05.3

Природа локального окружения атомов германия в аморфных пленках (GeTe)_x(Sb₂Te₃)

© А.В. Марченко¹, Е.И. Теруков^{2,3}, Ф.С. Насрединов⁴, Ю.А. Петрушин¹, П.П. Серегин¹

¹ Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

⁴ Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия E-mail: ppseregin@mail.ru

Поступило в Редакцию 28 апреля 2022 г. В окончательной редакции 12 июня 2022 г. Принято к публикации 14 июня 2022 г.

Методом мессбауэровской спектроскопии на примесных атомах ¹¹⁹Sn продемонстрировано, что в аморфных пленках (GeTe)_x(Sb₂Te₃) (где x = 0.5, 1, 2, 3) атомы олова замещают атомы четырехвалентного германия, образующего тетраэдрическую систему химических связей с атомами в своем локальном окружении. В кристаллических пленках олово замещает двухвалентный шестикоординированный германий в позициях 4*b* кристаллической решетки типа NaCl.

Ключевые слова: аморфные пленки, фазовая память, мессбауэровская спектроскопия.

DOI: 10.21883/PJTF.2022.15.53124.19239

Материалы с фазовой памятью на основе халькогенидных сплавов используются для хранения и кодирования данных в устройствах энергонезависимой памяти. Предпосылкой этого является заметная разница в проводимости, а также в отражательной способности их кристаллической и аморфных фаз [1]. Считается, что сплавы с составами, лежащими на псевдобинарной линии GeTe-Sb₂Te₃, являются наиболее удобными материалами для создания перезаписываемых оптических запоминающих устройств [2]. Они обладают малыми временами кристаллизации, идеальной обратимостью переходов между аморфным и кристаллическим состояниями и высокой термической стабильностью. Очевидно, что для повышения плотности записи и миниатюризации запоминающих устройств необходимо понимание деталей микроструктуры материалов с фазовым переходом как в кристаллическом, так и в аморфном состоянии.

В настоящее время кристаллические структуры сплавов $(GeTe)_x(Sb_2Te_3)$ (где x = 0.5, 1, 2, 3) подробно исследованы [3-6]. Однако очевидны противоречия в интерпретации экспериментальных результатов, полученных при исследовании аморфных пленок Ge₂Sb₂Te₅ методом спектроскопии тонкой структуры поглощения рентгеновских лучей (extended X-ray absorption fine structure, EXAFS) [7–10]. Это указывает на необходимость использования других экспериментальных методов, более чувствительных к незначительным изменениям в локальной структуре атомов при переходе из аморфного в кристаллическое состояние. В частности, было показано, что мессбауэровская спектроскопия является эффективным инструментом обнаружения изменений в локальном окружении атомов и их электронной структуре при аморфизации соединений типа Ge₂Sb₂Te₅ [11]. Настоящая работа посвящена исследованию природы локального окружения атомов германия в кристаллических и аморфных пленках (GeTe)_x(Sb₂Te₃) (где x = 0.5, 1, 2, 3) методом абсорбционной мессбауэровской спектроскопии на изотопе ¹¹⁹Sn.

Рентгеноаморфные пленки a-Ge₃Sb₂Te₆, a-Ge₂Sb₂Te₅, a-GeSb₂Te₄, a-GeSb₄Te₇ (обозначим их как *a*-GeSbTe) и *a*-Ge_{2.95}Sn_{0.05}Sb₂Te₆, *a*-Ge_{1.95}Sn_{0.05}Sb₂Te₅, *a*-Ge_{0.95}Sn_{0.05}Sb₂Te₄ и *a*-Ge_{0.95}Sn_{0.05}Sb₄Te₇ (обозначим как *a*-Ge(Sn)SbTe) были получены методом их магнетронного распыления поликристаллических мишеней того же состава на постоянном токе в атмосфере азота на подложки из алюминиевой фольги. Затем пленки отжигались при температурах 150-200°C для получения кристаллических фаз *c*-Ge₃Sb₂Te₆, c-Ge₂Sb₂Te₅, c-GeSb₂Te₄, c-GeSb₄Te₇ (обозначим их как *с*-GeSbTe) и *с*-Ge_{2.95}Sn_{0.05}Sb₂Te₆, *с*-Ge_{1.95}Sn_{0.05}Sb₂Te₅, *с*-Ge_{0.95}Sn_{0.05}Sb₂Te₄ и *с*-Ge_{0.95}Sn_{0.05}Sb₄Te₇ (обозначим их как c-Ge(Sn)SbTe). Описываемые составы приведены для распыляемых мишеней. Толщина пленок определялась с помощью атомно-силового микроскопа и составляла от 40 до 120 µm. Для синтеза оловосодержащих сплавов использовался изотоп ¹¹⁹Sn обогащения 96%.

Германий, легированный оловом, был получен путем напыления на монокристаллическую пластину германия толщиной $200\,\mu\text{m}$ пленки металлического олова (обогащенного до 96% изотопом ¹¹⁹Sn), последующего сплавления в откачанной кварцевой ампуле в диапазоне температур $800-400^{\circ}\text{C}$ с закалкой на воздухе.

Мессбауэровские спектры ¹¹⁹Sn регистрировались на спектрометре CM 4201 TerLab при 80 K с источником Ca^{119mm}SnO₃. Аппаратурная ширина спектральной линии (G_{app}) для изотопа ¹¹⁹Sn составляла 0.79(2) mm/s.

Рис. 1. a-Ge2.95Sn0.05Sb2Te6 (a),a-Ge1.95Sn0.05Sb2Te5 (b),a-Ge0.95Sn0.05Sb2Te4 (c),a-Ge0.95Sn0.05Sb4Te7 (d)и кристаллического германия (е).

Изомерные сдвиги δ спектров ¹¹⁹Sn приводятся относительно поглотителя CaSnO₃. Мессбауэровские спектры атомов ¹¹⁹Sn в пленках *a*-Ge(Sn)SbTe и *c*-Ge(Sn)SbTe приведены на рис. 1 и 2. При интерпретации данных мессбауэровской спектроскопии предполагалось, что примесные атомы олова изовалентно замещают атомы германия в аморфных и кристаллических пленках.

Мессбауэровские спектры всех пленок *a*-Ge(Sn)Sb представляют собой одиночные уширенные линии $(G \sim 1.33 - 1.36 \text{ mm/s})$ с изомерными сдвигами $\delta \sim 2.04 - 2.07 \text{ mm/s}$. Эти сдвиги близки к значениям изомерных сдвигов спектров примесных атомов олова в кристаллическом германии (рис. 1), а также к изомерному сдвигу спектра серого олова α -Sn. Изомерные сдвиги этих двух спектров ($\delta = 1.79 \text{ mm/s}$ для Ge и $\delta = 2.10 \text{ mm/s}$ для α -Sn) образуют область изомерных сдвигов соединений четырехвалентного олова с тетраэдрической *s p*³-системой химических связей. Следовательно, примесные атомы олова в структуре пленок *a*-Ge(Sn)Sb изовалентно замещают четырехвалентные атомы германия, образующие тетраэдрическую систему химических связей, т.е. локальное координационное число атомов германия в аморфных пленках равно четырем.

Следует обратить внимание на то, что если в пленках *a*-Ge(Sn)SbTe в локальном окружении атомов германия (и замешающих их атомов олова) нахолятся только атомы германия, то изомерный сдвиг спектров ¹¹⁹Sn пленок должен быть $\sim 1.8 \text{ mm/s}$ (как у спектра примесных атомов ¹¹⁹Sn в германии). Если же в пленках *a*-Ge(Sn)SbTe в локальном окружении атомов германия (и замещающих их атомов олова) находятся только атомы теллура, то изомерный сдвиг спектров ¹¹⁹Sn пленок должен быть $\sim 2.1\,\text{mm/s}$ (как у спектра ^{119}Sn стеклообразных сплавов Ge_{1.45}Sn_{0.05}Te_{8.5} [12]). Исходя из этого следует заключить, что мессбауэровские

3

Velocity, mm/s

2

0

1

4

5

6

Relative count rate

 $^{-1}$

спектры ¹¹⁹Sn пленок *a*-Ge(Sn)SbTe отвечают атомам германия (и замещающих их атомов олова), в локальном окружении которых находятся как атомы германия, так и преимущественно атомы теллура.

Колобовым и др. [7] для интерпретации данных EXAFS, полученных при исследовании перехода порядок-беспорядок в пленках Ge₂Sb₂Te₅, была предложена модель "переворота зонтика". Согласно этой модели, аморфизация пленок сопровождается скачком атома Ge из октаэдрической позиции, занятой в кристаллической пленке, в тетраэдрическую позицию, окруженную четырьмя атомами теллура, а связи Ge-Ge не были обнаружены. Однако Бейкер и др. [8,9], также используя данные EXAFS для исследования пленок *a*-Ge₂Sb₂Te₅, предлагают модель, согласно которой атомы германия образуют структурные единицы Те₃Ge-GeTe₃, причем модель основывается на преимущественном образовании в аморфных пленках связей Ge-Ge. Наконец, структура пленок *a*-Ge₂Sb₂Te₅ и *a*-GeSb₂Te₄ была исследована авторами [10] также методом EXAFS. Было показано, что связи Ge-Ge и Ge-Sb присутствуют в кристаллической и аморфной пленках, в то время как связи Те-Те и Sb-Sb не были обнаружены. Все атомы удовлетворяют формальным требованиям валентности, причем атомы германия имеют четырехкратную координацию.

Полученные нами данные мессбауэровской спектроскопии позволяют заключить, что четырехвалентные атомы германия образуют тетраэдрическую $s p^3$ -систему химических связей в структурной сетке аморфной матрицы (локальное координационное число атомов германия равно четырем) и имеют в своем ближайшем окружении преимущественно атомы теллура (хотя не исключаются и атомы германия).

Характерной чертой спектров примесных атомов олова в аморфных пленках является их уширение, и можно предложить две причины этого уширения. Первая причина состоит том, что возможные искажения углов между связями атомов олова с атомами теллура в его ближайшем окружении приводят к уширению спектра за счет неразрешенного квадрупольного расщепления $QS \sim 0.55 \text{ mm/s}$, что свидетельствует о значительном искажении тетраэдрических валентных углов. Вторая причина уширения спектров — флуктуации в расстояниях от атомов олова до атомов теллура при сохранении тетраэдрической системы химических связей. Это приводит к уширению спектра за счет неоднородного изомерного сдвига. Используя калибровку изомерных сдвигов мессбауэровских спектров ¹¹⁹Sn, приведенную в [13], мы получили, что электронные конфигурации олова лежат в пределах от $5s^{0.92}p^{2.76}$ до $5s^{1.15}p^{3.45}$, причем наиболее вероятная конфигурация $5s^{1.01}p^{3.03}$ соответствует атомной конфигурации, когда в ближайшем окружении атомов олова находятся на равных расстояниях четыре атома теллура.

Мессбауэровские спектры 119 Sn всех пленок *c*-Ge(Sn)Sb представляют собой одиночные уширенные линии ($G \sim 1.30 - 1.35$ mm/s) с изомерными сдвигами в пределах $\delta \sim 3.49-3.51$ mm/s. Таким образом, спектры пленок *c*-Ge(Sn)SbTe имеют изомерные сдвиги, типичные для спектров ¹¹⁹Sn ионных соединений двухвалентного олова. Для наглядности на рис. 2 приведен спектр соединения двухвалентного олова SnTe, для которого $\delta = 3.54$ mm/s.

Соединения *c*-GeSbTe имеют три кристаллические фазы: метастабильную вакансионно-неупорядоченную кубическую фазу (может быть получена путем нагревания аморфного образца выше температуры кристаллизации 150°C), вакансионно-упорядоченную кубическую фазу (может быть получена путем отжига аморфных образцов при 300°C) и гексагональную фазу (получается при длительном нагреве аморфного образца при температуре выше 300°C) [3,4]. Общая структура этих соединений состоит из строительных блоков типа каменной соли с чередующимися катионными (GeSb) и анионными (Te) слоями [3,4].

Данные мессбауэровской спектроскопии на примесных атомах ¹¹⁹Sn согласуются с результатами рентгеноструктурных исследований кристаллических соединений *c*-GeSbTe [3,4]: двухвалентное олово Sn²⁺ (электронная конфигурация $5s^2p^x$) замещает двхвалентный германий Ge²⁺ (электронная конфигурация $4s^2p^x$) в позициях 4b кристаллической решетки типа NaCl. Изомерные сдвиги спектров этих соединений близки к изомерному сдвигу соединения SnTe, также имеющего кристаллическую решетку типа NaCl. Уширение спектров тройных соединений (по сравнению с шириной спектра SnTe G = 0.94 mm/s) связано с наличием в катионной подрешетке этих соединений большой концентрации стехиометрических вакансий [3,4].

Таким образом, атомы германия в структуре пленок *a*-GeSbTe четырехвалентны, образуют тетраэдрическую систему химических связей (локальное координационное число атомов германия равно четырем), а в локальном окружении атомов германия находятся преимущественно атомы теллура. Данные мессбауэровской спектроскопии на примесных атомах ¹¹⁹Sn для пленок *c*-GeSbTe соответствуют двухвалентному олову, замещающему двухвалентный германий в кристаллической решетке типа NaCl.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] D. Lencer, M. Salinga, M. Wuttig, Adv. Mater., **23**, 2030 (2011). DOI: 10.1002/adma.201004255
- [2] C. Qiao, Y.R. Guo, J.J. Wang, H. Shen, S.Y. Wang, Y.X. Zheng, R.J. Zhang, L.Y. Chen, C.Z. Wang, K.M. Ho, J. Alloys Compd., **774**, 748 (2019). DOI: 10.1063/5.0067157
- [3] B. Zhang, X.P. Wang, Z.J. Shen, X.B. Li, C.S. Wang, Y.J. Chen, J.X. Li, J.X. Zhang, Z. Zhang, S.B. Zhang, X.D. Han, Sci. Rep., 6, 25453 (2016). DOI: 10.1038/srep25453

- X.-P. Wang, X.-B. Li, N.-K. Chen, Q.-D. Chen, X.-D. Han, S. Zhang, H.-B. Sun, Acta Mater., 136, 242 (2017). DOI: 10.1016/j.actamat.2017.07.006
- [5] A. Lotnyk, U. Ross, S. Bernütz, E. Thelander, B. Rauschenbach, Sci. Rep., 6, 26724 (2016).
 DOI: 10.1038/srep26724
- [6] Y. Zheng, Y. Wang, T. Xin, Y. Cheng, R. Huang, P. Liu, M. Luo, Z. Zhang, Z. Song, S. Feng, Commun. Chem., 2, 1 (2019). DOI: 10.1038/s42004-019-0114-7
- [7] A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominga, T. Uruga, Nature Mater., 3, 703 (2004).
 DOI: 10.1038/nmat1215
- [8] D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor, Phys. Rev. Lett., 96, 255501 (2006).
 DOI: 10.1103/PhysRevLett.96.255501
- [9] D.A. Baker, M.A. Paesler, G. Lucovsky, P.C. Taylor, J. Non-Cryst. Solids, 352, 1621 (2006).
 DOI: 10.1016/j.jnoncrysol.2005.11.079
- [10] P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, M.A. Webb, Phys. Rev. B, 77, 035202 (2008).
 DOI: 10.1103/PhysRevB.77.035202
- [11] А.В. Марченко, Е.И. Теруков, Ф.С. Насрединов, Ю.А. Петрушин, П.П. Серегин, ФТП, 55 (1), 3 (2021).
 DOI: 10.21883/FTP.2021.01.50376.9524 [A.V. Marchenko, E.I. Terukov, F.S. Nasredinov, Yu.A. Petrushin, P.P. Seregin, Semiconductors, 55, 1 (2021).
 DOI: 10.1134/S1063782621010127].
- [12] А.В. Марченко, П.П. Серегин, Е.И. Теруков, К.Б. Шахович, ФТП, **53** (5), 718 (2019).
 DOI: 10.21883/FTP.2019.05.47570.9032 [A.V. Marchenko, P.P. Seregin, E.I. Terukov, K.B. Shakhovich, Semiconductors, **53**, 711 (2019). DOI: 10.1134/S1063782619050166].
- [13] H. Micklitz, P.H. Barrett, Phys. Rev. B, 5, 1704 (1972).
 DOI: 10.1103/PhysRevB.5.1704