%\beta$ -SiC_n при $V_h = 10$ и 700° С/min составляет 1410 и 1540° С, а в керамике $Al_2O_3 + 5\%\beta$ -SiC_m — 1320 и 1490° С. Таким образом, добавка частиц $5\%\beta$ -SiC приводит к смещению интервала интенсивной усадки порошков в область более высоких температур нагрева, причем введение наночастиц β -SiC_n оказывает более существенное влияние на температуру T_{90} , чем добавка субмикронных частиц β -SiC_m. При увеличении V_h от 10 до 700° С/min относительная плотность керамики $Al_2O_3 + 5\%\beta$ -SiC_n снижается от 99.17 до 98.96%, а керамики $Al_2O_3 + 5\%\beta$ -SiC_m — от 99.45 до 98.92%.

Кривые спекания $\rho/\rho_{th}(T)$ керамики $Al_2O_3 + 5\%$ β -SiC_w (рис. 3, d) схожи с кривыми уплотнения для чистого Al₂O₃ (рис. 3, *a*); значения температуры T_{90} при скоростях нагрева 10–350°С/тіп близки к значениям T_{90} для Al₂O₃ при тех же V_h . При V_h 10 и 350°С/тіп относительная плотность керамики Al₂O₃ + 5% β -SiC_w составляет 99.59 и 98.28% соответственно (табл. 1). Отметим, что при $T_s = 1520$ °С относительная плотность керамик Al₂O₃ + 5% β -SiC ниже относительной плотности оксида алюминия во всем диапазоне V_h . Следует также подчеркнуть, что с увеличением V_h снижение относительной плотности керамик Al₂O₃ + 5% β -SiC, спеченных при $T_s = 1520$ °С, более выражено, чем для чистого Al₂O₃ (табл. 1).

Как видно из табл. 1, введение $0.5\%\beta$ -SiC позволяет уменьшить средний размер зерна Al₂O₃, при этом масштаб снижения d с увеличением V_h зависит от формы и размера частиц. При увеличении V_h от 10 до 350° C/min величина d для чистого Al₂O₃ снижается от 5 до $1.8\,\mu$ m (рис. 4, a, b), а керамик с $5\%\beta$ -SiC_n и β -SiC_w — от 0.65 до $0.4\,\mu$ m и от 1.9 до $0.9\,\mu$ m соответственно. Размер зерна керамики с $5\%\beta$ -SiC_m не

изменяется ($d = 0.65 \,\mu m$). Таким образом, наночастицы β -SiC_n оказывают более сильное влияние на стабилизацию микроструктуры оксида алюминия, чем частицы β-SiC_m; при этом субмикронные частицы, оказывают более сильное влияние, чем волокна β -SiC_w.

Исследования микроструктуры керамики $Al_2O_3 + 5\%\beta$ -SiC_n показывают, что наночастицы β -SiC_n

с добавкой 5% β-S	1С раз	личного	типа			
Керамика	T_s , °C	V_h , °C/min	d, μm	$ ho / ho_{th}, \ \%$	H _v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}
		10	5.1	99.72	18.6	2.5
		50	3	99.67	18.2	2.3
	1.500	100	2.8	99.60	17.9	2.5

Таблица 1. Свойства керамик на основе оксида алюминия

1	°С	°C/min	μm	%	GPa	$MPa \cdot m^{1/2}$
Al ₂ O ₃	1520	10	5.1	99.72	18.6	2.5
		50	3	99.67	18.2	2.3
		100	2.8	99.60	17.9	2.5
		250	2	99.47	17.8	2.4
		350	1.9	99.47	17.2	2.1
		700	1.8	99.28	16.9	2.4
	1520	10	0.45	98.53	21.4	2.5
		100	0.2	96.50	21.4	2.6
		350	0.2	94.81	19.9	2.6
	1570	10	0.65	99.17	20.1	3.0
$Al_2O_3 + 5\% SiC_n$		50	0.4	99.09	21.5	2.5
		100	0.4	99.03	I	_
		250	0.4	98.88	22.0	2.6
		350	0.4	98.96	22.1	2.5
		700	0.4	98.96	21.8	2.0
	1520	10	0.6	99.05	20.5	2.8
		100	0.55	97.83	20.3	2.7
		350	0.45	97.54	20.2	2.7
	1570	10	0.65	99.45	19.6	2.6
$Al_2O_3 + 5\% SiC_m$		50	0.65	99.18	20.3	2.5
		100	0.65	99.08	20.5	2.2
		250	0.65	99.14	20.4	2.1
		350	0.65	99.05	20.0	2.1
		700	0.65	98.92	19.8	2.1
$Al_2O_3 + 5\% SiC_w$	1520	10	0.9	99.04	19.4	2.3
		100	0.7	98.08	19.5	2.2
		350	0.6	97.12	17.8	2.2
	1570	10	1.9	99.59	19.0	2.6
		100	0.9	99.00	18.9	2.2
		350	0.9	98.28	18.9	2.2

распределены равномерно в объеме и границах зерен Al_2O_3 (рис. 4, *c*). В большинстве случаев несколько частиц β -SiC_n расположены вместе (рис. 4, *c*, *d*), что свидетельствует об их повышенной склонности к агломерированию, которую не удалось преодолеть путем перемешивания порошков.

Из рис. 4, е видно, что в процессе перемешивания произошла частичная фрагментация волокон — некоторые частицы имеет длину 2-3 µm. Вытянутые частицы β -SiC_w расположены преимущественно по границам зерен (рис. 4, f). Следов плавления эвтектики на межфазных границах $Al_2O_3 - (\beta$ -SiC) не обнаружено.

Как видно из табл. 1, введение частиц и волокон β -SiC повышает твердость керамик. Упрочнение наночастицами β -SiC_n позволяет получить керамику с твердостью ~ 22 GPa, частицами β -SiC_m — керамику с твердостью ~ 20 GPa, а волокнами β -SiC — керамику с твердостью $H_v \sim 19$ GPa. Твердость чистого оксида алюминия лежит в интервале $\sim 17-19$ GPa. Увеличение V_h не оказывает заметного влияния на коэффициент трещиностойкости. Для всех исследуемых керамик средним является значение $K_{\rm IC} \sim 2.5 \pm 0.3 \, {\rm MPa} \cdot {\rm m}^{1/2}.$

Важно отметить характер влияния V_h на H_v керамик. Как видно из табл. 1, увеличение V_h от 10 до 700°С/min приводит к снижению H_v оксида алюминия от 18.6 до 16.9 GPa. Зависимость $H_v(V_h)$ для керамик $Al_2O_3 + 5\%\beta$ -SiC носит немонотонный характер, с максимумом. Скорость нагрева, при которой достигается максимальное значение H_v , зависит от температуры спекания и типа частиц β -SiC (табл. 1).

2.3. Спекание керамик с различным содержанием β -SiC

На рис. 3, *b* и 5 представлены зависимости $\rho/\rho_{th}(T)$ для порошков Al₂O₃ с различным содержанием наночастиц *β*-SiC_n. Из сравнения рисунков видно, что при $V_h = 10^\circ \text{C/min}$ повышение объемной доли частиц β -SiC_n приводит к увеличению интервала температур, в котором наблюдается немонотонный характер зависимости $\rho/\rho_{th}(T)$, уменьшению относительной плотности керамики, при которой наблюдается пологий участок кривой $\rho/\rho_{th}(T)$. Отметим также, что увеличение содержания β -SiC_n от 1.5 до 5 vol.% приводит к увеличению температуры T₉₀ от 1250 до 1410°C при $V_h = 10^{\circ}$ С/min и от 1450 до 1540°С при $V_h = 700^{\circ}$ С/min (рис. 3, b, 5, a). Относительная плотность керамики, спеченной при $T_s = 1520^{\circ}$ С, при этом снижается от 98.78 до 98.53% при $V_h = 10^{\circ}$ С/min и от 98.61 до 94.81% при $V_h = 700^{\circ}$ С/min (табл. 1, 2). Таким образом, увеличение содержания частиц β-SiC_n приводит к смещению зависимостей $\rho/
ho_{th}(T)$ в область больших температур и снижению относительной плотности керамики.

Как видно из табл. 2, добавка 0.5% β-SiC позволяет снизить средний размер зерна керамики ($T_s = 1520^{\circ}$ C) более чем в 2 раза и сформировать УМЗ микроструктуру в оксиде алюминия. В керамике $Al_2O_3 + 5 \text{ vol.}\%$

Рис. 4. Микроструктура керамик Al₂O₃ (*a*, *b*), Al₂O₃ + 5% β -SiC_{*n*} (*c*, *d*) и Al₂O₃ + 5% β -SiC_{*w*} (*e*, *f*), полученных путем нагрева до $T_s = 1570^{\circ}$ С со скоростью 10 (*a*, *c*, *d*) и 700°С/min (*b*, *e*, *f*).

 β -SiC_n, спеченной при скоростях нагрева 10 и 700° C/min ($T_s = 1570^{\circ}$ C), средний размер зерна составляет 0.65 и 0.4 μ m соответственно. Таким образом, в соответствии с уравнением Зинера [9], увеличение объемной доли

наночастиц *β*-SiC_n приводит к уменьшению среднего размера зерна керамики.

Как видно из табл. 1 и 2, введение β -SiC_n приводит к повышению микротвердости керамик во всем интервале

Рис. 5. Графики уплотнения порошков Al_2O_3 с добавкой 0.5 (*a*) и 1.5% β -SiC_{*n*} (*b*) при различных V_h .

Рис. 6. Температурные зависимости усадки в координатах $\ln(T\partial \varepsilon/\partial T) - T_m/T$: Al₂O₃ (*a*); Al₂O₃ + 5% β -SiC_n (*b*). Скорости нагрева указаны на графиках.

исследуемых скоростей нагрева, при этом коэффициент трещиностойкости изменяется незначительно. Ведение добавки 0.5%vol. β -SiC_n повышает H_v керамики от 17 до ~ 21 GPa. Аналогичное значение твердости наблюдается в керамике Al₂O₃ + 1.5% β -SiC_n (табл. 2). Снижение твердости керамики Al₂O₃ + 5% β -SiC_n обусловлено, по нашему мнению, уменьшением ее относительной плотности (табл. 1). Коэффициент трещиностойкости исследуемых керамик изменяется незначительно и лежит в интервале 2.5-3 MPa · m^{1/2}.

3. Обобщение и анализ результатов

Для анализа кинетики ЭИПС порошков $Al_2O_3 + \beta$ -SiC используем модель Янга-Катлера [18], которая описыва-

ет процесс неизотермического спекания сферических частиц в условиях одновременного протекания процессов объемной и зернограничной диффузии, а также пластической деформации (ползучести). В соответствии с [18] угол наклона температурной зависимости относительной усадки (ε) в координатах $\ln(T\partial\varepsilon/\partial T) - T_m/T$ соответствует эффективной энергии активации спекания mQ_s , где $T_m = 2326$ К — температура плавления Al₂O₃, m — коэффициент, зависящий от доминирующего механизма спекания (m = 1/3 — для случая зернограничной диффузии, m = 1 для вязкого течения материала (ползучести)). В случае ЭИПС субмикронных порошков величину коэффициента m можно принять равной 1/3 [19].

Величина эффективной энергии активации mQ_s при ЭИПС субмикронных порошков Al_2O_3 лежит в ин-

β -SiC _n . %	T_s , °C	V_h , °C/min	d, μm	$\rho/ ho_{th},$ %	H _v , GPa	$K_{\rm IC}$, MPa \cdot m ^{1/2}
0.5	1520	10	0.99	99.66	19.7	2.7
		50	0.89	99.37	20.8	2.4
		100	0.84	99.29	20.6	2.4
		250	0.70	99.05	20.8	2.3
		350	0.67	98.78	21	2.4
		700	0.62	98.61	20.6	2.4
1.5	1520	10	0.72	99.71	20	3.0
		50	0.62	99.35	20.9	2.6
		100	0.57	98.73	21	2.6
		250	0.45	98.40	21	2.4
		350	0.45	98.40	21.3	2.3
		700	0.26	98.21	21.1	2.2

Таблица 2. Параметры микроструктуры и механические свойства керамик с различным содержанием наночастиц β-SiC_n

тервале от ~ 5.6 до $6.2 \,\mathrm{kT}_m$ и практически не зависит от скорости нагрева V_h (рис. 6, a). При m = 1/3 величина энергии активации ЭИПС порошков Al₂O₃ составляет ~ $16.8-18.0 \,\mathrm{kT}_m$ (~ $325-360 \,\mathrm{kJ/mol}$). Полученное значение близко к энергии активации зернограничной диффузии кислорода в оксиде алюминия $(Q_b \sim 380 \,\mathrm{kJ/mol} \sim 19.7 \,\mathrm{kT}_m$ [20]). Аналогичный характер имеют зависимости $\ln(T\partial\varepsilon/\partial T) - T_m/T$ для керамик Al₂O₃ + 5% β -SiC_w, угол наклона которых соответствует эффективной энергии активации $mQ_s \sim 4.6-5.8 \,\mathrm{kT}_m$. Таким образом, можно сделать вывод, что кинетика спекания мелкозернистых порошков чистого Al₂O₃ и Al₂O₃ + 5 vol.% β -SiC лимитируется интенсивностью зернограничной диффузии.

Как видно из рис. 3, b, c, зависимости $\rho/\rho_{th}(T)$ для керамик с добавкой нано- и микронных порошков β -SiC имеют более сложный характер — при малых скоростях нагрева в интервале температур ~ 1200–1300°C наблюдается немонотонное изменение относительной плотности. Причиной этого является, по нашему мнению, начало полиморфного превращения в карбиде кремния, которое приводит к увеличению периода решетки β -SiC, и, как следствие, к увеличению занимаемого материалом объема. Данный вывод частично подтверждается результатами РФА, свидетельствующими об увеличению объемной доли фазы RS-SiC в УМЗ керамике $Al_2O_3 + 5\%\beta$ -SiC_n.

Отметим, что в случае нанопорошков β -SiC, имеющих большую площадь свободной поверхности, пологий участок зависимости $\rho/\rho_{th}(T)$ в интервале температур ~ 1200–1300°С наиболее выражен (рис. 6, *b*). Уменьшение площади свободной поверхности (увеличение размера частиц β -SiC) приводит к снижению протяженности полого участка на зависимости $\rho/\rho_{th}(T)$ (рис. 6, *c*). В случае волокон β -SiC_w на зависимости $\rho/\rho_{th}(T)$ этот участок практически не заметен (рис. 6, *d*). Поскольку объемная доля частиц β -SiC_n, β -SiC_m и β -SiC_w одинакова (5 vol.%), это позволяет предположить, что существенное влияние на интенсивность процесса полиморфного превращения оказывает фазовый состав порошка карбида кремния, а также концентрация атомов кислорода, адсорбированного на поверхности частиц β -SiC. Обобщение результатов РФА показывает, что в составе нанопорошка β -SiC_n присутствует кубическая фаза RS-SiC (PDF 00-049-1623), которая отсутствует в порошках β -SiC_m и β -SiC_w.

Для керамик Al₂O₃ + β -SiC_n и Al₂O₃ + β -SiC_m зависимость ln($T\partial\varepsilon/\partial T$) – T_m/T может быть интерполирована двумя прямыми линиями с различными углами наклона (рис. 6, b). Отметим, что эффективная энергия активации ЭИПС в "низкотемпературной" области близка к энергии активации ЭИПС чистого оксида алюминия (рис. 6, a), а при более высоких температурах нагрева достигает $mQ_s \sim 11-13$ kT_m. В настоящее время точные причины повышения энергии активации ЭИПС порошков оксида алюминия с добавкой наночастиц SiC не определены.

По нашему мнению, одной из причин может быть наличие повышенной концентрации адсорбированного кислорода и/или оксида кремния на поверхности наночастиц β -SiC_n. Присутствие кислорода на поверхности наночастиц карбидов может оказывать существенное влияние на кинетику ЭИПС [17,21] и механические свойства [21,22] мелкозернистых керамик. В работе [11] отмечено, что при температуре ниже 1600°C фаза β -SiC может реагировать с поверхностным слоем SiO₂ с образованием SiO и CO. Образование газообразных продуктов реакции может затруднять процесс спекания порошков оксида алюминия и являться одной из причин повышения энергии активации ЭИПС. Отметим, что увеличение скорости нагрева должно приводить к снижению интенсивности реакции в системе Al₂O₃-SiO₂-SiC и, как следствие, к исчезновению пологого участка на зависимости $\rho/\rho_{th}(T)$, что хорошо соответствует экспериментальным данным (рис. 3, b, c).

Проанализируем особенности роста зерен в мелкозернистых керамиках $Al_2O_3 + \beta$ -SiC. Как видно из табл. 1 и 2, частицы β -SiC препятствуют росту зерен оксида алюминия и позволяют формировать в керамике УМЗ микроструктуру. Анализ представленных в табл. 1 результатов исследований микроструктуры показывает, что зависимость d(R) с хорошей точностью может быть описана прямыми линиями (рис. 7). Наиболее высокие значения коэффициента достоверности линейной аппроксимации (R^2) достигаются в случае нагрева с малыми скоростями (10°C/min). В условиях высокоскоростного нагрева, приводящего к снижению относительной плотности керамики (табл. 1, 2), величина коэффициента R^2 снижается. По нашему мнению, это обусловлено

Рис. 7. Зависимость среднего размера зерна (d) оксида алюминия от размера (R) (a) и объемной доли (f_v) частиц β -SiC (b). $T_s = 1520^{\circ}$ C. Скорости нагрева (10, 100, 350°C/min) указаны на рисунках.

наличием пор, также препятствующих миграции границ зерен [17].

С использованием данных, представленных в табл. 1 и 2, был проведен анализ влияния объемной доли наночастиц β -SiC (0, 0.5, 1.5, 5 vol.%) на средний размер зерна (d) оксида алюминия. Наиболее высокие значения коэффициента $R^2 = 0.97 - 0.99$ достигнуты в случае линейной интерполяции зависимости $d(f_v)$ в координатах $d - f_v^{-1/3}$ (рис. 7, b). Это свидетельствует о том, что соотношение Хилерта–Хелмана (Hillert–Hellman) $(d/R = 3.6f_v^{-1/3})$ [23] более корректно описывает полученные экспериментальные результаты по сравнению с обычным соотношением Зинера $d/R = 4/(3f_v)$ [9,23]. Средняя величина коэффициента R^2 в координатах зависимости $d(f_v)$ в координатах $d-1/f_v$ составляет $R^2 = 0.94$.

Проанализируем теперь влияние размера зерна и частиц β -SiC на твердость керамик.

Предварительно следует отметить, что пористость и состояние границ зерен также оказывает значительное влияние на механические свойства керамик. Наиболее наглядно это видно на примере чистого оксида алюминия. Как видно из табл. 1, увеличение скорости нагрева от 10 до 700°С/тіп приводит к уменьшению относительной плотности от 99.72 до 99.28% и, как следствие, к уменьшению твердости от 18.6 до 16.9 GPa. Таким образом, сравнительно небольшое уменьшение относительной плотности ($\rho/\rho_{th} = 0.44\%$) приводит к снижению твердости оксида алюминия на 1.7 GPa. Полученный результат является достаточно неожиданным, поскольку при увеличении V_h, одновременно со снижением относительной плотности ρ/ρ_{th} , наблюдается уменьшение d от 5.1 до 1.8 μ m. Тем не менее фактор снижения относительной плотности оказывается более

существенным для твердости оксида алюминия, чем уменьшение *d* в ~ 2.8 раза.

По нашему мнению, косвенное влияние на снижение твердости оксида алюминия с малым размером зерна оказывает особое неравновесное состояние границ зерен. Как видно из рис. 1, b, на поверхности субмикронных частиц Al₂O₃ присутствует аморфный слой, который кристаллизуется при ЭИПС и трансформируется в границы зерен керамики (рис. 8). Результаты электронномикроскопических исследований не выявили на границах зерен оксида алюминия присутствия аморфной фазы.

Аморфная фаза содержит избыточный свободный объем [24], и при ее кристаллизации могут возникать дефекты вакансионного и дислокационного типа [25]. Это может приводить к увеличению объемной доли неравновесных границ зерен, содержащих избыточный свободный объем [25,26]. Высокоскоростной нагрев приводит к уменьшению общей продолжительности процесса спекания и, как следствие, уменьшает степень релаксации неравновесной структуры границ зерен. Наличие дефектов на границах зерен может оказывать существенное влияние на твердость оксида алюминия и являться одной из причин, оказывающей влияние на снижение относительной плотности образцов, полученных с высокими скоростями нагрева.

Одновременное уменьшение относительной плотности и размера зерна при увеличении скорости нагрева позволяет объяснить немонотонный, с максимумом, характер зависимости $H_v(V_h)$ для керамик $Al_2O_3 + \beta$ -SiC (рис. 9). Добавление наночастиц β -SiC_n позволяет уменьшить размер зерна и повысить твердость оксида алюминия. При увеличении V_h уменьшение среднего размера зерна приводит к повышению H_v . Снижение твердости при больших V_h обусловлено одновременным

Рис. 8. Электронно-микроскопическое изображение границы зерна в керамике Al_2O_3 (*a*) и кольцевая электронограмма (*b*), соответствующая данному участку микроструктуры. Режимы ЭИПС: $V_h = 350^{\circ}$ C/min, $T_s = 1520^{\circ}$ C, $t_s = 0$ min.

Рис. 9. Зависимость твердости оксида алюминия и керамик $Al_2O_3 + \beta$ -SiC от скорости нагрева.

снижением относительной плотности керамики и повышенной плотностью дефектов на границе зерен оксида алюминия.

Таким образом, с практической точки зрения, для обеспечения высоких характеристик твердости оксида алюминия необходимо использовать промежуточные скорости нагрева ЭИПС ($V_h = 100-350^{\circ}$ C/min), при которых фактор уменьшения размера зерна будет доминировать над отрицательным влиянием пониженной относительной плотности керамики.

Заключение

1. Характер температурной зависимости уплотнения $\rho/\rho_{th}(T)$ порошков Al₂O₃ + β -SiC определяется скоростью нагрева V_h и дисперсностью частиц β -SiC. При малых скоростях нагрева (10–50°C/min) порошков оксида алюминия с добавкой нано- и микрочастиц β -SiC зависимости $\rho/\rho_{th}(T)$ имеют немонотонный характер с пологим участком в интервале температур 1200–1300°C. При больших скоростях нагрева ($V_h > 250^\circ$ C/min) зависимости $\rho/\rho_{th}(T)$ имеют обычный трехстадийный характер.

2. Увеличение скорости нагрева приводит к уменьшению среднего размера зерна оксида алюминия и керамик $Al_2O_3 + \beta$ -SiC. Зависимость среднего размера зерна (d) от объемной доли (f_v) и размера (R) частиц карбида кремния с хорошей точностью описывается уравнением Хилерта-Хелмана: $d/R = 3.6f_v^{-1/3}$.

3. Зависимость твердости от скорости нагрева керамик $Al_2O_3 + \beta$ -SiC имеет немонотонный характер, с максимумом. Максимальные значения твердости керамик $Al_2O_3 + \beta$ -SiC достигаются при $V_h = 100-350^{\circ}$ С/min. Немонотонность зависимости $H_v(V_h)$ обусловлена уменьшением среднего размера зерна, снижением относительной плотности керамики и формированием неравновесного состояния границ зерен при увеличении скорости нагрева V_h .

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 20-73-10113). Исследование методом просвечивающей электронной микроскопии выполнено на оборудовании ЦКП "Материаловедение и металлургия" НИТУ "МИСИС" (проект Минобрнауки России № 075-15-2021-696).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Z. Yin, S. Yan, J. Ye, Z. Zhu, J. Yuan. Ceramics Int., 45 (13), 16113 (2019). DOI: 10.1016/j.ceramint.2019.05.128
- [2] E. Gevorkyan, A. Mamalis, R. Vovk, Z. Semiatkowkski,
 D. Morozow, V. Nerubatskyi, O. Morozova. JINST, 16,
 P10015 (2021). DOI: 10.1088/1748-0221/16/10/P10015
- M.S. Boldin, N.N. Berendeev, N.V. Melekhin, A.A. Popov, A.V. Nokhrin, V.N. Chuvil'deev. Ceramics Int., 47 (18), 25201 (2021). DOI: 10.1016/j.ceramint.2021.06.066
- J.H. Chae, K.H. Kim, Y.H. Choa, J. Matsushita, J.-W. Yoon,
 K.B. Shim. J. Alloys Compd., 413 (1–2), 259 (2006).
 DOI: 10.1016/j.jallcom.2005.05.049
- [5] I. Monohjimoh, M.A. Hussein, N. Al-Aqeeli. Nanomaterials, 9 (1), 86 (2019). DOI: 10.3390/nano9010086
- [6] X.L. Shi, F.M. Xu, Z.J. Zhang, Y.L. Dong, Y. Tan, L. Wang, J.M. Yang. Mater. Sci. Eng. A., 527 (18–19), 4646 (2010). DOI: 10.1016/j.msea.2010.03.035
- [7] Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, Y. Tan. Mater. Sci. Eng. A, **504** (1–2), 49 (2009).
 DOI: 10.1016/j.msea.2008.10.021
- [8] J. Liu, Z. Li, H. Yan, K. Jiang. Adv. Eng. Mater., 16 (9), 1111 (2014). DOI: 10.1002/adem.201300536
- [9] Y. Xu, A. Zangvil, A. Kerber. J. Eur. Cer. Soc., 17 (7), 921 (1997). DOI: 10.1016/S0955-2219(96)00164-1
- [10] S. Gustafsson, L.K.L. Falk, E. Lidén, E. Carlström. Ceramics Int., 34 (7), 1609 (2008).
 - DOI: 10.1016/j.ceramint.2007.05.005
- [11] D. Galusek, R. Klement, J. Sedláček, M. Balog, C. Fasel, J. Zhang, M.A. Crimp, R. Riedel, J. Eur. Cer. Soc., **31** (1–2), 111 (2011). DOI: 10.1016/j.jeurceramsoc.2010.09.013
- [12] C.C. Anya, S.G. Roberts. J. Eur. Cer. Soc., 17 (4), 565 (1997).
 DOI: 10.1016/S0955-2219(96)00092-1
- [13] M. Tokita. Ceramics, 4(2), 160 (2021).
- DOI: 10.3390/ceramics4020014 [14] L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto,
- Y. Nishikawa, S.D.D.L. Torre. J. Eur. Cer. Soc., **19** (5), 609 (1999). DOI: 10.1016/S0955-2219(98)00232-5
- [15] I. Álvarez, R. Torrecillas, W. Solis, P. Peretyagin, A. Fernández. Ceramics Int., 42 (15), 17248 (2016).
 DOI: 10.1016/j.ceramint.2016.08.019
- [16] В.Н. Чувильдеев, М.С. Болдин, Я.Г. Дятлова,
 В.И. Румянцев, С.С. Орданьян. ЖНХ, 60 (8), 1088 (2015).
 [V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova,
 V.I. Rumyantsev, S.S. Ordan'yan. Rus. J. Inorg. Chem., 60 (8), 987 (2015).
 DOI: 10.1134/S0036023615080057]
- [17] M.N. Rahaman. Ceramic Processing and Sintering (Marcel Dekker Inc., NY., 2003)
- [18] W.S. Young, I.B. Culter. J. Am. Ceramic Soc., 53 (12), 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x

- [19] M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Nokhrin, V.N. Chuvil'deev. Materials, 15 (6), 2167 (2022). DOI: 10.3390/ma15062167
- [20] Г.Дж. Фрост, М.Ф. Эшби. Карты механизмов деформации (Металлургия, Челябинск, 1989) [H.J. Frost, M.F. Ashby. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)]
- [21] Е.А. Ланцев, Н.В. Малехонова, Ю.В. Цветков, Ю.В. Благовещенский, В.Н. Чувильдеев, А.В. Нохрин, М.С. Болдин, П.В. Андреев, К.Е. Сметанина, Н.В. Исаева. ФХОМ, 6, 23 (2020). [Е.А. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Y.V. Blagoveshchensky, V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorganic Mater.: Appl. Res., 12 (3), 650 (2021). DOI: 10.1134/S2075113321030242]
- [22] A. Bokov, A. Shelyug, A. Kurlov. J. Eur. Cer. Soc., 41 (12), 5801 (2021). DOI: 10.1016/j.jeurceramsoc.2021.05.007
- [23] D. Fan, L.-Q. Chen, S.-P.P. Chen. J. Am. Ceramic Soc., 81 (3) 526 (1998). DOI: 10.1111/j.1151-2916.1998.tb02370.x
- [24] В.И. Бетехтин, А.М. Глезер, А.Г. Кадомцев, А.Ю. Кипяткова. ФТТ, 40 (1) 85 (1998). [V.I. Betekhtin, А.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998). DOI: 10.1134/1.1130237]
- [25] В.Н. Чувильдеев. Неравновесные границы зерен в металлах. Теория и приложения (Физматлит, М., 2004)
- [26] А.В. Маzitov, А.R. Одапоv. Записки Российского Минералогического общества, 150 (5), 92 (2021).
 DOI: 10.31857/S086960552105004X [A.B. Mazitov, A.R. Oganov. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 150 (5), 92 (2021).
 DOI: 10.31857/S086960552105004X]