04,08,09

Radiation-Stimulated Transformations $Yb^{3+} \rightarrow Yb^{2+}$ and $Yb^{3+} \rightarrow Yb^{3+}$ in Single Crystals and Nanoceramics CaF_2 : YbF_3

© M.Kh. Ashurov¹, I. Nuritdinov², S.T. Boyboboeva^{2,3,¶}

¹ Fonon Research and Production Association,

Tashkent, 700054 Uzbekistan

² Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan,

Tashkent, 1000214 Uzbekistan

³ Tashkent Regional Chirchik State Pedagogical Institute,

111700 Uzbekistan

[¶] E-mail: sohibaboyboboeva@gmail.com

Received May 13, 2022 Revised May 13, 2022 Accepted May 23, 2022

The radiation resistance of CaF₂:YbF₃ (3 mol.% YbF₃) laser ceramics and a single crystal of similar composition (3.6 mol.% YbF₃) exposed to gamma rays in a ⁶⁰Co source is studied. The non-irradiated samples have been shown to be similar in spectral characteristics. After the CaF₂:YbF₃ crystals and ceramics γ -irradiation and the following time exposure, along with transformations Yb³⁺ \rightarrow Yb²⁺, configurational Yb³⁺ \rightarrow Yb³⁺ transitions between different states of Yb³⁺ ions in the structure of samples are carried out, with the participation of interstitial F_i ions.

Keywords: radiation resistance, laser ceramics, gamma rays, spectral characteristics defects.