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Multiple changes in the electron-phonon interaction in quantum wells

with dielectrically different barriers
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The specific features of the interaction of charged particles with polar optical phonons have been studied

theoretically for quantum wells with the barriers that are asymmetric in their dielectric properties. It is shown

that the interaction with interface phonon modes makes the greatest contribution in narrow quantum wells. The

parameters of the electron-phonon interaction were found for the cases of different values of the phonon frequencies

in the barrier materials. It turned out that a significant (by almost an order of magnitude) change in the parameters

of the electron-phonon interaction can occur in such structures. This makes it possible, in principle, to trace the

transition from weak to strong interactions in quantum wells of the same type but with different compositions

of barrier materials. The conditions are found under which an enhancement of the electron-phonon interaction is

possible in an asymmetric structure in comparison with a symmetric one with the barriers of the same composition.
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1. Introduction

Modern technology of semiconductor nanostructures

manufacturing allows to efficiently change the phonon

properties of such objects. Therefore, the term
”
phonon

states engineering“ is widely used lately [1,2]. Spectrum of

phonon states is critical for thermal properties of nanostruc-

tures and very important for modification of electrical and

optical properties.

In nanostructures the electron-phonon interaction pa-

rameters also significantly change. Interaction of charged

particles with polar optical phonons is of special interest.

According to evaluations, the implementation of strong

electron-phonon interaction with generation of large-radius

polarons is possible in symmetric quantum wells [3]. For

that purpose the use of quantum wells with barriers, made

of materials with high level of ionicity, is required. At the

same time, the ionicity of the quantum well material is

not important. As far as we know, such excitations have

not been experimentally observed yet. Significant change

of electron-phonon interaction nature can be expected

in quantum wells with barriers, asymmetric in terms of

their dielectric properties. Such structures are studied

experimentally lately [4–6]. Also they can be included

as components in multi-layer structures, that are used for

creation of solar cells [7–11]. Change of electron-phonon

interaction nature is related to the fact, that in asymmetric

structures several phonon spectrum branches should make

the comparable contribution to the interaction. In case of

symmetric structures only one phonon mode usually makes

the prevailing contribution.

In this work we studied the specific features of the

charged particles interaction with optical phonons for the

quantum wells with barriers, asymmetric in terms of their

dielectric properties. Model of dielectric continuum is

used for phonon spectrum detection and electron-phonon

interaction features determination. This approach allows to

properly define the phonon properties of heterostructures

in cases, when all characteristic parameters of the task

with length size define the constant of a lattice of the

materials in use. For structures, containing monoatomic

layers, more complicated and lengthy theoretical models

can be required. Under our approach it is shown that by

means of barrier properties change the value of electron-

phonon interaction can be changed by several times. The

conditions are found, under which in asymmetric structure

the enhancement of interaction compared to symmetric

structure with the same barrier materials use can be

implemented.

2. Interface phonons spectrum

Let’s examine the three-layer planar structure, consisting

of quantum well region with dielectric permittivity εw(ω)
and two different barriers with permittivity εl(ω) and

εr(ω). l and r indices indicate dielectric permittivity of

the left and right barriers, respectively. In the area of

phonon frequencies all dielectric functions are of the same

kind:

εk(ω) = ε∞,k
ω2

LO,k − ω2

ω2
TO,k − ω2

(1)

with different values of frequencies of longitudinal ωLO,k and

transversal ωTO,k phonons. The index k here corresponds

to l, r or w . With dielectric permittivity, defined with ex-

pression (1), the Lyddane−Sachs−Teller relation is applied
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for all layers:

εk(0) = ε∞,k
ω2

LO,k

ω2
TO,k

. (2)

Electronic spectrum of barriers is not significant for us.

When examining the various barriers the significant is only

the fact that in all cases they should result in localization

of carriers in quantum well area. Interface optical phonons

will be the most interesting object for us. Their spectrum

can be found, using standard boundary conditions at two

quantum well boundaries [12]. For the examined structure

it is defined with the solving of the following equation:

e−|q|a εw(ω) − εl(ω)

εw(ω) + εl(ω)
= e|q|a

εw(ω) + εr(ω)

εw(ω) − εr(ω)
. (3)

Here, a is the quantum well width, q is the two-dimensional

phonon vector in the well plane. In general case the

solution of the equation (3) contains two branches of optical

phonons, localized near the left boundary of the quantum

well, and two branches of phonons, localized near the

right boundary. These branches interact with each other,

resulting in rather complicated picture for electron-phonon

interaction.

Optical phonons spectrum and nature of electron-phonon

interaction is significantly simplified for narrow quantum

wells. Usually the interaction in the area with a size of

about polar state radius r p, that corresponds to the values

of wave vector q ≈ r−1
p , is of the most interest. In case of

meeting the condition

qa ≪ 1. (4)

that is usually implemented in semiconductor wells with

a width of L ∼ 50 Å, the equation (3) is significantly

simplified. In high order as per parameter (4) the dielectric

properties of the quantum well area completely fall out of

it. As a result from (3) we get

εr(ω) + εl(ω) = 0. (5)

Equation (5) formally corresponds with the equation for

determination of interface phonons spectrum at a single

heteroboundary [12]. In case of asymmetric barriers with

εr (ω) 6= εl(ω) it has two solutions for interface phonons.

At the same time, for our three-layer structure one solution

has the maximum intensity at the left well boundary, while

another — at the right.

Two other branches, that contain the exact equation (3),
fall out of the approximate equation (5). Areas of existence
of equation (5) solutions depend on phonon spectra of

barrier materials. If areas of phonon frequencies of the

left and right boundaries materials overlap, the order of

these frequencies location becomes important. Let’s for

definiteness assume that ωLO,l < ωLO,r , and ωTO,l > ωTO,r .

Then the interface phonons frequencies appear in the

following intervals:

ωTO,r < ω1 < ωTO,l

ωLO,l < ω2 < ωLO,r . (6)

In case of change of phonons frequencies sequence order in

barriers, the intervals (6) also naturally change.

For non-overlapped areas of barriers phonon frequencies

the interface phonons frequencies are within the intervals

ωTO,l < ω1 < ωLO,l

ωTO,r < ω2 < ωLO,r . (7)

Two solutions, corresponding to frequencies

ωTO,w < ω3,4 < ωLO,w ,

are not considered in the examined approximation. Clearly,

the equation (5) does not accurately define the spectrum

of interface phonons from intervals (6) and (7) at qa ≥ 1.

However, exactly in the area (4), as will be shown

further, the observed phonon branches make the biggest

contribution to electron-phonon interaction.

3. Electron-phonon interaction

As per data from study [12], let’s get the expression for

Hamiltonian of the electron-phonon interaction Hint in the

examined structure. It can be expressed the same way as

for symmetric structure [13]:

Hint,i =
∑

q

(

2πωi e2

L2

)1/2
exp(iqρ)√

2q
f i(q, z )Fi(q, ω)

×
(

a i(q) + a+
i (q)

)

, (8)

where L2 is the normalizing area of the quantum well, a i(q)
and a+

i (q) are the operators of destruction and generation

of phonons of the branch number i (four branches in full

spectrum and two in the area qa ≪ 1). Factor f i(q, z )
describes the distribution of excitation intensity in the

direction perpendicular to quantum well plane. In the

examined case inside the quantum well at |z | ≤ a/2 it is

given by

f i(q, z ) = γi(ωi)e
qz + γ−1

i (ωi )e
−qz , (9)

where parameter γi is defined with the following expression:

γi(ωi)=e−qa εw(ωi) − εl(ωi)

εw(ωi) + εl(ωi)
=eqa εw(ωi) + εr (ωi)

εw(ωi) − εr (ωi)
.

(10)

Expression (9) for f i(q, z ) differs from the similar expres-

sions for structures with symmetrical barriers since in this

case it is not possible to single out the symmetrical and

asymmetrical modes.
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The biggest difference from symmetrical structures is for

coefficients Fi(q, ωi):

F−1
i (q, ωi) =

[

β−1
l (ωi)

{

γ2
i (ωi)e

−qa + 2 + γ−2
i (ωi )e

qa
}

+ β−1
r (ωi )

{

γ−2
i (ωi)e

−qa + 2 + γ2
i (ωi)e

qa
}

+ β−1
w (ωi )

{

(eqa−e−qa)

(

γ2
i (ωi) +

1

γ2
i (ωi)

)

+2qa

}

]−1/2

.

(11)

Expression (11) describes the charged particles interaction

with all branches of interface phonons. Here, the function

βi(ωi) is given by [12]

βi(ω) =

[

1

εi,∞
− 1

εi,0

]

ω2
LO,i

ω2

[

ω2 − ω2
TO,i

ω2
LO,i − ω2

TO,i

]2

. (12)

From expression (11) it can be seen, that at qa ≪ 1 the

main contribution is made by the interaction, containing

parameters βl(ω) and βr (ω), that are defined with di-

electric properties of the barriers materials. Contributions,

conditioned by properties of quantum well material and

containing function βw(ω), appear only in higher orders

as per parameter (4). Expressions (9) and (11) are

significantly simplified if condition (4) is met. In the highest

order as per parameter (4) the constant of electron-phonon

interaction αk (equivalent of Frelich constant for volume

materials) can be presented as:

αi = e2
(

m
2ωi

)1/2

Ras(ωi ), (13)

where i = 1, 2, m is the carriers mass in quantum well,

while the last factor Ras is given by

Ras(ωi ) =
∣

∣Fi(qωi) f i(q, z )
∣

∣

2 ∼= 2βr (ωi)βl(ωi)

βr (ωi) + βl(ωi)
. (14)

Expression (14) means that in sufficiently narrow quantum

wells the energy of electron-phonon interaction can be

presented as a value constant over the well width. This

value corresponds to polarization created by barriers. In

sufficiently narrow quantum wells this polarization slightly

changes with the well width. At the same time, the

difference in spatial position of interaction maximums for

ω1 and ω2 becomes insignificant. Dielectric properties of

the quantum well material under this approximation also

become insignificant. Expression for parameter Ras(ωi)
should be compared with the similar expression Rsim(ωi),
appearing at determination of the constant of electron-

phonon interaction in symmetric quantum wells. It was

shown earlier [3], that in symmetrical structures, if the

conditions (4) are met, this value is equal to

Rsim =
1

εopt
=

1

ε∞
− 1

ε0
, (15)

where values of ε∞ and ε0 are related to barriers material.

At the same time, the frequency of the interface mode is
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Figure 1. Dimensionless parameter of the electron-

phonon interaction Ras(ω1) at variation of the barriers dielec-

tric properties. Model dependencies are used for barriers

phonon frequencies ωLOl = 1.8ωTOl , ωTOr (x) = (1.3− x)ωTOl ,

ωLOr (x) = (1.5 + x)ωTOl ; ωTOl < ω1 < ωTOr ; ε0l = 4.
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Figure 2. Dimensionless parameter of the electron-

phonon interaction Ras(ω2) at variation of the barriers dielec-

tric properties. Model dependencies are used for barriers

phonon frequencies ωLOl = 1.8ωTOl , ωTOr (x) = (1.3− x)ωTOl ,

ωLOr (x) = (1.5 + x)ωTOl ; ωLOl < ω2 < ωLOr ; ε0l = 4.

close to frequency ωLO of longitudinal optical phonons of

the barrier materials, and that results in expression (15).

Expressions Rsim,r (ωi ) and Rsim,l(ωi) will correspond to

the quantum well, where the material of the right (r) or

left (l) barriers of asymmetric structure will be used for

both barriers.

In case of asymmetric structures with various barriers

the phonon frequency will be different from both ωLO,l

and ωLO,r . While this difference is rather low, it should

be considered for correct determination of electron-phonon

interaction parameters. Figures 1 and 2 show the model

calculations for parameters of Ras(ωi) at various ratios of
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Figure 3. Dimensionless parameter of the electron-phonon

interaction Rsim(ω1) for the same barriers of r type with the

same model dependencies of frequencies for the right barrier, as

in Figs. 1 and 2.
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Figure 4. Dimensionless parameter of the electron-phonon

interaction Rsim(ω2) for the same barriers of r type with the

same model dependencies of frequencies for the right barrier, as

in Figs. 1 and 2.

the phonon frequencies of the barrier materials. The case is

examined when the areas of the barriers phonon frequencies

overlap. Linear dependence of phonon frequencies on some

external parameter can be implemented using solid solutions

of various composition as the barriers. As seen from Figs. 1

and 2, the interaction with one of the interface phonon

modes exceeds another by one−two orders of magnitude.

This is related to the fact that frequency ω1 is between

two TO-modes of barrier frequencies and it is close to

similar parameters of transversal oscillations in terms of

electron-phonon interaction parameter. Figures 3 and 4

show the values of dimensionless parameter of electron-

phonon interaction Rsim(ωi) for symmetric quantum wells

with the same values of phonon frequencies, that were used

in Figs. 1 and 2 for the left barrier. It can be seen that the

values of electron-phonon interaction parameter are higher

than for asymmetric structures. The parameter itself can

change its value by several times. At the same time, at

low values of static dielectric permittivity of the barriers

the biggest changes are made in symmetric structures. At

large values of ε0, on the contrary, the major changes are

typical for asymmetric structures. This allows to select an

optimum method for electron-phonon interaction control for

structures with various barriers.

Different situation is observed in case of non-overlapped

areas of the barriers phonon frequencies. Figure 5 shows

the model calculations of parameter Ras(ωi) for this case. It
should be noted that contributions of both phonon modes

to electron-phonon interaction become similar in terms of

value. Values of interaction parameters in this case can also

change by several times. However, at close values of the

phonon frequencies the interaction for carriers in quantum

well with symmetric barriers is still higher.

Different situation is observed at significantly different

phonon frequencies of the barriers. In this case we can per-

form the analytical comparison of parameters Ras(ωi ) and

Rsim(ωi). Let’s for definiteness assume that ωLO,l ≫ ωLO,r .

Then, for interface phonons with frequency ω1 close to

ωLO,l , βl ≪ βr ,

Ras(ωi) ≈ 2βi(ω1). (16)

In case of meeting the condition

εr,∞ <
1

2

[

(

ε2l,0 + ε2l,∞ + 6εl,0εl,∞
)1/2 − (εl,0 + εl,∞)

]

,

(17)
we get

Ras(ωi ) > Rsim,l(ωi). (18)

This means that in asymmetric structure the electron-

phonon interaction is higher than in symmetric, where both
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Figure 5. Values of Ras(ω1) and Ras(ω2) at non-overlapped areas

of phonon frequencies for asymmetric barriers ωTO,l < ω1 < ωLO,l

and ωTO,r < ω2 < ωLO,r ; a — ωLO,l =
√
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√
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ωTO,r = (1.4 + x)ωTO,l , ωLO,r = (1.5 + 1.2x)ωTO,l .
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Figure 6. Boundary of the enhancement area for maximum

asymmetrical barriers at various values of ε0r .

barriers are made of material of the left barrier for the

quantum well, examined in this study. At the same time, in

asymmetric structure there is the second contribution in the

area of low frequencies ωTO,r < ω2 < ωLO,r . For that area,

usually, βl(ω2) ≫ βr(ω2), Ras(ω2) ≈ 2βr(ω2) and condition

Ras(ωi) > Rsim,r (ωi) (19)

is implemented if the following relation is fulfilled

εl,0 <
1

2

[

(

ε2r,0 + ε2r,∞ + 6εr,0εr,∞

)1/2 − (εr,0 + εr,∞)

]

,

(20)

Basically, the conditions (17) and (20) do not contradict

each other and can be implemented simultaneously. Howe-

ver, if both barriers are made of materials with high level of

ionicity, it is not possible to simultaneously implement the

significant difference of phonon frequencies and fulfillment

of conditions (17) and (20). However, there is a situation,

when asymmetric barriers use creates higher polarization in

the quantum well area, than if there are symmetric barriers.

This is possible, if one of the barriers is made of low-polar or

non-polar material with low value of dielectric permittivity.

We will call such structure the quantum well with maximum

asymmetric barriers. In this case the satisfaction of one

of the inequalities — (17) or (20), depending on which

barrier is made of non-polar material, is enough for the

enhancement interaction. Also, one of the frequencies of

the interface phonons becomes zero and the condition of

the significant difference of frequencies is automatically met.

Figure 6 shows the boundary of the enhancement area

for various values of polar barrier parameters. At various

values of ε0 this boundary changes from (
√
2− 1)ε∞ to

ε∞ . To achieve the enhancement interaction the dielectric

permittivity of the non-polar barrier should be less that this

value.

In all other cases the biggest value of the electron-phonon

interaction of polar type is implemented in structures

with symmetric barriers with the highest level of ionicity.

It should be noted that value of the electron-phonon

interaction in the structures with various barriers changes

by several times. This allows to potentially implement and

study the transition from low to strong interaction. For that

the material of at least one of the barriers should have high

level of ionicity, that is required for generation of polarons

of higher radius.

4. Conclusion

Thus, the use of barriers, asymmetric in terms of their

dielectric parameters, for quantum well results in significant

change of interaction of charged particles with polar optical

phonons. Dimensionless parameter of interactions in such

structures can change by several times. This should

be considered at studying the processes of hot carriers

relaxation, studying the optical and transport properties

of similar structures. The possibility of interaction en-

hancement using non-polar materials as one of the barriers

is of special interest. This opens additional possibilities

for implementation of conditions for higher-radius polarons

existence.
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